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Abstract 
 

This paper considers a new class of first order moving average type time series 

model with index δ (> 0) to describe some hidden features of a time series.  It is 

shown that this class of models provides a valid, simple solution to a new 

direction of time series modelling.  In particular, for suitably chosen parameters 

(coefficient β and index δ) this type of models could be used to describe data with 

low or high frequency components.  Various new results associated with this class 

are given in a general form.  A simulation study is carried out to justify the theory.  

We justify the importance of this class of models in practice using a set of real 

time series data 

 

Keywords:  Time series, Misclassification, High frequency, Spectrum, Estimation, 

Financial data, Moving average, Correlation, Index, Periodogram 

 
 
 
 
 
1  INTRODUCTION 
 
 
It is known that there are some problems arise in time series modelling in practice for data 

with high frequency components, for example, financial data.  Although ARMA type models 

could be used in practice, there is no systematic approach or a suitable class of time series 

models available in literature to accommodate, analyze and forecast of time series with 

changing frequency behaviour via a direct method.  This paper attempts to introduce a family 

of first order moving average (MA(1)) type models (Generalized MA(1) or GEMA(1)) to 

describe some hidden properties of time series data. 

 

 



We first consider the family of standard MA(1) processes (see, for instance,

Box and Jenkins (1976), Priestley (1989), Brockwell and Davis (1991)) gener-

ated by

Xt = Zt − βZt−1 , (1.1)

where |β| < 1 and {Zt} is a sequence of uncorrelated random variables (not

necessarily independent) with zero mean and variance σ2 , known as white

noise, WN(0, σ2) .

Using the backshift operator, B (i.e. BjXt = Xt−j, j ≥ 0) and the identity

operator I = B0 , (1.1) can be written as

Xt = (I − βB)Zt . (1.2)

The process in (1.2) have the following properties:

(i) The autocorrelation function (acf), ρk satisfies

ρ1 = −β/(1 + β2) and ρk = 0 for k ≥ 2,

(ii) The partial autocorrelation function (pacf), φk satisfies,

φk = −βk(1− β2)/(1− β2(k+1)),

(iii) The spectral density function (sdf), fX(ω) is

fX(ω) =
σ2

2π
(1− 2β Cosω + β2); −π ≤ ω ≤ π. (1.3)

It is clear from the above that for 0 < β < 1 , ρ1 is negative and the

series fluctuate rapidly about its mean. The spectrum is dominated by high

frequencies and this behaviour is represent by a large peak of the spectrum near

the frequency ω = π. In other words the power (of the process) is concentrated

at high frequencies (the maximum value of fX(ω) occurs at ω = π and this

is given by f s
X(0) = σ2

2π
(1 + β)2, where s stands for standard). Also note that

|φk| < β, and the pacf is dominated by a damped exponential.

It is well known that for any time series data set, the density of crossings at

a certain level xt = x may vary. We have noticed that this property (say, the

variation in the degree of frequency) is very common in many time series data
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sets (see the graphs 1 to 4 in the Appendix I). However, these series cannot

discriminate from each other using the standard time series techniques. In

other words the acf, the pacf, and the spectrum are similar to each other

in some cases and one may propose the same model for all of these cases.

Although these models provide a valid basic solution, a complete picture of

the underlying process can not be achieved by using these standard models.

This motivates us to answer the following question: ‘How can we indicate the

degree of frequency in time series modelling’? This leads us to introduce a

generalized version of (1.2) with an additional parameter (or index) δ(> 0)

(to control the degree of frequency) satisfying

Xt = (I − βB)δZt; 0 < β < 1; δ > 0 . (1.4)

This class of models covers the traditional MA(1) family given in (1.1) when

δ = 1 . It is interesting to note that the frequency of data can be controlled

by this additional parameter δ and hence (1.4) constitutes a wide variety of

important processes in practice. There are a large number of real world data

sets with varying frequencies (especially in finance there are data with high

frequency) and (1.4) can be applied easily using existing techniques with some

modifications. The class of models generated by (1.4) is called ‘generalized

MA(1)’ or ‘GEMA(1)’. Although (1.4) can easily be extended to general

ARMA type models, this paper considers the family of GEMA(1) given in

(1.4) with 0 < β < 1 and δ > 0, where δ is a real number.

With that view in mind Section 2 reports some properties of the underlying

process in (1.4).

2 Properties of GEMA(1) Processes

Let

(I − βB)δ =
∞∑

j=0

ψjβ
jBj , (2.1)
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where 0 < β < 1, δ ∈ R+; B0 = I, ψ0 = 1 and

ψj = (−1)j

(
δ

j

)

=
(−δ)(−δ + 1) · · · (−δ + j − 1)

j!
; j ≥ 1

If δ is a positive integer, then ψj = 0 for j ≥ δ + 1 . For any non-integral

δ > 0 , it is known that,

ψj =
Γ(j − δ)

Γ(j + 1)Γ(−δ)
, (2.2)

where Γ(·) is the gamma function given by

Γ(x) =



∫∞
0 tx−1e−tdt ; x > 0

∞ ; x = 0

x−1Γ(x+ 1) ; x < 0 .

It is easy to see that the series
∑∞

j=0 ψjβ
j converges for all δ since |β| < 1,

and in particular, the process Xt in (1.4) is equivalent to a valid MA(∞)

process of the form Xt =
∑∞

j=0 ψjβ
jZt−j with

∑
|ψjβ

j|2 <∞. (2.3)

Now we state and prove the following theorem for a stationary solution of

(1.4).

Theorem 2.1: Let {Zt} ∼ WN(0, σ2) . Then for all δ > 0 and |β| < 1 ,

the infinite series

Xt =
∞∑

j=0

ψjβ
jZt−j, (2.4)

converges absolutely with probability one, where Ψj is given in (2.2).

Proof: Using the facts E
(∑∞

j=0 |ψjβ
jZt−j|

)2
=
∑∞

j=0 |ψjβ
j|2 E{|Zt−j|2} .

and
∑∞

j=0 |ψjβ
j|2 <∞ , the result follows.

Thus (2.4) gives a stationary solution for the GEMA(1) model in (1.4).

Note: For β = 1, (2.4) converges for all δ in 0 < δ < 1/2.
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It is clear from (1.4) that {Xt} is equivalent to a valid AR(∞) process of

the form
∞∑

j=0

πj β
j Xt−j = Zt, (2.5)

where πj = (−1)j

(
−δ
j

)

=
Γ(j + δ)

Γ(j + 1) Γ(δ)
; j ≥ 0.

Let γk = Cov(Xt, Xt−k) = E(XtXt−k) be the autocovariance function (at lag

k) of {Xt} satisfying the conditions of theorem 2.1. It is clear from (2.5)

that {γk} satisfy a Yule-Walker type recursion
∞∑

j=0

πj β
j γk−j = 0 ; k > 0 (2.6)

and the corresponding autocorrelation function (acf), ρk , at lag k is given

by
∞∑

j=0

πj β
jρk−j = 0 ; k > 0 , (2.7)

The spectrum (sdf) of {Xt} in (1.4) is

fX(ω) = |1− β e−iω|2δ σ
2

2π
; −π ≤ ω ≤ π

= (1− 2β Cosω + β2)δ σ
2

2π
. (2.8)

Note: In a neighbourhood of ω = π,

f g
X ∼ σ2

2π
(1 + β)2δ,

where g stands for generalized. For δ > 1 and 0 < β < 1, it is clear (from

(1.3) and (2.8)) that f g
X > f s

X . Thus a set of high frequency data satisfying an

MA(1) can be replaced by an GEMA(1) model with a suitably chosen index

δ.

In Section 3 we obtain the exact form of γk (or ρk) using the sdf in (2.8).

That is,

γk =
∫ π

−π
eikω fX(ω)dω

=
σ2

π

∫ π

0
Cos(kω)(1− 2β Cosω + β2)δ dω. (2.9)
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We first evaluate the integral in (2.9) for k = 0 and then for other values of

k ≥ 1.

3 Main Results

Theorem 3.1:

γ0 = V ar(Xt) = σ2F (−δ, −δ; 1; β2) (3.1)

where F (θ1, θ2; θ3; θ) is the hypergeometric function given by

F (θ1, θ2; θ3; θ) =
∞∑

j=0

Γ(θ1 + j) Γ(θ2 + j) Γ(θ3) θ
j

Γ(θ1) Γ(θ2)Γ(θ3 + j) Γ(j + 1)
. (3.2)

Note that the right hand side of (3.2) terminates if θ1 or θ2 is equal to a

negative integer (see also Gradsteyn and Ryzhik (GR)(1965), p.1039).

Proof: From GR, p.384 (3.665:2),∫ π

0

dω

(1− 2β Cosω + β2)δ′ = B(
1

2
,
1

2
)F (δ′, δ′; 1; β2), (3.3)

where B(x, y) = Γ(x) Γ(y)
Γ(x+y)

is the Beta function.

Since B(1
2
, 1

2
) = π , the result follows since δ′ = −δ.

Using (3.2), it is easy to see that for δ′ = −1 ,

F (−1,−1; 1; β2) = (1 + β2).

Hence (3.1) confirms the corresponding well known result for the variance of

an MA(1) (standard) process satisfying (1.2) with δ = 1. That is,

V ar(Xt) = σ2(1 + β2), |β| < 1.

As it is not easy to evaluate the integral in (2.10) for k 6= 0 , we find an

expression for γk via ,

γk = E(XtXt−k)

= σ2
∞∑

j=0

ψj ψj+k β
k+2j .
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An explicit form of γk is given in Theorem 3.2 .

Theorem 3.2:

γk =
σ2 βkΓ(k − δ)F (−δ, k − δ; k + 1; β2)

Γ(−δ) Γ(k + 1)
; k ≥ 0 . (3.4)

Proof: Since Xt =
∑∞

j=0 ψj β
j Zt−j ,

γk = σ2 βk
∞∑

j=0

ψj ψj+k β
2j,

= σ2βk
∞∑

j=0

Γ(j − δ) Γ(j + k − δ)(β2)j

Γ2(−δ)Γ(j + 1)Γ(j + k + 1)
.

From p.556 of Abramovitz & Stegun (1965), we have

∞∑
j=0

Γ(−δ + j) Γ(k − δ + j)(β2)j

Γ(k + 1 + j) Γ(j + 1)
=

Γ(−δ) Γ(k − δ)F (−δ, k − δ; k + 1; β2)

Γ(k + 1)

and hence (3.4) follows.

Note: When k = 0 , Theorem 3.2 reduces to Theorem 3.1 .

The autocorrelation function plays an important role in the analysis of the

underlying process. The Corollary 3.1 below gives ρk for any k ≥ 0 .

Corollary 3.1 : The autocorrelation function of the GEMA(1) process in

(1.4) is

ρk = βk Γ(k − δ)F (−δ, k − δ; k + 1; β2)

Γ(−δ) Γ(k + 1)F (−δ,−δ; 1; β2)
(3.5)

Note: It is interesting to note that (3.5) reduces to the acf of a standard

AR(1) process satisfying Xt = αXt−1 + Zt when δ = −1 (see Peiris (2002)),

since

F (1, k + 1; k + 1; α2) = F (1, 1; 1; α2) = (1− α2)−1

(see also GR p.1040).

Thus the results of these two theorems provide a new set of formulae in

general form. Obviously, our new result for γk in (3.4) supersede all existing

acf for standard AR(1) MA(1) and also for fractionally differenced white

noise processes.
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Remark : An important consequence of our new result of Theorems 3.2 yield∫ π

0

Cos k ω dω

(1− 2β Cosω + β2)δ′ =
πβk Γ(k + δ′)F (δ′, k + δ′; k + 1; β2)

Γ(δ′) Γ(k + 1)
(3.6)

When k = 0 the equation (3.6) reduces to (3.3) in Theorem 3.1 . (also see GR

p 384).

Note : The new result in equation (3.6) is, particularly, useful in many theo-

retical developments of generalized ARMA (GARMA) processes with indices

and this will be discussed inna future paper.

Now in Section 4, we discuss a method of estimating parameters β and δ

appeared in (1.4).

4 Estimation of Parameters

Consider the ratio of ρk+1/ρk.

From Corollary 3.1 (equation 3.7), we have

ρk+1

ρk

=
α(k − δ)F (−δ, k + 1− δ; k + 2; β2)

(k + 1)F (−δ, k − δ; k + 1; β2)
. (4.1)

From the properties of F (θ1, θ2; θ3; θ) given in equation (3.2), it is not difficult

to show that the right hand side (rhs) of (4.1) is approximately equal to β for

large k.

Thus an estimate of β is obtained by

β̂ =
rk+1

rk

, (4.2)

where rk is the lag k sample acf.

However, the following approximations for ρ1 and ρ2 will produce the

method of moment (MOM) estimates for both β and δ. that is,

ρ1 = −βδ, (4.3)

and

ρ2 =
−δ(1− δ)β2

2
. (4.4)
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The corresponding MOM are given by

β̂ = 2r2/r1 − r1, δ̂ = −r1/β̂.

A better approximation for ρ1 is given by ρ1 = −βδ(1 − β2δ2). The max-

imum likelihood estimation (MLE) is also possible and will be discussed in a

future paper.

Now one can modify the usual regression approach (via periodogram analy-

sis) as in the long memory case (see Geweke and Porter-Hudak (1983), Brock-

well and Davis (1991), Peiris and Court (1993), Chen et. al. (1994), Hunt et.

al. (2001)) to estimate δ.

From (2.8) we have

lnfX(ω) = C − δ ln(|1− βe−iω|2), (4.5)

where C = ln(σ2/2π). Suppose we have T observations X1, X2, · · · , XT .

The corresponding sample periodogram is

IT,X(ωj) =
1

2π

T−1∑
h=−(T−1)

γ̂he
−ihωj ,

where γ̂h = 1
T

∑T−|h|
j=1 (Xj+|h| − X̄)(Xj − X̄) and ωj = 2πj/T .

Now the equation in (4.6) reduces to the linear regression equation

yj = a− δxj + εj, j = 1, · · · , KT ,

where yj = ln{IT,X(ωj)}, xj = ln(|1− β̂e−iωj |
2
), a = C, εj = ln(

IT,X(ωj)

fX(ωj)
)

and KT is a constant chosen so that 2πKT/T is small. In practice we select

KT = T η, 0 < η < 1.

Thus an estimator for δ is

δ̂p = −

KT∑
j=1

(xj − x̄)yj

/KT∑
j=1

(xj − x̄)2

 . (4.6)

Since var(εj) = π2

6
, the asymptotic distribution of δ̂ is

δ̂ ∼ N(δ,
π2

6
∑

(xj − x̄)2
).
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Peiris and Court (1993), Chen et al (1994), and Hunt et al (2001) suggested

replacing the periodogram in the above expression by a general scaled lag

window estimator for fX(ω) . Suppose that κ(x) is a real valued, bounded

symmetric function defined and continuous on x ∈ [−1, 1] , and 0 elsewhere.

Let {RT} be a sequence of integers such that RT →∞ and RT/T → 0

as T → ∞ . The general form of a scaled lag window estimator for fX(ω)

is

f̂X(ω) =
1

2π

∑
|r|<T

κ
(
r

RT

)
Cr cos(ωr), (4.7)

where

Cr =
1

T − |r|

T−|r|∑
t=1

(Xt − µ)(Xt+|r| − µ), |r| = 0, 1, · · · , T − 1

is an unbiased estimator of the autocovariance function of {Xt}, γr , calcu-

lated knowing the true mean µ . The lag window estimator for d is obtained

by substituting f̂X for IT,X in (4.4). Denote the resulting estimator by δ̂L.

That is,

δ̂L = −

KT∑
j=1

(xj − x̄)yj

/KT∑
j=1

(xj − x̄)2

 , (4.8)

where yj = lnf̂X(ωj) .

Further, let

C∗
r =

1

T

T−|r|∑
t=1

(Xt − X̄)(Xt+|r| − X̄), |r| = 0, · · · , T − 1

be an estimator of γr calculated using the sample mean X̄ . The corre-

sponding spectral density estimate using C∗
r is denoted by

f̂ ∗X(ω) =
1

2π

∑
|r|<RT

κ
(
r

RT

)
C∗

r cos(ωr). (4.9)

Let δ̂∗L denote the estimator obtained by substituting f̂ ∗X for IT,X in (4.4).

Chen, Abraham, and Peiris (1994) investigated the bias and mean squared

error of δ̂L via some simulation studies using various lag window spectral
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density estimators. They noted that while δ̂L had smaller mean squared error

compared with δ̂p the estimator did typically have larger bias. In Section 5

we apply this theory to a real data set given in Abraham and Ledolter (1983).

5 An Application

Consider the time series of 197 readings from a chemical process concentration

(in every two hours) given in series A of Box and Jenkins (1976). The original

series is nonstationary. The time series plot, the acf, the pacf and the spectrum

indicate that the differenced data has a high frequency component. Since the

original series is nonstationary, Box and Jenkins (1976) fitted the following

MA(1) model for the differenced data:

xt = zt − 0.7zt−1, (5.1)

where xt represents the differenced data.

However, we fit a generalized MA(1) model for the data in order to explain

the high frequency behaviour using the methods described in Section 4. The

results are:

β̂ = 0.414, δ̂ = 0.620, and σ2 = 0.138. The fitted model is

xt = (I − 0.414)0.620zt, (5.2)

where var(zt) = 0.138.

The first three forecasts from the time origin at t = 193 and the corre-

sponding 95% confidence intervals for xt are:

0.02 and 0.02± 0.52

-0.05 and −0.05± 0.30

0.005 and 0.005± 0.38

The true (observed) values for the last three readings on xt are -0.10,

-0.50, and 0.20 respectively.
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The corresponding results due to standard MA modelling are:

-0.10 and −0.10± 0.79

0.00 and 0.00± 0.87

0.00 and 0.00± 0.87

Our results are closer to the true values than in the traditional MA (or

ARMA) modelling. Also note that our new results provide shorter confidence

intervals in all three cases above (see Appendix II for comparison).

Note: All calculations and simulations reported here are carried out using

Splus.
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