Title

Does the degree of endocrine dyscrasia post-reproduction dictate post-reproductive lifespan? Lessons from semelparous and iteroparous species

Document Type

Journal Article

Publisher

SpringerLink

Place of Publication

United States

School

School of Medical and Health Sciences

Comments

Originally published as: Atwood, C. S., Hayashi, K., Meethal, S. V., Gonzales, T., & Bowen, R. L. (2017). Does the degree of endocrine dyscrasia post-reproduction dictate post-reproductive lifespan? Lessons from semelparous and iteroparous species. GeroScience, 39(1), 103-116. Available here.

Abstract

Post-reproductive lifespan varies greatly among species; human post-reproductive lifespan comprises ~30–50% of their total longevity, while semelparous salmon and dasyurid marsupials post-reproductive lifespan comprises <4% of their total longevity. To examine if the magnitude of hypothalamic-pituitary-gonadal (HPG) axis dyscrasia at the time of reproductive senescence determines post-reproductive lifespan, we examined the difference between pre- and post-reproductive (1) circulating sex hormones and (2) the ratio of sex steroids to gonadotropins (e.g., 17β-estradiol/follicle-stimulating hormone (FSH)), an index of the dysregulation of the HPG axis and the level of dyotic (death) signaling post-reproduction. Animals with a shorter post-reproductive lifespan (<4% total longevity) had a more marked decline in circulating sex steroids and corresponding elevation in gonadotropins compared to animals with a longer post-reproductive lifespan (30–60% total longevity). In semelparous female salmon of short post-reproductive lifespan (1%), these divergent changes in circulating hormone concentration post-reproduction equated to a 711-fold decrease in the ratio of 17β-estradiol/FSH between the reproductive and post-reproductive periods. In contrast, the decrease in the ratio of 17β-estradiol/FSH in iteroparous female mammals with long post-reproductive lifespan was significantly less (1.7–34-fold) post-reproduction. Likewise, in male semelparous salmon, the decrease in the ratio of testosterone/FSH (82-fold) was considerably larger than for iteroparous species (1.3–11-fold). These results suggest that (1) organisms with greater reproductive endocrine dyscrasia more rapidly undergo senescence and die, and (2) the contribution post-reproduction by non-gonadal (and perhaps gonadal) tissues to circulating sex hormones dictates post-reproductive tissue health and longevity. In this way, reproduction and longevity are coupled, with the degree of non-gonadal tissue hormone production dictating the rate of somatic tissue demise post-reproduction and the differences in post-reproductive lifespans between species.

DOI

10.1007/s11357-016-9955-5

Share

 
COinS