The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia

Rodney Siegel, Edith Cowan University
Joseph Mate, Edith Cowan University
Greig Watson, Edith Cowan University
Kazunori Nosaka, Edith Cowan University
Paul B. Laursen, Edith Cowan University

This article was originally published as: Siegel, R. , Mate, J. , Watson, G. , Nosaka, K. , & Laursen, P. B. (2011). The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. European Journal of Applied Physiology, 111(10), 2517-2524. Original article available here


The purpose of this study was to determine whether ingestion of a small bolus of ice slurry (1.25 g kg(-1)) could attenuate the reduction in maximal voluntary isometric contraction (MVC) torque output during a 2-min sustained task following exercise-induced hyperthermia. On two separate occasions, 10 males (age: 24 ± 3 years, .VO(2peak): 49.8 ± 4.7 ml kg(-1) min(-1)) ran to exhaustion at their first ventilatory threshold in a hot environment (34.1 ± 0.1°C, 49.5 ± 3.6% RH). Prior to and after exercise, subjects performed a 2-min sustained MVC of the right elbow flexors in a thermoneutral environment (24.6 ± 0.8°C, 37.2 ± 4.5% RH). The post exercise MVC was performed immediately following the ingestion of either 1.25 g kg(-1) of ice slurry (-1°C; ICE) or warm fluid (40°C; CON), in a counterbalanced and randomised order. Run time to exhaustion (42.4 ± 9.5 vs. 41.7 ± 8.7 min; p = 0.530), and rectal (39.08 ± 0.30 vs. 39.08 ± 0.30°C; p = 0.934) and skin temperatures (35.26 ± 0.65 vs. 35.28 ± 0.67°C; p = 0.922) and heart rate (189 ± 5 vs. 189 ± 6 beats min(-1); p = 0.830) at the end of the run were similar between trials. Torque output during the post-exercise 2-min sustained MVC was significantly higher (p = 0.001) following ICE (30.75 ± 16.40 Nm) compared with CON (28.69 ± 14.88 Nm). These results suggest that ice slurry ingestion attenuated the effects of exercise-induced hyperthermia on MVC, possibly via internal thermoreceptive and/or temperature-related sensory mechanisms.


Link to publisher version (DOI)