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ABSTRACT

Having concluded that thus far the question about the most appropriate type of nonlinear
ACD model has not been satisfactorily answered, we intend to develop a novel ACD
modelling methodology based on an iterative estimation algorithm and a semiparametric
autoregressive process that not only allows the data to speak for itself, but also is robust
across datasets without relying on some computational factors, such as the hypothesis
about the probability density function of the standardised durations. We propose in this
paper the Semiparametric ACD (SP-ACD) model, which can be considered a starting point
of such a development. To address the problem about the unobservability of the
conditional durations in practice, the current paper devises an iterative algorithm to
estimate the unknown conditional duration process. In such a circumstance, it is essential
to provide not only the mathematical justification of the estimation scheme, but also sound
asymptotic results about the semiparametric and the adaptive data-driven estimators. This
paper focuses mainly on the former and also on a number of simulation experiments, while
the later is left for future study.
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1. Introduction
Since the seminal work of Engle and Russell (1998), the modelling of financial data at
transaction level has become an ongoing topic in the area of financial econometrics. The
ultimate high frequency data in finance are transaction-by-transaction or trade-by-trade data in
security markets where time is often measured in seconds. Transaction data possesses a
number of unique characteristics that do not appear in lower frequencies.! The most salient
feature, however, is that they are fundamentally irregularly spaced. This feature challenges
researchers as standard econometric techniques refined over the years are no longer
applicable. Moreover, recent models from the market microstructure literature? argue that time

may convey information and, therefore, should also be modelled.

Motivated by these considerations. Engle and Russell (1998) developed the Autoregressive
Conditional Duration (ACD) model such that the amrival times are modelled as random
variables, which follow a pomt process. Apparently, the ACD model and the GARCH model
of Bollerslev (1986) share several common features. Both models rely on a similar economic
meotivation, ie. the clustering of news and financial events in the markets. Due to their
sttuctural similarity. a number of researchers have subsequently proposed numerous
parametric extensions to the ACD model in a similar manner to those of the GARCH, for
example, the logarithimic ACD (Log-ACD) model of Bauwens and Giot (2000). There are also
some other parametric extensions of the ACD model that abound in the literature. Fernandes
and Grammig (2006), for example, consider a family of ACD-type models that relies on
asymmetric responses to shocks and on a Box-Cox transformation to the conditional duration
process. Their family encompasses most parametric ACD models in the literature, though
there are a few exceptions. Zhang, Russell, and Tsay (2001) argue for a nonlinear version
based on self-exciting threshold ACD processes, whereas Meitz and Terdssvirta (2006)

propose the smooth transition and the time-varying ACD models.’

! See Tsay (2003) for an excellent review.

? See, for example, Hasbrouck (1991), and Easley and O Hara, M. (1992).

% See Pacurar (2008) for an excellent survey on both the theoretical and empirical works that have been done on
the ACD model.



The mmportant motivation for developing these models was to allow for some additional
flexibility mainly in order to address the issue of nonlinearity that was raised in a number of
studies.* However, thus far the question about the most appropriate type of nonlinear ACD
model has not been efficiently addressed. In our view, the scope of nonlinearity offered by the
above parametric extensions is still too limited for some, while excessively sophisticated in the
others. We believe that not only a better model should be able to fully capture nonlinear
influences of the past information on the current conditional duration, but it also should be
tlexible in the sense that data is allowed to speak for itself and that it is robust across duration
processes. Furthermore, the performance of the model should not depend on some
computational factors, such as the hypothesis about the probability density function of the

standardised durations.

Motivated by these considerations, we put forward a novel methodology of ACD modelling,
which can be considered the third generation approach, based on iterative estimation
algorithms and semiparametric autoregressive processes. The current paper can be considerad
a starting point in which we discuss the Semiparametric ACD (SP-ACD) model. Clearly.
semiparametrics should bring about much needed flexibility. Fernandes, Medeiros and Veiga
(2008), for example, proposed what called the Functional Coefficient ACD (FC-ACD), which,
by increasing the number of regimes to infinity, can acts as a universal neural-network
approximation. The main difficulty of estimating an ACD model using semiparametric
techniques directly resides in the unobservability of the conditional durations in practice. To
address this problem, the current paper devises an iterative algorithm to estimate the unknown
conditional duration process. In such a circumstance, it is essential to provide not only the
mathematical justification of the estimation scheme, but also sound asymptotic results about
the semiparametric and the adaptive data-driven estimators. The current paper will focus
mainly on the former and also on a number of simulation experiments, while the later will be

left for future study.

*+ See. for example, Engle and Russell (1998), Dufour and Engle (2000), Zhang, Russell and Tsay (2001), and
Fernandes and Grammig (2006).



The following section develops the statistical underpinning for the SP-ACD model and
Section 3 presents the basic construction of the above-mentioned estimation algorithm.
Section 4 discusses asymptotic properties of the SP-ACD model and Section 5 considers a
number of illustrative examples and gives simulation results. The paper concludes with a

discussion, while proofs are given in the appendix.

2 The SP-ACD Model

Let consider a stochastic process that is simply a sequence of times {ro.r] ..... t, } with
ty <t <---<t, . In this case, x, =, —t_, defines the intervals between two arrival times, which
1s commonly known as the durations. In this paper, we consider the duration process {x?. RE= Z} .
which is assumed to be a nonnegative and strictly stationary stochastic process adapted to the

filtration {Q_,..i £ Z} with Q, = J[{x;:s < :}‘i of the form

S4; J

I.' = I‘I!('.fr"s.' (21)

where

E[x[. |xl_._] _____ X Wi gseees I:.r;f]:l = (X s X Wy, ) =, (2.2)

is the conditional expectation of the th duration, which is dependent upon the past
information. and {:i<Z} is an iid. innovation series, independent of {x::s < z} . with unit
mean and variance, and a finite fourth moment. Statistically ¢ can follow any distribution
function, F(e). such that P(s<0)=0. One of the most popular choices among ACD studies
is the generalised Gamma distribution with a scale parameter «. and the shape parameters

(B.x) all greater than zero, while nested within it are the Gamma distribution (where o« =1)

and the Weibull distribution (where x =1).

The basic ACD model as proposed by Engle and Russell (1998) relies on a linear

parameterisation of (2.2) in which , depends on p past durations and g past expected

durations as

r 7
Vi =@+ D Y%+ D By - (2.3)
i P

k=

* See Grammig and Maurer (2000), Allen et al. (2006) and Vuorenmaa {2006) for discussion on these and other
distribution functions.



In literature, this is often referred to as the ACD( p,¢) model by which sufficient conditions to
ensure the positivity of v, are, @ >0, 7, >0 vi=1, _, p and B =0 vi=1,...q. Note that these

conditions are identical to that of the GARCH model, which ensure that the conditional

variance is positive.

Despite the evidence of nonlinearity reported in a various studies.® the question about the type
of nonlinear ACD model that is the most appropriate, has not yet been satisfactorily addressed.
As an alternative, the current paper proposes the SP-ACD(p.q) model of the form

E|:x_,. |xl_._3 RS LA W:_.;.] =

£l
= i ViXi;+ Z Er ( Wik } (2'4)

However. in order to present the main ideas and methodology without unnecessary
complication in our discussion, here attention will be restricted only to a special case of (2.4).

namely

E[x_-' |x.-'-: ] 5"7_-'-1:| = [ YW ] =Pt g{'f"’r‘-] J =y (2.5)
where » 1s an unknown parameter and g(-) is an unknown function on the real line. The strict
stationarity assumption being imposed on {x_,..r' e Z} suggests that » and g(-) must satisfy a

number of conditions. including (1.5) and those of Theorem 3.1 of An and Huang (1996).

To derive the estimators of y and g . we first write (2.1) as

x=f [ X Wig ) +77 (2-6)
where 7, = f(x.v.,)(5—1) is a martingale difference series. Furthermore, using the
functional form given in (2.5). we have

X, =¥+t g{ ¥ia } + 1% (2-7)
where, in this case,

g (W_-'_l ) = E[(x.-' AR }|i-"'"r'-1j| = E(x_,. |'§"rf-1 ) -yE t Xa |W_-'-1 ' =& [ Wia } —VE (l-*""r'-l J : (2.8)

¢ See, for example, Dufour and Engle (2000). Zhang, Russell and Tsay (2001), and Fernandes and Grammig
(2006).



In addition, a shight simplification of (2.7) leads to
%, =77+ & (Vi )+ (2.9)
where z,=x_ -g, (v, ). If » is known to be the true parameter, then the natural estimates of

g, and g fora given y are

. r o
é:j(‘r"ff-l _.J=ZWP;:J| [\W_r-l)x_- : (2-10)
éz:k(Wf-z :}=ZFK_L-{’#";'_1)I;_3 : (2.11)
5=2
and
ée_- '[Wr‘-] ’ = é]:k {W.-‘-: ] T ?gz.n '['r"fr'-l : (2- 12)
where W, (v,,) is a probability weight function depending on y.y.,.._..y;, and the number

T of observations. Hereafter, let X =x,—g,,(v,_,), then the kernel-weighted least squares

1

estimator of y can be found by minimising

T .
pREASTYS (2.13)
to obtain
) EE . =1 | T T ]
jomr=| 30t [ {Zwm s S| .14
i=2 i=2 i=2

where =X, - é:.a_- { Wi ) and g {Wf-l) =8 (W.—'-; :|_ ga [_’W.--l) :

Furthermore, if o° = E [r;.rf | is unknown, it can be estimated by

a1 1 L [ - e 12
2 (’L"}= (T_l)Zix:_}’.a-‘}'-l_g.:s(#*".f-z )J’ (2.15)

where g, [ Via } = gn (l-yr'—'_- J i J};J‘g::r& (W.—'-z ) '

The quality of the proposed estimators can be measured by the average squared error (ASE).
However. in our analysis, computation of the ASE must also takes into account the fact that
the true conditional durations must themselves be estimated. Therefore, this paper defines the

ASE as follows



; , 1 T " n R - : -2, . 3
‘D(h:l = {T % 1} g |:{-y.l|xr'—l t&a (Wﬁ-] )=V aBan Wiy ]} _{;“’x.-'-; + & (v )_ yE& Wi )}_' oy, _.v,, )

where 1 is the estimate of the conditional duration computed using the estimation scheme.
which is explained in detail below, and co[jr,ﬁ,..z_y) = w(y, :)11'{{;4) such that w is a weight

function.

Note that this paper considers only the case where W, is a kernel weight function
W {J) =K, (J" —¥a } Z K, (J" —W¥ia }

where K, (-)=h"K(-/h). K is a real-valued kernel function satisfying Assumptions 4a below

and h=h € H, =[aT* bT¥ ] in which 0<a, <b <= and 0<¢, <1/20.

An obvious advantage of the above SP-ACD model over its ACD counterpart is the additional
flexibility by which the linear specification is nested as a special case. If indeed the current
duration does depend on the past conditional durations with some unknown nonlinear

relationship, the estimate of the parameter y in (2.14) would be much more accurate than

those offered by the parametric extensions.

Another important benefit is the fact that it also makes possible a choice of modelling

X gf}{:x?._l) tAw,  te (2.16)
where ¢ is an unknown function on the real line, 4 is an unknown parameter and ¢, is a
sequence of i.i.d. random errors with mean zero and finite variance. Statistical tests conducted
by Engle and Russell (1998) on IBM trade duration data have found significant evidence of a
nonlinear relationship between conditional durations and past information set. In particular,
the authors report that on average the expected durations from the linear model are too large
after the very short as well as the very long durations. It is obvious that the model in (2.16)
does enable a nonlinear relationship such that very short durations would have a bigger impact
on decreasing expectations, while long durations would have a reduced impact on lengthening

durations. Therefore, the SP-ACD of this kind could potentially be very useful empirically.



The following section discusses the iterative scheme adapted in this paper in order to compute

an estimate of the true, but unobservable. conditional duration.

3. The Computational Algorithm
In this section, we first present the basic construction of the scheme. then discuss its
theoretical justification. Note that mathematical proofs of the results in this section are

relegated to the appendix.

Let us assume that we have a set of data samples {x_,-zls i<T } ideally from the generating

process described by (2.7). The estimation algorithm is constructed to include five important
steps as follows.

Step 1: Choose the starting values for the vector of the T conditional means. Index this values

by a zero, i.e. {(,.-fl_._c} and set m=1.

Step 2: Compute f, ., which includes 7

4 hm

and g, .based on {x_:2<7<T} and the estimates
of the conditional durations as computed in the previous step, i.e. {y},._j_m_l:2£:'if }

using semiparametric regression technique.

Step 3: Compute {:,um N fk_m B e T)} and also select some sensible value for y,, ,

which cannot be computed recursively.
Step 4: If m <M , where M is a pre-specified maximum number of iterations, then increment
m and return to Step 2.

Step 5: When m = M , perform the final semiparametric regression of x,, and v, to obtain the

final estimates y, = _}i[:x‘,_l.y}l,_l_m'). Often, the performance of the algorithm can be

improved by averaging over the final X of M iterations to obtain

a2 3 G.1)
Wia=|— / Wim s 3.1
I"\ K A m:.‘rt‘f"—'l z

then perform the final semiparametric regression of x_, and w which leads

i-1.4

ultimately to the final estimates v, - f(x_.v,_, ).



We will now discuss the theoretical justification of the above iterative estimation scheme. Let

us first introduce the following terms and notations. The SPL-ACD(1,1) model in (2.5)

suggests that the estimates of conditional durations at the mth (m >1) iteration can be defined

as

I:“;{i:n.rra = };Paxi—l + gl.k ( I;f;ri—l.n:m'—l ;I _.fl;}uélh (l-'ll}r'—l:n.m—} ) (3 2)
where

éj.}:{')=ZW;.h(')x:—J+} (J=]‘2) (33)

=2

are the nonparametric kernel estimates of g, with #,, being a probability weight function
depending on Wy, .. Ws4mas-Wrasma» and 7, is a kernel-weighted estimator for the

unknown parameter y . Furthermore,

E[5x = %ot =Frspms | = 7201 + 8 (Pramms) =782 (Prsmms ) = Fonm (3.4)
E[x[x=%0¥ = Wit | = 751+ 81 (Viinms) =78 (Visams ) =Winm (3.5)
8 (Vesnm) = E[ 5 Wranms ]+ & (Finnms) = E[ 5 iy ] (3.6)
and

BulVhan )~ E B0 sns | Bl ] B Wi (3.7)
where i=1....T. n=L...N and m=1...M. While, #,, in (3.4) represents the ftrue

conditional expectation as a function of x_ and the estimate w_ . w, = in (3.5) are the
population quantities corresponding to the estimates v,,, of the algorithm where v, , are

some starting values assumed to be elements of Q. for all ieZ, 1.e. they are independent

from {s,:s <} . Hereafter, let us denote by

|, the L, such that

SEGE 65)

[¥]

With terms as defined in (3.2) to (3.7), we now state and bound the quantity of interest as

v, - (3.9)

|, <[¥inm -7

inm T mm

i H!f_/::y.'.:.-s =W

in,m

|!.“y.".?| m = V'

¥

where



i-‘.;'f..’i.?’ﬂ . l-ljf..'i.h‘l 2 = H(?hxﬁ—l + g!g’.‘ ': (r'l}r'—l.n.m—i )_ .}:.:i \é’!.h (R‘Jr."—é:r.':m—l ]]
, . _ . (3.10)
_{»’er'—] t£g ( Y ma )_;"g: ( U}:—Ln.m—: )}‘L ’
Hi.“?::r:.m = I:‘y::.'i.m 2 et H(gl (;';rr'—l:r!.m—! )_ gl (i.“'y:—].ﬂ:m—'_' }J = .'-', [ g} {l-":}."—]:.'i.m—l ,]_g2 {%’—l:n.m—l ] }H: 2 (3 1 1)
and
w.".?.':.w: Zs y"’r’”: = ”[g] ( |;"}'-.'—l.n.w'.'—l ) = g ( |‘IJV?'—I )] _:V{ g: { t.‘l’fr'—l:r!:m—] ) _g: (‘."‘fr'—l :I :J 2 (3 = 12)

It is obvious that, while the first error term on the right side of (3.9) quantifies the estimation
errors of a one-step semiparametric regression at the mth iteration, the third term represents
the case without estimation error such that y, , are some starting values. This suggests,
therefore, that in this case ||g.’/l_-_: -, || quantifies the error due to wrong starting values.
Furthermore, by denoting

5';'.-:.«; = (V}uc”}\u } » ir"_"r'.x = (U_’rf:]:x'- er)— and Vie = [Vﬁ.l:»; ----- Vine )f (3-13)

for 1< x <m—1, hereafter, let us define

(L) _. ~ -
Alr s Sllp “ I;V::r o :.Jfr'.a:
xz]

A

and (3.14)

A — -
A.‘..lr e sup“y/::r _Wr'.a: 7"

2l -
We will now present assumptions, which are crucial to the statistical justification of the above

estimation algorithm, and the main results of this section.

Assumption 3a:

Functions g, (w) (j=1.2) on the real line satisfy the following Lipschitz type condition:
g, (v +v)-g,(v)| <o, (v) P (3.15)
for each given v and all veS (any compact subset of R') by which ¢, (v ) are measurable

functions such that

o (v) -)m

(Jlex ()], ]lﬁ + <G (3.16)

2

for some 0<G<1.



Assumption 3b:
V|

w ], <= and 7, =y, <=
Theorem 3a:

Assume that Assumptions 3a and 3b hold. Then

i 6 G i i
AR - ‘ —LiCh*+o, {—+ h*: | uniformly over he H;
" \Th Th ]}

(L)
1m

where c,(i=1.2) are some positive constants and Ay} is as defined in (3a.3) below.

Theorem 3b:

Assume that {.\};i e Z} isasin (2.7). Then for all i=1

Wvn—vi <67 (% +12)
Jfor some 0<G<1.
Theorem 3c:

Assume that {.x',.:.i € :} isasin (2.7). Then for all i=1

Hw.".?.'=.'r: B Wr'.n.m

2

T oia {1 +2(af2) /a2 '.]ﬂ}
IE '

Jor some 0<G<1.

Theorem 3d:

Assume that {.x',.:.i € Z} is as in (2.7) and that Assumptions 3a, 3b and 4a hold. Then

[ ool ]
—+h
l_TFr J},J

va -, | - O(Ali) ] - O‘i %+clh“ +o,

uniformily over he H,.

4. Asymptotic Theory

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Asymptotic theory of the above semiparametric estimation has been considered in a number of

studies, for example Engle et. al. (1986). Heckman (1986), Hirdle et al. (2000), Gao and Yee

(2000), and Gao (2006). Nonetheless, the fact that here the conditional durations themselves

must also be estimated significantly differentiate the current study from the previous ones.

Therefore, it is our intention to ensure that in this case the semiparametric and the adaptive

10



data-driven estimations of models (2.7) and (2.16) are of sound asymptotic characters. In this
introductory paper, however, we only state expected asymptotic results without proofs, while
focusing more on Section 5 where we will illustrate how well the above estimation procedure

works mumerically and practically.

Let us begin our discussion in this section by rewriting the kernel-weighted LS estimators 7,
of » in (2.14) using ,, which hereafter represents our estimates of the conditional durations,

as follows

N

=1 .

[T (i T -
Famy = g] AR DA (4.1)

\ iz

",

A A

where Z =x_-g,,(v_) and g, =g(v,_)-£, (¥ ). We list below assumptions, which are

considerad quite common among this type of study.

Assumption 4a:
(1) Assume that the processes (w,:i=1) are strictly stationary and c-mixing with mixing
coefficient «(T)=Cq", forsome 0<C <= and 0<g <1 and that {y,} has a common
marginal density f(-) where f(-) has a compact support containing 5 with two

continuous derivatives on the interior of §.

(i) Assume that {r?:} is a sequence of independently and identically distributed random
processes with E(7,)=0 and E {r}f )= o2 <=0, and that 5, are independent of x, and v,

forall szn.
(ii1) Assume that the weight function » is bounded and that its support § is compact.

(iv) Assume that the functions g, (-), for j-1.2. have two continuous derivatives on the

interior of §.
(v) Assume that the kernel function, K, is symmetric, Lipschitz continuous and has an

absolutely integrable Fourier transform and that it is a bounded probability function with
[K(_u)di.r =1. K(-)20 and f w'K (u)du<=.

(vi) For any integer k=1, E |¢;r,.|’r <o,

11



Note that Assumption 4a(i) 1s similar to (C.1) and (C.8) of Hirdle and Vieu (1992). The

remaining assumptions are statistically justified due to the stationarity of y,. Finally. within

the context of a one-step semiparametric regression, Gao and Yee (2000), and Hirdle and

Vieu (1992) show that Assumption 4a(vi) is required in order to prove that the data-driven

bandwidth is asymptotically optimal.

Proposition 4a:

Assume that Assumptions 4a holds. Then the following holds uniformly over he H, :

ﬁ{ff,_, -y} — N[O.JQ.,-“'J;]

where o3 = {3, E(xya )} >0.

In view of (4.1), in order to prove Proposition 4a. we must show that

T -
%z -n,—>N|0,6* /o] |,
— o L

i=2

{Sz (vi)—8., (v, :}}7?;- o, (T:-fz ) ..

N7

(=

{gk (W"'"-' J & {y}r’—l :l} z,=0, (T]F }

ndl

n
=

and

ndl

n
=

{gl (v, )-&.. (v, }}{g¥ (wv,)-g, (v, :l} =0, (T]“f: } uniformly over he H,

where E {‘i"f;-1 ) = én (5‘}_-'_1 } = {gl [ ¥ } e él..h (tr’;';-1 J} = ;’{{g: (5‘7_-'_1 )_ gz.k [5‘};‘-1 )}

It is not difficult to show, in an usual semiparametric case, that

PP .S
lim—sup>u r=a,,
5= T g, |5

therefore, for the leading term in (4.3) to be true we only have to show that

;T )

L) Tl s
i N 22 f o, N2
sup zZ. [——— .
T M:H,..\L',-ﬂ : T

(4.2)

(4.3)

(4.4)

4.5)

(4.6)

(4.7)

(4.8)

12



Also, the remaining terms can be proved using the results of Theorem 3d and the fact that

- %i{éﬂ {y}r’—l :I _gm (v, J}z o (w.-'—z W)+ } 11r é{g; i [ ¥Via } —&; (!-yr'—I :I}_ o [ A } (4.9)
+;é{g; i ( } g; i [ ¥y )Hgn (l.-"f.-'-: )_g_r' ('r”'r‘-l :I}(o{w.'—l'tr"}r'—]\;]

where second term is equivalent to the average squared error of a one-step semiparametric

estimation.

Similarly, the kemel-weighted LS estimator &, of ¢’ in (2.15) can also be rewritten as

= =—:l { = gn( i-1 :H'l,»gu-( rr‘-]::l}z' (410)

! y ) A — 2
T_é{ (: X + Ea (Vi )= Fua [_EV:_IJJ}

T 5 1 T
_T—l;‘ ! ﬁz
T
Z

{[& gn[V_-l }]‘:"’[32(#";‘-1 ::]_.éz:.a (L}r—)]}g (4.11)

+{-}’ _-;.RJEZ‘WE.-' + T
g i

T{[& (wia J_gn (i.-';_r-z ]j|_," [gA (Wr ) Lh { Wia J]j

T-15

1; [[g1(i.="/_.-_3)_g1.J. [V }|— V[gJU g,_ ( _.'_\)j|}f?,-

+(y -7, J
we can prave the following proposition.

Proposition 4b:

Assune that Assumptions 4a hold. Then the following holds uniformly over he H;

\f'_(cr -o’ ]—)N[O.Vm'(r}fﬂ. (4.12)

In the discussion that follows, we will apply a cross-validation (CV) criterion to construct
adaptive data-driven estimates for both y and o . However, in order to define the CV

function, we must first introduce the following estimator.

13



For 1sn<nN=T-1. let us define

1 Y\ Kii [ L}r‘ L ;&i } x_-'-E—_,i

g, v, )-2,(v,.h)- = (4.13)
R =V Wy

and

E‘;Fs.n (gjr.wj=gi,.ﬁ (L}%J_/g"ZH(E’ErF] (4]4)
where ﬁ (v)- Vl IZKR (¥, =¥, ) . Similar to that of (2.14), the leave-out estimate 7, of

Sl
can be founded by minimising

N 2

IR APEPS I (7| (4.15)

n=1

The CV function for our current study can therefore be defined as

Cr(h) == n20(vv., )+ D(h)-2¢(h) (4.16)
4 n=1

where

o 1 Fofe gw B

D(n)= 5 ;{mﬁ_n (v, )=m(v, _jl} olv,.v, ). (4.17)

¢ (h] = %Z 'rl-'lr:rl {‘V;Ir’.‘:n [:{,n j —m (1:?1 J} fo{{:ﬂ '1"5 ) : (4 ] 8)

?;IM:.V.' ('I:'” } = }j& x.‘i + él.n [t!';r'i } - ;}Eél.:l {lf}n ) 2 (4 ] 9)

and

T?I[:'l’") =}('¥.’i +gl(_wr:)_ryg2 [W’i } (420)

The cross-validation criterion consists of selecting the value h. of h that achieves
V(. |=inf,., CV(h). (4.21)
Furthermore, a data-driven selection # is asymptotically optimal if

(i) finf, o, D(h) >, 1. (4.22)
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Proposition 4c:
Assume that Assumptions 4a hold. Then the data-driven bandwidth h. is asymptotically

optimal in accordance with (4.22).

To provide the proof of Proposition 4c, it is enough to show that

1 I

’D(h:l = (T-1) Z H.ﬂ'}nxﬁ-z + &4 (Via j = F&a Wi J} _{;"x.-'-: +&8(va)- 78 (¥ )}:'_ & (Y Wiy :I
=%+c3h* +0,{D(h)}. (4.23)
1

where €, (1=1.2) are some positive constants, that

D (h)—D(n)

i o & 1) 12
and that
sup [{D(h)—D(h)}-{cv (h)-c¥(1)}|/D(h)=0,(1). (4.25)

The following section presents a small sample study for model (2.7)

5. Computational Aspects and INlustrative Examples
The aim of the following simulation experiments is to illustrate how well the above estimation
procedure works numerically and practically. To demonstrate some degree of robustness, this
paper considers a number of illustrative examples where, in each case, the random variable &
has either a Gammaa distribution with =2 and £=0.5. or a Weibull distribution with « =3

and £ =1. Also, in the analysis below, we use the quartic kernel function

|(15/16)(1-0)"  if || <1

K(u)= = (5.1)
v 0 otherwise

and the weight function
o [1 if|s|<s

w[s:% Hpss (5.2)
00 otherwise
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The remaining of this section presents first descriptions of the illustrative examples considered
in this paper, then Section 5b explains the computational steps taken in each case, including
the first set of simulation results. Finally. Section 5S¢ compares our simulation results to those

of Allen et al. (2006).

Sa. Hustrative Examples
Example 1: Mackey-Glass ACD (MG-ACD) Model
Our first example model stems from the well-known Mackey-Glass System.” In view of (2.7)

a Mackey-Glass ACD model can be established by specifying

Uh
L¥¥]
S

y=0.5 and g(y)=0.75| L |. (5.
V4w )

Given the functional form of g . the fact that the process {u} is strictly stationary follows
from Theorem 3.1 of An and Huang (1996). Furthermore, Lemma 3.4.4 and Theorem 3.4.10
of GyOrfi et al (1989) suggest that the {g/,.} i1s p-mixing and therefore o-mixing. Finally, it

follows from the definitions of X and w given in (5.1) and (5.2) above that all the conditions

in Assumption 4a are satisfied.

Example 2: Logarithmic ACD (Log-ACD) Model

Similar to the GARCH, the ACD model specified in (2.7) requires additional restrictions to

ensure the positivity of duration. To address this issue. Bauwens and Giot (2000) propose the

Logarithmic ACD (Log-ACD) model as follows

X, =exp(@, )&, ¢ =0+ i ot Z BV (5.4)
j=1 F=l

where {g}~1iid with E(g)-v. Let us also define
exp(¢,) =vexp(q,) (5.5)

thereby (5.4) can now be rewritten as

i _ P q
x, =exp(4)n, 4 =o+> anx_ +> B4 (5.6)
= kel

where @ = +Inv and 7, =&, /v such that E(n,)=1.

" See. for example, Nychka et al. (1992).
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The so-called Log-ACD(1.1) model can be written as

x. =exp(d)n. ¢ =@+alhx_ +Bd_ (5.7)
Similar to its ACD(1.1) counterpart, the Log-ACD(1,1) model can also be linearised to obtain
lnx, =@z+alnx_ + f_ +u, (5.8)

where u, =Inn, -1, so that E(z)=0.

Below, we illustrate how well the SP-ACD model perform in the case where the data

generating process for each of the realisations is given by the following Log-ACD(1.1) model

x; —exp(¢ )n; and ¢ = 0.01+021nx,, +0.7¢,,. (5.9)

In Log-ACD studies, for example Bauwens and Giot (2000) and Allen et al. (2006). the

parameters
19={(:).&'] ..... ‘1’;-;31-----,5‘3} (5.10)

in (5.6) are estimated by the Maximum Likelihood (ML) method where the functional form of

the likelihood function depends very mmuch on the distribution of & . If the distribution

specified in the likelihood function is different from the true distribution of &, then 6 is in

fact the Quasi MLE (QMLE) of &. Allen et al. (2006) empirically studied the finite sample
properties of the MLE and QMLE as applied to the Log-ACD(1,1) model based on a variety
of probability distributions, including the Weibull, the exponential, the generalised Gamma
and the log-normal distribution. and found that, except for cases of the QMLE under the
generalised Gamma distribution, the estimators are close to their true values and seems to be
asymptotically normal. The problem with the generalised Gamma distribution may have been
caused by difficulties in obtaining robust and accurate numerical derivatives of the likelihood
functions for purposes of maximisation. Therefore, by assuming that the standardised duration
& has either the Weibull or the generalised Gamma distribution, our results in this paper can

be directly compared to those of Allen et al. (2006).
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5b. Computational Steps and Basic Simulation Results
The computational steps taken in order to obtain the results in Tables 1 to 4 below can be
sumimarised as follows.
1) Compute
1 i g

D(h)=- ﬂé[{;;ﬁx:_l + &1 (¥ ) - Va8 (Via }} - {;‘"x.--l +& (v }_.ng (1.-'1"_-'-: ]H: (Vi ¥ia)

and let h, = arg min,,,, Where H, - [I ‘""’:"J._I.JT‘WJ .

2) Find the h=h, such that i, =argmin,_ CV (k).

3) Under the cases where T=101, 201, 304 and 401, compute
a) |hs—hy),
b) |[¥u-7l
c) |;’z'JI —y| and

d) ASE (h), ASE,(h),and ASE,(h)

where

4SE, (he) - %i{g (V) -85, (Wi }}1 , (5.11)
G T 5

ASE, () - == X {5, (via) - g ()} (5.12)

ASE,; [\hc ’ = %i {g,.: i (Ir'}f-; J _g,l:r 7 J}{g; [ Wia } = g{:.y.-'-] J} (5.13)

and

ASE(h, ) = ASE, (. ) + ASE, (. ) + 4SE, (f,). (5.14)

All simulations were performed in S-plus. The means of the results for all four cases, namely
the Weibull MG-ACD (WMG-ACD), the Gamma MG-ACD (GMG-ACD), the Weibull Log-
ACD (WL-ACD) and the Gamuma Log-ACD (GL-ACD) models, are tabulated in Tables 1 to
4. respectively. Note also that in these tables N, R and M denote T-1, the number of
replications and the number of basic iterations, respectively. We will now discuss a number of

important findings.
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Firstly, the simulation results in Tables 1 to 4 show that in all four cases the absolute error

h.. —hy| has the tendency to converge to zero as N increases. It should be noted. however, that
I;C and F&D shown here are those of the final estimation step only. Although the results are not

reported here, we also considered j, and J, at each of the mth iteration and found that the

absolute error |h. —h,

has the tendency to converge to zero in all cases.

Secondly. our estimation method is able to provide estimates for the parameter » with

comparable degree of accuracy to those of a one-step partially linear autoregressive estimation

reported, for example, in Gao and Yee (2000). In all four cases, the absolute errors

7,—7| and
|;:~h —y| have the tendency to converge to zero as N — <o at a similar rate as those reported in
Tables 1 and 2 of Gao and Yee (2000). These results are quite stable and are not significantly
affected by increases in the number of replications, R. However, it is interesting to report that
our estimation method seems to perform better. with respect to |7, —y| and |7, -y|. at a
smaller number of basic iteration, M, when applied to WMG-ACD and WL-ACD models,
while performs better at a larger number of M when applied to GMG-ACD and GL-ACD.
Furthermore, switching from the Weibull to the Gamma distributed standardised duration

seems to have affected the results, with respect to both |7, —y| (and |7, -»|) and ASE {F}C]

(discussed below) substantially. In all aspects,

Py J| and

7, —r| of the GMG-ACD model

are much larger than those of the WMG-ACD at a smaller number of observation, while the

results becomes more comparable as N increases.

It is obvious from (5.11) to (5.14) that in our analysis the average square error is decomposed

nto
ASE(;&C‘J=L% s {pa)=2t fpalla s des foile I8
e | T_lﬁ,{gm%-l,? g,-k,__.'[wf--l)} +T_I_Z{g};‘r_f(v_.--:) g(wr-l_}}
= Z 1( g (V)-8 (v )} {g (v, )-g(way _}} (5.15)

= ASE, (h, | + ASE, (h. ) + ASE, . ).

1
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Observe that A4SE, {F;C ]' in this case is equivalent to those of a one-step partially linear study.

Therefore, it is common to see that our results of ASE, (JFC ] for the MG-ACD model in Tables

1 and 2 are quite comparable to those reported in Tables 1 and 2 of Gao and Yee (2000).

However. notice in Tables 3 and 4 that ASE, [hc j for the Log-ACD models are relatively large

compared to those of the MG-ACD models. This should not surprising because given the
linear nature of the Log-ACD we would normally expect the above partially linear regression

to perform better with the MG style model.

We will now turn our attention to the results of ASE, (Fr,: ] . which represents estimation errors

due to the fact that the conditional durations employed in our analysis are estimates. The

simulation results in Table 1 to 4 indicate that ASE, (};C] in all cases, with only exception to
that of GMG-ACD model. are significantly smaller than 4SE, [ P;C ] and have the tendency to

converge quite fast to zero as N increases. However, ASE, (hc ] of the GMG-ACD model are

relatively large compared to those of its WMG-ACD counterpart in Tablel. The highest
ASE, {Ji':xc ) in Table 2 was 0.0266 compared to only 0.0011 in Table 1. In addition, it is

apparent from Table 2 that in this case 4SE, (hc) have less tendency to converge to zero. In

order to investigate these problems in more details, we will first write ASE, (k. | as

nes l T : 2 i . 2 -~ p
ASE, “16 ] = E{a’m {‘r“’.—'-1 )=&is (Vi )} m(‘-""rr'—l Via)
o2 T 2 %
! ;iJl rZz: {‘éln ( Vi :' = é:,.‘s (l-":".-— }}- o (l}- VY )

(5.16)

T-14
2 ) ¢ ) Tie X i A )
g5 H{( Vap — /] + (_7 A J}Z{ L ( i1 )_ Bk (W.-_l .}}gzzi (,w_-'_1 )w{l-"lfr’—l ¥ia )
2 . T J" i . . s . e X
i+ afr&.ﬁz | &2 {’r‘""ﬁ-l ) —8an {Wﬁ-l J}gz.h (Wi )e ( Wia-Wia }
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where y, and 7, are the estimators in (2.14) and (4.1), respectively. Other things else being
equal, it is obvious from (5.16) that for ASE, {J;C | to be converging to a smaller value, both Vv

and 7, must be converging to . We have already mentioned earlier that ‘}k., —y| are much

J

larger and have the tendency to converge to zero at a much slower rate here when compared to
those of its WMG-ACD model counterpart. Furthermore, our investigation has found that at

N =100,200,300, and 400, of the GMG-ACD model are 0.1685, 0.1396, 0.1333 and

¥o—y
Y =1

0.1292, respectively. These are relatively large and slow convergence compared to those of the

WMG-ACD model 0of 0.0911, 0.0769, 0.0710 and 0.0656.

Sc. SP-ACD, MLE and QMLE Comparison
In this section, we compare our simulation results of the WL-ACD and the GL-ACD meodel
with those of Allen et al. (2006). While, the first column of Tables 5 and 6 below presents

descriptive statistics of the estimates f&_l. the second, the third and the fourth show those of

Allen et al. (2006) with respect to the MLE, the best and the worst of the QMLE, respectively.
To obtain the results in Tables 5 and 6 below, we follow similar computational steps as those

discussed in Section 5b under cases where N =500 and 1.000, R =500 and M =3. Our

experience shows that changes in R and M do not have significant effect on the results. We

will now discuss some important findings.

Although, the results are not shown on the tables, our investigation has found that at

N = 1,000 the absolute error about -, , declined to 0.0477 and 0.0396 for cases of the

y. —y
T

WL-ACD and the GL-ACD, respectively. Furthermore, simulation results in Tables 5 and 6
show that on average our estimation method tends to overestimate the value of the parameter
¥ . Though increasing the number of observation from 500 to 1,000 affects accuracy only
slightly. it helps improve estimation precision significantly as evidenced by the decline in the
estimation standard deviation from 0.057 to 0.040 and from 0.062 to 0.037 for the WL-ACD
and the GL-ACD models. respectively. Also. as N increases the skewness and kurtosis of our

estimates tend to those of normal distribution, i.e. zero and three, respectively.
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Secondly, in all four cases, the ML estimation seems to provide the most accurate estimates
among the three methods. However, the MLE for the GL-ACD model seems to be leptokurtic

as can be evidenced by a relatively high kurtosis of 4.849 and 5.670 at N = 500 and 1.000,

respectively. Unlike the QML. our estimation method seems to have suffered from a similar

problem, but with much less extent.

Thirdly, the simulation results in Tables 5 and 6 indicate that. where sample size is small and
the true distribution of the standardised durations is not known, our estimation method should
be preferred to the QML estimation. If the Weibull distribution is incorrectly assumed when
the true DGP is in fact GL-ACD process, the QML would have substantially overestimated the
true value of the parameter. Our method, on the other hand, is more robust across the

distribution assumed and, hence, should be more reliable.

6. Discussion
We proposed in this paper the Semiparametric ACD (SP-ACD) model. To address the
problem about the unobservability of the conditional durations in practice. the current paper
devised an iterative algorithm to estimate the unknown conditional duration process.
Mathematical analysis about the theoretical justification of the estimation algorithim is also
provided. Although, our discussion went on without giving detailed consideration about the
asymptotic theory of the semiparametric and the adaptive data-driven estimators in this case,
our simulation analysis have shown promising results in the sense that our model seems to
have satisfactory asymptotic characters, while its statistical performance is also quite robust
across data generating processes and assumptions about the probability distribution of the
standardised durations. Apart from the model’s asymptotic theory, our future study will also
involve investigation on some other distribution assumptions to provide more proofs of
robustness and also further generalisation of the SP-ACD model. perhaps to also incorporate

such a model as (2.16).
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Table 1: WMG-ACD Model

N 100 200
R 100 500 100 500
M 3 8 3 8 ) g 3 8
'I;C _;;D 0.0123 0.1203 | 0.1201 0.1200 | 0.1000 | 0.0980 | 0.0855 0.0824
- | 0.0774 | 0.0770 | 0.0809 | 0.0814 | 0.0706 | 0.0706 [ 0.0636 0.0633
co | 0.0773 0.0769 | 0.0809 | 0.0813 0.0706 | 0.0706 | 0.0636 0.0634
£ I
ASEI( 'flc ) 0.0009 0.0011 0.0008 | 0.0009 | 0.0006 | 0.0005 | 0.0005 0.0004
o5 ) | 0.0065 0.0070 | 0.0066 | 0.0065 0.0046 | 0.0046 | 0.0045 0.0045
ASE2(h, |
A,S'E3[..iic | (0.0019) | (0.0026) | (0.0019) | (0.0019) | (0.0018) | (0.0018) | (0.0016) | (0.0016)
ASE[J}c ) 0.0056 0.0054 | 0.0055 0.0055 0.0033 0.0033 | 0.0035 0.0034
N 300 400
R 100 500 100 500
M 3 8 3 8 ) g 3 8
e : 0.0670 0.0620 | 0.0638 | 0.0630 | 0.0468 | 0.0466 | 0.0490 0.0480
¢~ p
- | 0.0602 0.0608 | 0.0561 0.0561 0.0539 | 0.0540 | 0.0513 0.0511
! /!
S | 0.0602 0.0608 | 0.0561 0.0561 0.0532 | 0.0540 | 0.0513 0.0511
i’ B n’l.
ASEl( ';;C ) 0.0006 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004
ASEZ[: ;;C ' 0.0038 0.0038 | 0.0041 0.0041 0.0041 0.0041 0.0036 0.0036
A,S'E3[..5;C } (0.0014) | (0.0013) | (0.0016) | (0.0016) | (0.0015) | (0.0015) | (0.0014) | (0.0014)
ASE{ 'I}c- ] 0.0029 0.0029 | 0.0029 | 0.0029 | 0.0030 | 0.0029 ([ 0.0027 0.0026
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Table 2: GMG-ACD Model

N 100 200
R 100 500 100 500
M 3 8 3 8 3 8 3 8
P i 0.0737 | 0.0858 | 0.0857 | 0.0910 | 0.0673 | 0.0655 | 0.0684 | 0.0668
o D
. 0.1320 | 0.1300 | 0.1280 | 0.1235 | 0.1057 | 0.0959 | 0.1111 | 0.1017
" 0.1321 | 0.1300 | 0.1281 | 0.1236 | 0.1058 | 0.0960 | 0.1112 | 0.1018
e 4
4sE1(h, ) | 0-0099 | 00115 | 0.0100 | 00127 [ 0.0179 | 0.0266 | 0.0148 | 0.0199
< C
asE2(i,) | 0-0152 | 0.0150 [ 0.0117 | 0.0117 | 0.009 | 0.0092 | 0.0111 | 00118
ASE2( |
sE3(i,) | (0:0077) | (0.0084) [ (0.0061) | (0.0064) [ (0.0097) | (0.0125) [ (0.0084) [ (0.0094)
L ks
ASE{;;}_) 0.0173 | 0.0181 | 0.0156 | 0.0184 | 0.0177 | 0.0238 | 0.0175 | 0.0217
N 300 400
R 100 500 100 500
M 3 8 3 8 3 8 3 8
b i 0.0586 | 0.0574 | 0.0577 | 0.0600 | 0.0575 | 0.0594 | 0.0507 | 0.0523
c D
: 0.0938 | 0.0888 | 0.1083 | 0.0991 | 0.08395 | 0.0781 | 0.0818 | 0.0735
o 0.0939 | 0.0888 | 0.1084 | 0.0992 | 0.08398 | 0.0782 | 0.0820 | 0.0736
Vi =7
gsE1(i,) | 00137 [ 0.0170 [ 0.0155 | 0.0211 | 0.0191 [ 0.0195 | 0.0206 | 0.0206
< C
asE2(p,) | 0-0087 | 0.0087 | 0.0078 | 0.0100 | 0.0079 | 0.0079 | 0.0044 | 0.0044
4sE3(i,) | (0:0082) | (0.0097) [ (0.0087) | (0.0098) | (0.0079) | (0.0088) | (0.0102) | (0.0119)
L ekl
4sE(h,) | 0-0142 | 0.0160 | 0.0146 | 0.0213 [ 0.0191 [ 0.0196 | 0.0148 [ 0.0136
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Table 3: WL-ACD Model

N 100 200

R 100 500 100 500

M 3 8 3 8 3 8 3 8
o 0.1521 | 0.1506 | 0.1658 | 0.1718 | 0.1233 | 0.1277 | 0.1277 | 0.1279
(4 D
B 0.0981 | 0.1031 | 0.1049 | 0.1093 | 0.0790 | 0.0828 | 0.0800 | 0.0832
c 0.0975 | 0.1027 | 0.1037 | 0.1085 | 0.0789 | 0.0828 | 0.0800 | 0.0832

.4SE1{I;£} 0.0018 | 0.0017 | 0.0020 | 0.0018 | 0.0007 | 0.0006 | 0.0004 | 0.0006

ASEE(P}C':J 0.0113 | 0.0113 | 0.0152 | 0.0152 | 0.0144 | 0.0144 | 0.0120 | 0.0120

AS_Ej[fF;C.} 0.0028 | 0.0026 | 0.0041 | 0.0036 | 0.0027 | 0.0025 | 0.0028 | 0.0026

ASE[rI:aC.] 0.0160 | 0.0157 | 0.0214 | 0.0207 | 0.0179 | 0.0176 | 0.0135 | 0.0158

N 300 400

R 100 500 100 500

M 3 8 3 8 3 8 3 8
g ¢ 0.1033 | 0.0983 | 0.0979 | 0.0933 | 0.1151 | 0.1127 | 0.1008 | 0.0980
( D
2 0.0688 | 0.0712 | 0.0702 | 0.0727 | 0.0621 | 0.0647 | 0.0577 | 0.0597
2 0.0688 | 0.0713 | 0.0703 | 0.0728 | 0.0622 | 0.06491 | 0.0577 | 0.0598

4sE1(h ) | 0-0006 | 0.0005 | 0.0007 [ 0.0007 | 0.0015 | 0.0005 | 0.0007 | 0.0005

ASE:(F:!C:J 0.0117 | 0.0120 | 0.0131 | 0.0131 | 0.0125 | 0.0125 | 0.0116 | 0.0116

ASEjl';;C'} 0.0035 | 0.0030 | 0.0034 | 0.0032 | 0.0011 | 0.0016 | 0.0023 | 0.0022

ASE['}';C} 0.0158 | 0.0156 | 0.0173 | 0.0171 | 0.0152 | 0.0147 | 0.01468 | 0.0144
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Table 4: GL-ACD Model

N 100 200
R 100 500 100 500
M 5 8 3 8 3 8 3 8
. 0.2621 | 0.2540 | 0.2682 | 0.2586 | 0.1482 | 0.1430 | 0.1299 | 0.1217
(o o
5 0.0970 | 0.09637 | 0.0972 | 0.0970 | 0.0776 | 0.0785 | 0.0709 | 0.0733
Lk,
= 0.0973 | 0.0969 | 0.0968 | 0.0969 | 0.0778 | 0.0786 | 0.0710 | 0.0733
e
AS‘EE{F“% ] 0.0064 | 0.0049 | 0.0060 | 0.0053 | 0.0023 | 0.0019 | 0.0034 | 0.0036
ASEE[I };c ) 0.0430 | 0.0430 | 0.0351 | 0.0351 | 0.0232 | 0.0329 | 0.0348 | 0.0348
ASES[IP;C ) 0.0130 | 0.0107 | 0.0091 | 0.00836 | 0.0097 | 0.0098 | 0.0104 | 0.0093
ASE [ ’T’;c ' 0.0626 | 0.0587 | 0.0503 | 0.0482 | 0.0450 | 0.0446 | 0.0486 | 0.0477
N 300 400
R 100 500 100 500
M 35 8 3 8 3 8 3 8
T 0.1105 | 0.1039 | 0.0962 | 0.0939 | 0.0760 | 0.0710 | 0.0810 | 0.0523
(g o
0 0.0685 | 0.0656 | 0.0593 | 0.0600 | 0.0584 | 0.0591 | 0.0544 | 0.0935
b
o e | 0.0654 | 0.0657 | 0.0594 | 0.0602 | 0.0586 | 0.0593 | 0.0545 | 0.0935
i
A*i‘SEE(f:xi ] 0.0030 | 0.0025 | 0.0028 | 0.0025 | 0.0021 | 0.0017 | 0.0028 | 0.0094
ASEE[:};C | 0.0590 | 0.0509 | 0.0405 | 0.0405 | 0.0312 | 0.0312 | 0.0420 | 0.0262
ASES[I ‘i;c ) (0.0004) | 0.0001 | 0.0066 | 0.0061 | 0.0095 | 0.0086 | 0.0147 | (0.0114)
ASE [P’c ' 0.0530 | 0.0536 | 0.0500 | 0.0492 | 0.0429 | 0.0416 | 0.0595 | 0.0242
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Table 5: WL-ACD Model

N =500 SP-ACD(L.1) ML Best of QML Worst of QML
R =500 Weibull Dist Exponential Dist | Gamumaa Dist
Mean 0.239 0.201 0.199 0.199
Maximum 0.466 0.313 0.318 0.677
Minimum 0.061 0.099 0.090 (0.115)
Std. Dev. 0.057 0.028 0.028 0.097
Skewness 0.325 0.068 0.066 0.358
Kurtosis 3.290 3.188 3.192 4255
N = 1,000 SP-ACD(1.,1) ML Best of QML Worst of QML
R =500 Weibull Dist Exponential Dist | Gaminaa Dist
Mean 0.237 0.200 0.199 0.198
Maximum 0.378 0.276 0.286 0.729
Minimum 0.142 0.126 0.127 (0.095)
Std. Dev. 0.040 0.019 0.019 0.077
Skewness 0.295 0.077 0.099 0.486
Kurtosis 3.262 3.119 3.031 6.375
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Table 6: GL-ACD Model

N =500 SP-ACD(1.1) ML Best of QML Worst of QML
R =500 Gammaa Dist | Exponential Dist Weibull Dist
Mean 0.233 0.201 0.197 0.252
Maxinuin 0.443 0.716 0.328 0.399
Minimum 0.040 (0.100) 0.097 0.121
Std. Dev. 0.062 0.078 0.031 0.038
Skewness 0.230 0.737 0.075 0.256
Kurtosis 3.679 4.849 3.170 3.190
N = 1,000 SP-ACD(1.1) ML Best of QML Worst of QML
R =500 Gammaa Dist | Exponential Dist Weibull Dist
Mean 0.232 0.202 0.199 0.236
Maximum 0.344 0.630 0.282 0.329
Mininmmm 0.113 0.037 0.129 0.136
Std. Dev. 0.037 0.057 0.022 0.027
Skewness 0.100 0.826 (0.021) 0.148
Kurtosis 3.350 5.670 3.122 3.062

28



Appendix
Proof of Theorem 3a

The first L, estimation errors in (3.9) for the mth iteration can be formally written as

- _ T _ 2 2
HWI.H:M _W]_?_-:m 2 w].rz:m U 2amly?--? Hwi'.n.m WT nam |y (3a1)
where

W'l.rl:w.' T I':'E]_?_':m 3 = E[Wl_r.':n.' - (r'l_fl:r.':r:i :|

- = 2 n = 12

Wl.n:m _IPVZ_T:.W.' 2 = E[WQ:.’.':.'P.‘ _wl:.’i.?.’i_l (‘%a 2)

2 . . 2
) =, E|:!-"Ifi":.~.':r.-| T i-";"']'=?'::.'r'.':| i

HW]"m.m it ;‘:"’i":ﬁ.m

Observe that, in (3.14), Al® defines the maximal errors corresponding to a particular pair of i

and » across x where 1<x =m—1. Let now extend this definition to 1<m = M such that

Allf. ) 511]13 H ;‘;’r':m = ‘r_”w” = 51:? {3;.& X+ & {!-";}f—]:m—l )} _{F"—f—l & g( ‘r"}r‘-l:m-l )}‘|L (3a.3)

where 7, =(y}i_1_m,___._!,ff,._‘,v._m)r‘ Vi m =['l,£74.’::m ..... 7 - ']T and i=1_..T. Furthermore, the

asymptotic results in Section 4 suggest that we have

1 T |'_r_,'|'] Cl 1 [ 1 4
e~ N AL ) e —+C,h" +o,9————+h" ¢ 3a.4
e v et (v et il
uniformly over h e H, . Therefore, using results in (3a.1) to (3a.4) and the fact that
TR g I I
— Y Al - !:f]=‘—, v L) } (3a.5)
(T-1)5 (T-1)= )
we conclude that
& [ 1 ¥
L) | 4 Ch*+o,{———+h} 3a.6
" ‘\(T—l_}l—r S [T TR (3a.6)

uniformly over he H,
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Proof of Theorem 3b:

The definition in (3.10) suggests that we have

EWinn=¥i| = Efg (Vitrma) =& (v} =7 {2 (Vi ) - £ (w1} 1

S {|g1(5‘;-1m1) AU ‘ |”g Wit Jr—l) 8:{5&_1:}‘}:

where
Ej|g V —Ln.m— 1 gl[w_l ‘ |/'"”g _1,.,;._1J &, [V_1}|}2
_E‘gll:v—lwm—li gl(u )|

+y E‘g Yiam »-1:l £ (Ur )‘
&

+| |E‘g1 Vianma ) (Irr—] ( -1w-1|' S[V }

(3b.1)

(3b.3)

We will need the following results in order to provide proof of Theorem 3b. Observe that by

Assumption 3a and the Cauchy-Schwarz Inequality

E‘gl E E—‘yl’—l:.'i.m—! )_ g,f [i-‘yr'—] Jr < El:w_r: [ i-“y.'—l :}‘W.'—l.n.m—l - !-"l’{."—i |2]

<E |:§°; (i.-'".-'-l J:| E ‘tr"fr'—]:r.-;r:—i —W¥ia r

and, similarly.

E‘gl { ¥iinma } —& (_‘:"ff-z )| ‘gz (‘r""r‘-].a,«-] ) -£ {'.-”'?—1 )‘ = '{E[f‘f {‘r’ff-l j:| El:cpj [ ¥ia }:l}w

The above results suggest that we bound the quantity of interest in (3b.1) as follows

E

w,

inm

i 2|?| [ E[Q; [\5"7_-'-1 ):| El_qpl: (V_-‘-; ):Hn E

which can be conveniently simplified to

E‘W.—'.u:m = lr"”'f| = Cf-1E‘l.-'"'.-'-;:.»s_m-1 ¥ ‘

where C,, = El:?’:: (W.-—l }:| i :V:EI:‘-D_E [ Vi ):I 5 2|f| [ E|:§91: (v ):I EI:‘P:: [ ¥ia J:i}]f: :

ur: *jEl:cpfliw JE‘V—HM-- ;;;r_,._lr +y3E[gn (u/ |':|E‘Ur1 — i:-'fr._lr

LR ‘.*"’r‘-1| )

(3b.3)

(3b.4)

(3b.5)

(3b.6)
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Equivalently, by taking square root on both sides of (3b.6), and referring to the norms of the

vectors, the inequality could be written as

HF""'_-'_;_-:W. —¥|, = ¢ Hl-""'_-'-::n.m-: Wi, (3b.7)
where
(Cr'—l }‘4’2 S, = HQJI (W_-'—l }” + ”Q’: {Wr'_: ] |: + 2( H‘;Dl ‘ Wia )” H‘?’: { W.-‘-l) 2 '}]"’:

(3b.8)

( y2 g wey?
(e )” )
thereby the inequality in (3b.8) can be verified by the Triangle Inequality and the fact that here

the parameter » takes on the maximum wvalue, given the stationarity assumption on x,, of

unity.

Furthermore, performing backward iteration on (3b.7) gives rise to
Hl‘! BE i-‘:"{r' H 2640, lf"r’—.'r': ”I:‘V."—m.:u:tl T i-‘:"rr'—.n': H: (3b9)

i m 4 — i=1"i=2

where

o= (v )+l wa)l, )

for s=1,...m. Finally, by using the second part of Assumption 3a, Assumption 3b and the

Minkowski’s Inequality for an I, would then lead to
Hl.,-'f. —ll.-'fl_.H1 =G" (V +V, ) :

i

Proof of Theorem 3c:

First, observe that we have from (3.10) and the Triangle Inequality

E A = E {gl (?;f-]:.w.m—l } —& { ¥ ama )} Y {31 (F‘}f-l:n.m-l ) —& (‘.-"’_.'_1_;_-:;5-1 ]} 2
_ _ _. : (3c.1)
<E {‘gl ( Ff;'f-;-,-s:m-l } —& (‘#""_-'-1.;_-:m-: ] i |f| ‘gz {E-":’}_-'—l_r!.:l.ri—l ] —&: (W.—'-'_-:n:m-l )‘}
where
E{ & |: l-"l'}."—'.':.".'.m—i ' —& {I?rfr'—i:r:.;l.-i—'_ " + |/| & (‘r'.}r'—]:ﬂ:m—i } — & ( Wi nm1 ) }J
=E ‘gl ( R";r:—l.n:m—l ) — & t:w.'—l:n_m—l }‘: + .}’]E‘gl [i.""}r'—i:n.m—} )_ £ [l.‘"""r'—]:n.m—} }r (302)

+2 |§’|E|gl (5‘;':-1.n:m-1 } —& [:w:—l:n.m—'l J'Hg- (‘r’}.-'-::.»:.m-:- ) —&: (E.":"."—E:r:..-n—l )
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Assumption 3a suggests that for the first two terms on the right side of (3¢.3)

5

E‘g_,l t !"'}."—}:ﬁ.m—l } e g_,l' t i-";"'r'—]:.v:.m—'l }2 = E|:q[]; [:;;r'—]:n:m—] ]‘l-yr'—}:.-i el tflfr'—l.?_l:m—l -_I (3C3)

where. in this case,

]

<E |:‘?’_: E W ma }”?‘}_-'—1.5_»1—1 ~ Wi apma ‘ + ‘!.Ff—l:.v.'::m—l - I:‘V:—l.n:m—l‘:)z i|

E |:(*°§ [ir"” il -1 )‘rfl’}'—l_w:m—l Wi nma
(3c.4)

Further expansion of the right side of (3¢.4) leads to
E |:§ﬂ; (wr'—lm m-1 )‘, !-":}."—Ln.m o I*I_fr'—l.%' -1 )_ :|
o= E[wjz { W:—l.n;r.'—l) ‘:| + ‘EI mf I:wr'—l.r::m—l jl Er'—l_r_':m—l - w_"—l..'i.m—l‘—:| (3C5)

a4 2 f A i 2 —
+ -‘El_(pj { Wr'—l.r_':m—] ) Wr'—l_r::.'r.‘—l tFV."—I.;WJV:—I‘‘t."'rr'—l.i'::.‘r:—l w:—l:rl:m—lu G

+ (v, -

Wi w1 T Wiiiama

ifl"rr'—l.r: m-1 — V:—1 am=1

Application of the Cauchy-Swarz Inequality then gives us

E|:§°j ( Wi nma ) ‘;{}f—l.m:m—l - !.Fr'—l:zi -l i :| i E[@j [‘r”’f-l.n:m-l ):| E"r‘}:-l.r_-:m-l - #7_-'-1;.:.-‘-1 i . (3c.6)
E|:GJ§ (Wz—l,-s_m-l )‘5‘7.-'-1;:.‘.7-1 ~¥itama 1:| at E[?”j ( Vidama ):| E‘?_ff-u:mq ¥ nma ‘1 > (3C-7)

E [@j [ i-“"’."—l..ri_m—l ]

|;‘.’rr'—l.r!:.w:—] ik Wr'—l.ﬂ:m—l w:—l::ll.m—l » w."—l:n_m—l

] 2 (3¢.8)

<E |:‘P? (I:'{’rr'—l.r::m—] ):| [E|§F_-'-1:n:m-1 = i.";'r_-'—l.n:m—l‘: ]]‘Q [E‘F"}_-'-l..m—l Wit ama ] ] :

The results of (3¢.6), (3¢.7) and (3¢.8) suggest that we can bound the quantity in (3¢.3) and,
therefore, (3c.3) and (3¢.3) as

S E[6 (Visnm)]

E|g_.-' {fa’;.-'-l.r...-n-l ]_ g; (W_--'_,a_m-l] (; 9)
JC.

2 I Bl _
B — W_--],n.m-1| +2 ( E |W:'-:_n.m-1 = ’-"f_--l_n_m-1| E |w."—l..-s,.n|—'_ “Viama

21427
I}

| ‘E |W.'—'. -1 - Uf.l—'..r.!.:r. -1
|

E |g] (b;_'—l.r.-_'n—] _]_ 4] I:w_'—'_.r:'..'ra—l )r = E[@]] (.L"{.:—'..i:.m—] )]

wy Gelo)

.
[ 2 3 3 2

7, —r T —u 2 3 - i7 —i
‘ E ||:—"{:'—l.r.'.rr.—] w_'—l_r.'..'n—]| +E |u."—l.i:.m—] U."—l.?.‘.m—l| + —[E Wi—].n.m—l Wi—l.n.m—l| E|w_'—'_.r.'_m—1 W_'—'_.r_'_m—1| ) Ir-'
kY ’ A

and

}']E‘gz {{r*}.-'-l.n.m-; ) =8 [W.i-l.r..m-l :l i <r'E ['33: (Wr-l.n.m-l ):I
~ ay (3c.11)

]"r’(i-l.:ll.m—l - Wi-l.n.m—l |! E |y}_'—'__r_'.m—1 - g‘?_'—'_.r_'_m-l |2 ) ’[ 3

¢
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i — I T —u ]
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I\

respectively.
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Similarly, Assumption 3a and the Triangle Inequality suggest that we have for the final term on

the right side of (3c.3)

E ‘gl E 5‘;'.-'-3,5.»:-1 ) —E |: LETT = )‘ ‘gz ( ‘r"}r'—].u,m—l :l —&: ( Yitnma ]‘
4 ) G2 iV A2 (3C12)
= (E ‘gl (t’&!—l.n.m—l } —& ( ¥idnm }‘ JU ( E ‘32 (l-":'r‘-l,.-:,m-: ) —& {Wf-1=>.-,.-»:—! )r .)U :

Therefore, we can conclude, using the results in (3c.9), that
E ‘31 {*\f}f-l:.-s m-1 ] & (Wﬁ—l:n:.-r.\—l ]‘ ‘gz [!)‘;'_l'—l:n:m—! ) — & ( Vivpma ) = (EE@: (w-"—lz"z-"-‘-l ):'E [Qf {W"—l-’”"l ]:”ﬁ

A2 (3c.13)
g'} ilnm-l gﬁf—l:ﬁ :_‘«.\_1‘ |:

2 2

|" E +E

wr'—l:.'s:m—] —Viama

L w_"—l:.-s -1

The results in (3¢.10), (3c.11) and (3c.14) suggest that we bound the quantity of interest in
(3c.l)as

E |L’7“n" E w’,,i“ - = E[Q]l! [.L"",.'—'..i:.m-] }]

X ]'L"il‘l
+E J
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s —_— 2 - fro?
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which can be conveniently simplified to
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Equivalently, by taking square root on both sides of (3¢.15), and referring to the norms of the

vectors, the inequality could be written as

”EH 5 im,m = dr’—l.?.gm—l
(1 _ _ P - ~ py (3¢.16)
|k I;{)"."—!:.'i.i'n—} = I;Vr'—l.n:m—l 2 + Hw:—l.?l.m—'l 7 i."”'Ir."—l:r::.‘r.'—] ”2 + 2 ‘ H?ff—]_?.':m—] - 5-"'.-'-3:5 =1z HW}'—L&.?&—} 5 I;{)rr'—l.;'l:rs‘.'—l 1) J
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o o e B3e.17)

=:\ [ QJ ( ‘?{fr'—lmgm—l }‘L ) +[ {."J] {yf."—i::i.m—l )‘1 ] I| '

\, : i A
Furthermore, performing backward iteration on (3¢.16) will then lead to
| W?"ﬂ" ~W¥inm | M
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(1. _ ‘ _ _ "
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+dr’—1..>i =1 i1y T im0 |L |||:"'"’.'—m..‘:'.tl ~¥imao ||2 + ||Wr'—m a0 " ¥iimno ||] +2 ( ||w—w‘“': i W.l—:n.::.tl"] || Viman ~ Yiman L } I
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\"‘-'-llel‘e a‘r’—s.i:.m—; = | ‘ ”G’[ (Wf—f.ﬂ.."!—: ,b”‘) + ( H‘p] (I;Ij_'—.-'..‘:_m—: ”-. ] [ for 5= 1 LS (3': 18)
A = b s

Now. observe that because {;cf:__,._o'.l <i< T} are the starting values. therefore, it is reasonable to
assuine
tr’;{.'—m:n.ﬂ = ;‘?-’—m.v.':';‘ =Vimmno- (3 C. 19)

Therefore, using the definitions in (3.14), the results in (3¢.18) can be simplified to

el (a2))
||L??"ﬂ N wj'..-i,m 2 = [a‘.‘—l.n,.'ﬂ—'_ + d_l—l_r!.m—ld.‘—],.-i,m—z +o..F d.l—],:.',m—ld_'—l.h‘_m—l R d.‘—::m—]],.»s,] J‘llliz 1 + 2 ( ':I .]]g: l. 2 (3C20)
A)" )

Finally, by using the second part of Assumption 3a, we are able to summarise (3¢.30) as

m=l I ( (L) W2 \1
[70m = ¥imnl, < 3 GIAE 14 2] 22 I ! (3c.21)
: = 1 LA I

for some 0<G<1.

34



Proof of Theorem 3d

The decomposition in (3.9), and the results of Theorems 3b and 3¢ collectively suggest that we

have
i 5 w1 o ir _,- P *.:3.;"2] - -
Gonn =, <[nm — T, + S GAE 142 22| L Gm (747, (3d.1)
: 2 : mhe "o | LAlR) ) J

for some 0<G <1. It is obvious from the proof of Theorem 3a that statistically Al in (3d.1)

can be extended to

Ay =suply, -7, (3d.2)
mz1 % =
where v, = {ylg./ 2 ) and @, = (7,1 ¥ } . The above result suggests that (3d.1)
can be conveniently rewritten as
oy, omlo J "'AL_I \ -\L
[Vinm —w, <22+ T GAEN 142 S| ba 67 (7 47)
- j=1 [ L Ai.t ) 7
m-1 S m—1 o - ﬁl:"-’_‘j 2
i a2l ialLz) (L2} “ax m 3
-3 AR 423 GIAl -24,7| " +G" (¥ +14) (3d.3)
=0 j= \ NE Sy

(L:) ir [ alm) \.]1"2] ) 12
= Tm Jqy, 0] Do L Al Bae
1 = L) [] 1m B
(-e) &) | (2

9

+G" (V+7,).

In addition. a few steps of manipulation would lead to a much simpler form of (3d.3) such that

=

~ _ A'llf:} ! m |
[ %Ils(l_G”H +G(7+7) (3d.4)
=of 1,

for some 0<G <1. While it is clear that 4, converges to zero as m — o, using the results of
Theorem 3a we can also conclude that
4,-0(A) (3d.5)

and, therefore. that

Winm — W

P .
; = O[élﬁ ]‘ = O;[ {Tiil)h + c'zir4 + 05 {(T—lil]h + »".'4}) uniformly over he H; . (3d.6)

which complete the proof of Theorem 3d.
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