Date of Award


Degree Type


Degree Name

Doctor of Philosophy


School of Engineering

First Advisor

Associate Professor Alexander Rassau

Second Advisor

Dr Wlodzimierz Gornisiewicz

Field of Research Code

09, 090607, 090608,


Home energy management systems (HEMS) technology can provide a smart and efficient way of optimising energy usage in residential buildings. One of the main goals of the Smart Grid is to achieve Demand Response (DR) by increasing end users’ participation in decision making and increasing the level of awareness that will lead them to manage their energy consumption in an efficient way. This research presents an intelligent HEMS algorithm that manages and controls a range of household appliances with different demand response (DR) limits in an automated way without requiring consumer intervention. In addition, a novel Multiple Users and Load Priority (MULP) scheme is proposed to organise and schedule the list of load priorities in advance for multiple users sharing a house and its appliances. This algorithm focuses on control strategies for controllable loads including air-conditioners, dishwashers, clothes dryers, water heaters, pool pumps and electrical vehicles. Moreover, to investigate the impact on efficiency and reliability of the proposed HEMS algorithm, small-scale renewable energy generation facilities and energy storage systems (ESSs), including batteries and electric vehicles have been incorporated. To achieve this goal, different mathematical optimisation approaches such as linear programming, heuristic methods and genetic algorithms have been applied for optimising the schedule of residential loads using different demand side management and demand response programs as well as optimising the size of a grid connected renewable energy system. Thorough incorporation of a single objective optimisation problem under different system constraints, the proposed algorithm not only reduces the residential energy usage and utility bills, but also determines an optimal scheduling for appliances to minimise any impacts on the level of consumer comfort. To verify the efficiency and robustness of the proposed algorithm a number of simulations were performed under different scenarios. The simulations for load scheduling were carried out over 24 hour periods based on real-time and day ahead electricity prices. The results obtained showed that the proposed MULP scheme resulted in a noticeable decrease in the electricity bill when compared to the other scenarios with no automated scheduling and when a renewable energy system and ESS are not incorporated. Additionally, further simulation results showed that widespread deployment of small scale fixed energy storage and electric vehicle battery storage alongside an intelligent HEMS could enable additional reductions in peak energy usage, and household energy cost. Furthermore, the results also showed that incorporating an optimally designed grid-connected renewable energy system into the proposed HEMS algorithm could significantly reduce household electricity bills, maintain comfort levels, and reduce the environmental footprint. The results of this research are considered to be of great significance as the proposed HEMS approach may help reduce the cost of integrating renewable energy resources into the national grid, which will be reflected in more users adopting these technologies. This in turn will lead to a reduction in the dependence on traditional energy resources that can have negative impacts on the environment. In particular, if a significant proportion of households in a region were to implement the proposed HEMS with the incorporation of small scale storage, then the overall peak demand could be significantly reduced providing great benefits to the grid operator as well as the households.

Available for download on Thursday, July 09, 2020