Document Type

Journal Article

Publisher

Public Health Services, US Dept of Health and Human Services

School

School of Natural Sciences / Centre for Ecosystem Management

RAS ID

19838

Comments

Originally published as: Liu, L., Urch, B., Poon, R., Szyszkowicz, M., Speck, M., Gold, D.R., ... & Silverman, F.S. (2015). Effects of ambient coarse, fine, and ultrafine particles and their biological constituents on systemic biomarkers: A controlled human exposure study in Environmental Health Perspectives, 123(6), 534-540. Available here.

Abstract

Background: Ambient coarse, fine, and ultrafine particles have been associated with mortality and morbidity. Few studies have compared how various particle size fractions affect systemic biomarkers. Objectives: We examined changes of blood and urinary biomarkers following exposures to three particle sizes. Methods: Fifty healthy nonsmoking volunteers, mean age of 28 years, were exposed to coarse (2.5–10 μm; mean, 213 μg/m3) and fine (0.15–2.5 μm; mean, 238 μg/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (< 0.3 μm; mean, 136 μg/m3) and filtered medical air. Exposures lasted 130 min, separated by ≥ 2 weeks. Blood/urine samples were collected preexposure and 1 hr and 21 hr postexposure to determine blood interleukin-6 and C-reactive protein (inflammation), endothelin-1 and vascular endothelial growth factor (VEGF; vascular mediators), and malondialdehyde (lipid peroxidation); as well as urinary VEGF, 8-hydroxy-deoxy-guanosine (DNA oxidation), and malondialdehyde. Mixed-model regressions assessed pre- and postexposure differences. results: One hour postexposure, for every 100-μg/m3 increase, coarse CAP was associated with increased blood VEGF (2.41 pg/mL; 95% CI: 0.41, 4.40) in models adjusted for O3, fine CAP with increased urinary malondialdehyde in single- (0.31 nmol/mg creatinine; 95% CI: 0.02, 0.60) and two-pollutant models, and ultrafine CAP with increased urinary 8-hydroxydeoxyguanosine in single- (0.69 ng/mg creatinine; 95% CI: 0.09, 1.29) and two-pollutant models, lasting < 21 hr. Endotoxin was significantly associated with biomarker changes similar to those found with CAPs. conclusions: Ambient particles with various sizes/constituents may influence systemic biomarkers differently. Endotoxin in ambient particles may contribute to vascular mediator changes and oxidative stress.

Additional Information

EHP is a publication of the U.S. Federal Government, and its content lies in the public domain. No permission is required to reuse EHP content.

This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

DOI

10.1289/ehp.1408387

Access Rights

free_to_read

Share

 
COinS