Document Type

Conference Proceeding

Publisher

IEEE

Faculty

Computing, Health and Science

School

Electron Science Research Institute (ESRI)

RAS ID

10423

Comments

This article was originally published as: Vasiliev, M. , Nur E Alam, M. , Kotov, V., & Alameh, K. (2010). High-performance thin-film garnet materials for magneto-optic and nanophotonic applications. Proceedings of COMMAD 2010 Conference on Optoelectronic and Microelectronic Materials and Devices. (pp. 91-92). . ANU, Canberra, ACT, Australia. IEEE. Original article available here

Abstract

Since the 1960's, Magneto-optic (MO) garnet materials have been studied extensively. These materials can possess world-record MO performance characteristics in terms of Faraday rotation and optical quality. Among the rear-earth-doped garnets, the Bi-substituted iron garnet is the best candidate for use as a functional material in different integrated-optics, imaging/image processing applications and also in forward-looking applications e.g. the design of metamaterials with non-reciprocal properties. We have established a set of technologies for fabricating ferrimagnetic garnet films of type (BiDy)3(FeGa)5O12 and also garnet-oxide nanocomposite (BiDy)3(FeGa)5O12 : Bi2O3 layers possessing record-high MO quality across the visible spectral range using RF-magnetron sputtering and oven annealing. Our MO garnet films possess excellent optical and magnetic properties, which make them very attractive and promising for a large range of optoelectronic, photonics-related and MO imaging applications.

DOI

10.1109/COMMAD.2010.5699797

Included in

Engineering Commons

 
COinS
 

Link to publisher version (DOI)

10.1109/COMMAD.2010.5699797