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ABSTRACT 

 

Autoregressive conditional duration (ACD) models play an important role in financial 

modeling. This paper considers the estimation of the Weibull ACD model using a semi-

parametric approach based on the theory of estimating functions (EF). We apply the EF 

and the maximum likelihood (ML) methods to a data set given in Tsay (2003, p203) to 

compare these two methods. It is shown that the EF approach is easier to apply in practice 

and gives better estimates than the MLE. Results show that the EF approach is compatible 

with the ML method in parameter estimation. Furthermore, the computation speed for the 

EF approach is much faster than for the MLE and therefore offers a significant reduction of 

the completion time. 
 

Keywords: Weibull distribution; Autoregressive conditional duration; Estimating function; 

Maximum likelihood; Semi-parametric; High frequency data 
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1. Introduction 

 

In financial modeling, one problem we face is the analysis of high frequency transaction 

data.  The main characteristic of this type of data is that it is collected at irregular, short time 

intervals. A basic tool used to study such duration data is the use of autoregressive 

conditional duration (ACD) models given by Engle and Russell (1998). 

  

The general class of ACD models adapts the AR and GARCH theory to study the dynamic 

structure of the adjusted durations }{ ix  )( 1−−= iii ttx , where it  is the time at the i th 

transaction. A crucial assumption underlying the ACD model is that the time dependence is 

described by a function iψ , where iψ  is the conditional expectation of the adjusted 

duration between the )1( −i th and the i th trades. 

 

Let 

 ]|[],,|[ 111 −− == iiiii FxExxxE Lψ ,   (1.1) 

where 1−iF  is the information set available at the )1( −i th trade. 

 

The basic ACD model is defined as 

 iiix εψ= ,     (1.2) 

where }{ iε is a sequence of iid non-negative random variable's with density (.)f and 

1)( =iE ε . Also note that iε  is independent of 1−iF . From Equation (1.2) it is clear that a 

vast set of ACD model specifications can be defined by different distributions of iε  and 

specifications of iψ . 

 

Since the durations are non-negative variables, in practice, we use the distributions such as 

the Exponential, Gamma and Weibull to model ACD structures (see, Peiris et al (2008) for 

details). The Weibull distribution is more flexible and therefore plays an important role in 

ACD modelling. Since the Exponential and Gamma distributions are special cases of the 

Weibull distribution, below we give the corresponding Weibull density and other useful 

results for later reference. 
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The Weibull Distribution 

A random variable X has a Weibull distribution with shape parameter 0>α  and scale 

parameter 0>β  if its cumulative distribution function (cdf) and probability density 

function (pdf) are given by 
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respectively. When 1=α , the Weibull distribution reduces to an exponential distribution.  

 

The pdf of the standardized Weibull distribution is 
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Notice that the scale parameter β  not appears in (1.4). It can be seen that 1)( =YE  and  
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The corresponding cdf is  
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The Section 2 reviews the general ACD model and its basic properties for later reference. 
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2. A Review of the General ACD ),( qm , 0≥q  Model 

 

Suppose that only the most recent m  durations )1( ≥m  influence the conditional duration 

iψ  in (1.1) and consider the model satisfying 

  ∑
=

−+=
m

j

jiji x
1

αωψ , 

where 0>ω , 0>jα  and ∑
=

<
m

j
j

1

1α . This is called an ACD )(m  model.  

 

If there is no limited-memory characteristic, then one can define a more general class 

called ACD ),( qm , 1≥q  model as given in Engle and Russell (1988) 
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where 0>ω , 0, >jj βα . It is easy to see that iii x ψη −=  is a martingale difference 

sequence and the model in (2.1) can be written as 
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and consequently 
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where ),max( qmr =  and ∑
=

<+
r

j
jj

1

1)( βα . 

 

This is in the form of an ARMA process with non-Gaussian innovations. This 

representation is used to obtain the unconditional mean and variance of the ACD model in 

(2.1). Notice that }{ ix  is weakly stationary provided the zeroes of ∑
=

−=
r

j

j
j zz

1

1)( δφ  are 

outside the unit circle, where jjj βαδ += , rj ,,1 L= . 

 

If the parameters in the model are not well-estimated, then the model is not adequate for 

describing the behavior of the data and the accuracy of forecasts will be affected. The most 



 

4 

 

common method of estimating the parameters is the use of maximum likelihood (ML). For 

example, see Engle and Russell (1998), Bauwens and Giot (2000), Zhang, Russell and 

Tsay (2001). This paper applies an alternative method of parameter estimation that is based 

on the EF approach due to Godambe (1985). In their paper Thavaneswaran and Peiris 

(1996) used the EF approach for estimating some nonlinear time series models. Peiris and 

Ng (2008) used this EF approach in parameter estimation of autogressive models with non-

stationary innovations. Recently, Peiris, Ng and Mohamed (2008) compared the 

performance of the EF and ML estimates of simple exponential ACD models and showed 

that the EF method is more efficient than the ML method. Using a large scale simulation 

study Allen, Peiris and Ng (2008) showed that the parameter estimates based on EF 

method outperforms the ML estimates in Weibull ACD models. 

 

With that view in mind the section 3 reviews the MLE and EF estimation procedures in 

detail for ACD modelling. 

 

 

3. Parameter Estimation 

 

We first review the maximum likelihood (ML) approach. 

 

3.1  The MLE Approach 

For an ACD ),( qm  model, let ),max(0 qmi =  and  '
N(T)1N(T) ),,( xx L=x , where N(T) is  

the sample size. The likelihood function of the durations N(T)1 ,, xx L  is  
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The impact of the marginal pdf )|(
0

θif x on the likelihood function diminishes as the 

sample size N(T)  increases and so the marginal density can be ignored, resulting in the 

conditional likelihood function 
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Estimating the Weibull ACD model 

In the Weibull ACD Model, the }{ iε  follows the standardised Weibull distribution with 
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The corresponding conditional log likelihood function is given by 
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So taking logs  
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see Tsay (2002). Further examples can be found in Peiris et.al. (2005). 

 

Now we review the theory of estimating functions (EF) as an alternative semi-parametric 

approach in parameter estimation. 

 

3.2 The EF Approach 

Suppose that },,{ 21 Lyy  is a discrete stochastic process. We are interested of fitting a 

suitable model for a sample of size n  from this process. Let Θ  be a class of probability 

distributions F  on nR  and )(Fθθ = , Θ∈F be a vector of real parameters. 
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Let ih  be a real valued function of iyyy ,,, 21 L  and θ  such that 

 0)}](;,,,{[ 21,1 =− FyyyhE iiFi θL , );,,2,1( Θ∈= Fni L   

and  

 ,0)( =jihhE   ),( ji ≠  

where (.),1 FiE − denotes the expectation holding the first 1−i  values 121 ,,, −iyyy L  fixed 

and 1,1 (.) −− ≡ iFi EE , (.)(.)(.),0 EEE FF ≡≡ (unconditional mean). 

 

Estimating Functions 

Any real valued function (.)g  of the random variates nyyy ,,, 21 L  and the parameter θ , 

that can be used to estimate θ  is called an estimating function. 

 

In addition, if (.)g  satisfies some regularity conditions (ie. (i) the first and the second 

derivatives of (.)g ( (.)'g  and (.)''g ) exist and (ii) (.)][ 2gE  is non-zero) and 

 0))](;,,,([ 21 =FyyygE n θL  

then (.)g  is called a regular unbiased estimating function. 

  

Among all regular unbiased estimating functions g , *g  is said to be optimum if 
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is minimized for all Θ∈F  at *gg = . 

 

We then estimate θ  by solving the optimum estimating equations 

 0);,,,( 21
* =θnyyyg L . 

 

Main Results 

We consider the class of linear estimating functions L  generated by 
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where ih  are as defined before and 1−ia  is a suitably chosen function of the random 

variates 121 ,,, −iyyy L  and the parameter θ  for all ni ,,2,1 L= . Clearly, 

 ,0)( =gE Lg ∈ . 

 

Now we state the following theorem due to Godambe (1985): 

 

Theorem 

In the class L  of estimating functions g , the function *g  minimizing (3.3) is given by 

 ∑
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Notes: 

1. The function *g is called the optimum estimating function. 

2. An optimal estimate of θ  (in the sense of Godambe(1985)) can be obtained by solving 

the equation(s) 0* =g . 

 

Estimation of ACD )1,1(  Using the EF Approach 

Let ),,,|( 121 xxxxE iiii L−−=ψ . Consider the ACD )1,1(  model given by 

 iiix εψ= ,             (3.4) 

with  

 11 −− ++= iii bax ψωψ ,           (3.5) 

where }{ iε  is a sequence of iid standard Weibull random variables with 1)( =iE ε  & 

VVar i =)(ε  and 0>ω , 0, >ba  such that 1<+ ba . 

 

It is clear that the conditional distribution 

 ),(~| 2

1 Vx iiii ψψ−Ω ,  
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where 1−Ωi  is the information set available at time 1−i , )( iVarV ε= , and V  is given in 

(1.5). 

 

Let iii xh −=ψ . Then clearly, ih  is an unbiased estimating function. Now we construct a 

linear unbiased estimating function such that 

 ∑
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n

i

iiahg
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*

1 ,  

where n  is the number of observations. 

 

It can be seen that the optimal value of 1−ia  in the sense of Godambe (1985) is given by 
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where θ  is a parameter.   

 

Solving the system of equations 
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for ),,( baωθ =  the corresponding optimal set of estimates can be obtained. The following 

derivatives under the conditions of second order stationarity can be used: 
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Since these equations do not estimate V , an estimate of α  is obtained by solving 
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The Section 4 applies these two approaches for a real data set from Tsay (2002) and 

compares the corresponding EF and ML estimates. 
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4. An Application of ACD Modelling 

 

The data set used in this paper is based on a sample of high frequency transactions data 

obtained for the US IBM stock on five consecutive trading days from November 1 to 

November 7, 1990 (see Tsay (2003, p203)). Focusing on positive transaction durations, we 

have 3534 observations. The series is then adjusted (see Tsay (2003, p195-197) such that 

we obtain 3534 positive adjusted durations. Figures 1 to 3 are respectively the series, the 

histogram of the series and the autocorrelation (ACF) of the series. Based on Figure 3, 

there exist some serial correlations in the adjusted durations. Now we fit the series with 

Weibull ACD (1,1) model as shown in Tsay (2003, p2003) and estimate the following two 

Weibull models. 

 

Model 1 (based on ML method): 

iiix εψ= , iii x ψψ 8679.00693.02085.0 1 ++= −   

8781.0ˆ =α .     

Model 2 (based on EF method): 

 iiix εψ= , iii x ψψ 8602.00712.02296.0 1 ++= −   

 7764.0ˆ =α . 

where iε  is follow the standardized Weibull distribution with parameter α̂ . 

 

To assess the performance of ML and EF methods given in Section (3.1) and (3.2) on this 

two models, the standard errors were computed.  Standard errors of αω ,,, ba  for the 

Model 1 are 0248.0,0114.0,0570.0  and 0115.0  respectively. The standard errors of 

αω ,,, ba  for the Model 2 are 0263.0,0117.0,0620.0  and 0203.0 . The EF method in 

general is comparable to the ML method in term of parameter estimates and standard 

errors. Furthermore, we note that if we use the ML method to find the estimates, the 

method needs to search for the maximum value under the maximum likelihood procedure. 

One the other hand, the EF approach is just solving the simultaneous equations to obtain 

the estimates. Thus, we would expect a reduction in computation time if we use EF method 

instead of that based on the ML method. The reason is that the EF method is only involved 

in solving the simultaneous nonlinear equations while the ML method needs to search for 

the maximum value of likelihood function.  It is important to note that the EF method 
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requires 9.5313 seconds in a Core 2 Duo 2.2 GHz computer to obtain the solution while the 

ML method requires 41.2187 seconds.  
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Figure 1: Time plots of durations for IBM stock traded in the first five trading days of 

November 1990: the adjusted series.        

 

 

 

 

 

 

 

 

 

Figure 2: The histogram of the adjusted series. 
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Figure 3: ACF of the adjusted series 
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5. Conclusion 

 

This paper applied the EF approach in parameter estimation of Weibull ACD models and 

compared the properties with the corresponding ML estimates. Results show that the 

standard errors of the estimates using either EF or ML methods are comparable. However, 

the computation time for EF method is much shorter than that of the ML method. 
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