Title

Design and analysis of high-speed optical correlators for multiwavelength optical header recognition and optical code division multiple access

Date of Award

1-1-2007

Degree Type

Thesis

Degree Name

Doctor of Philosophy

School

School of Engineering and Mathematics

Faculty

Faculty of Computing, Health and Science

Abstract

Optical correlators arc attractive elements for packet-switched optical networks because they enable the headers of high-speed optical packets to be processed and recognised "on-the-fly", thus, switching the packets to different destinations without the need for optical-to-electrical and electrical-to-optical conversions. In the first part of the thesis, three novel all-optical header recognition structures based on time-domain optical correlation arc proposed and experimentally demonstrated. The novel optical correlator structures for header recognition, are based on the use of Opto-VLSI processors, fibre Bragg gratings, and arrayed waveguide gratings, respectively, and are demonstrated at IOGb/s by generating auto-correlation functions of high peaks whenever the optical header bit pattern matches a predetermined pattern in the lookup table, while for other bit patterns, only low intensity (below a threshold level) cross-correlation functions are produced. As a result, these structures eliminate the bottleneck that exists in the conventional ortical packet switching networks, thus greatly enhancing the performance of such networks.

Access Note

Access to this thesis - the full text is restricted to current ECU staff and students only. Email request to library@ecu.edu.au

Access to this thesis is restricted. Please see the Access Note below for access details.

Share

 
COinS