Date of Award

1-1-2004

Degree Type

Thesis

Degree Name

Doctor of Philosophy

School

School of Engineering and Mathematics

Faculty

Faculty of Computing, Health and Science

First Advisor

Associate Professor Kamal Alameh

Second Advisor

Professor Kamran Eshraghian

Abstract

The purpose of this thesis is to explore the emerging possibilities of processing radiofrequency (RF) or microwave signals in optical domain, which will be a key technology to implement next-generation mobile communication systems and future optical networks. Research activities include design and modelling of novel photonic architectures for processing and filtering of RF, microwave and millimeter wave signals of the above mentioned applications. Investigations especially focus on two basic functions and critical requirements in advanced RF systems, namely: • Interference mitigation and high Q tunable filters. • Arbitrary filter transfer function generation. The thesis begins with a review on several state-of-the-art architectures of in-fiber RF signal processing and related key optical technologies. The unique capabilities offered by in-fiber RF signal processors for processing ultra wide-band, high-frequency signals directly in optical domain make them attractive options for applications in optical networks and wide-band microwave signal processing. However, the principal drawbacks which have been demonstrated so far in the in-fiber RF signal processors arc their inflexible or expensive schemes to set tap weights and time delay. Laser coherence effects also limit sampling frequency and introduce additional phase-induced intensity noise.

Share

 
COinS