Title

One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants

Document Type

Journal Article

Publisher

Elsevier

School

School of Engineering

Comments

Originally published as:

Azhar, M. R., Abid, H. R., Sun, H., Periasamy, V., Tadé, M. O., & Wang, S. (2017). One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. Journal of Colloid and Interface Science, 490, 685-694. Original article available here

Abstract

In this study, binary metal organic frameworks (MOFs) with HKUST-1 and UiO-66 have been synthesized in a one-pot process. The synthesized MOFs were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption, and thermogravimetric analysis (TGA). The meso-porosity and thermal stability of the binary MOFs were higher than those of single HKUST-1 or UiO-66. The synthesized MOF hybrids were then tested for adsorptive removal of methylene blue (MB) from wastewater in terms of kinetic and isothermal adsorption as compared to a commercially available activated carbon (AC). All the synthesized MOFs showed significant removal of MB under a wide range of pH. The adsorption capacities of HKUST-1 are higher than UiO-66 and commercial AC while the binary MOFs presented an even higher adsorption capacity than single MOFs. This is the first time that binary HKUST-1 and UiO-66 MOFs have been successfully synthesized and demonstrated enhanced adsorptive removal of contaminants.

DOI

10.1016/j.jcis.2016.11.100

Share

 
COinS