Title

The effects of wearable resistance training on metabolic, kinematic and kinetic variables during walking, running, sprint running and jumping: A systematic review

Document Type

Journal Article

Publisher

Springer

School

School of Excercise, Biomedical and Health Sciences

RAS ID

22109

Comments

Originally published as: Macadam, P., Cronin, J.B. & Simperingham, K.D. (2017). The effects of wearable resistance training on metabolic, kinematic and kinetic variables during walking, running, sprint running and jumping: A systematic review. Sports Medicine (2017) 47(5), 887 - 906. Original article available here

Abstract

Background

Wearable resistance training (WRT) provides a means of activity- or movement-specific overloading, supposedly resulting in better transference to dynamic sporting performance.

Objective

The purpose of this review was to quantify the acute and longitudinal metabolic, kinematic and/or kinetic changes that occur with WRT during walking, running, sprint running or jumping movements.

Data Sources

PubMed, SPORTDiscus, Web of Science and MEDLINE (EBSCO) were searched using the Boolean phrases (limb OR vest OR trunk) AND (walk* OR run* OR sprint* OR jump* OR bound*) AND (metabolic OR kinetic OR kinematic) AND (load*).

Study Selection

A systematic approach was used to evaluate 1185 articles. Articles with injury-free subjects of any age, sex or activity level were included.

Results

Thirty-two studies met the inclusion criteria and were retained for analysis. Acute trunk loading reduced velocity during treadmill sprint running, but only significantly when loads of 11 % body mass (BM) or greater were used, while over-the-ground sprint running times were significantly reduced with all loads (8–20 %BM). Longitudinal trunk loading significantly increased jump performance with all loads (7–30 %BM), but did not significantly improve sprint running performance. Acute limb loading significantly increased maximum oxygen consumption and energy cost with all loads (0.3–8.5 %BM) in walking and running, while significantly reducing velocity during sprint running.

Limitations

The variation in load magnitude, load orientation, subjects, testing methods and study duration no doubt impact the changes in the variables examined and hence make definitive conclusions problematic.

Conclusions

WRT provides a novel training method with potential to improve sporting performance; however, research in this area is still clearly in its infancy, with future research required into the optimum load placement, orientation and magnitude required for adaptation.

DOI

10.1007/s40279-016-0622-x

Share

 
COinS