You may print or download ONE copy of this document for the purpose of your own research or study.

The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following:

- Copyright owners are entitled to take legal action against persons who infringe their copyright.
- A reproduction of material that is protected by copyright may be a copyright infringement.
- A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Use of Thesis

This copy is the property of Edith Cowan University. However the literary rights of the author must also be respected. If any passage from this thesis is quoted or closely paraphrased in a paper or written work prepared by the user, the source of the passage must be acknowledged in the work. If the user desires to publish a paper or written work containing passages copied or closely paraphrased from this thesis, which passages would in total constitute and infringing copy for the purpose of the Copyright Act, he or she must first obtain the written permission of the author to do so.
EDITH COWAN UNIVERSITY
Faculty of Health, Engineering & Science

EVOLUTION, SYSTEMATICS & GEOGRAPHIC PARTHENOGENESIS OF *Ilyodromus* (Crustacea, Ostracoda)

by

Rylan James Shearn, BSc Hons

A thesis submitted to Edith Cowan University in accordance with requirements for the degree of Doctor of Philosophy

Submitted 27th February 2015
Most multicellular organisms reproduce sexually at some point in their life cycle. This is paradoxical because being asexual is theoretically far more advantageous. Asexual organisms do not need to find and court new mates, they reproduce at a faster rate, and with no males, all members of the population contribute toward population growth rate. With over 20, often mutually exclusive hypotheses, this paradox resists a synthesised explanation, and continues to represent one of the largest gaps in our understanding of fundamental evolutionary theory. Clearly, more real world studies are required that document the selective mechanisms underlying differences in evolutionary fitness between sexual and asexual organisms.

Some species can use either sexual or asexual reproduction, and remarkably, populations that use sexual reproduction can have distinctly different geographic distributions from those that use asexual reproduction. This phenomenon, whereby different distributions of reproductive mode can be observed within the same or closely related species, is called geographic parthenogenesis. These patterns hold promise in providing real world evidence for mechanisms leading to differences in evolutionary fitness between sexual and asexual lineages, because the two regions that sexual and asexual lineages occupy can be characterised by environmental tolerance ranges that in turn may be associated with selection pressure.

This thesis addresses the lacking real world evidence for selective mechanisms behind differences in fitness between sexual and asexual organisms, by seeking to develop and use a model system from which the importance of environmental parameters in explaining reproductive mode can be quantified. A freshwater crustacean (*Ilyodromus*, Ostracoda) occurring in rock outcrop pools along an ecological gradient in south western Australia was investigated. This crustacean employs both reproductive modes to varying degrees, such that the proportion of males in a population is indicative of the extent to which sexual reproduction is used. Unfortunately, since the systematics of this genus were poorly understood, one could not be sure of whether variation in reproductive mode observed between populations could also be
due to lineage divergence, and an extensive systematic revision was also nec-
ecessary for the development of this model system.

The key findings of this thesis are:

1. An improved understanding of the systematics of *Ilyodromus*, specifi-
cally:
 a) Revised characters that are considered typical of the genus.
 b) The boundaries between *Ilyodromus* and other similar genera.
 c) Detailed species descriptions for ten nominal species, and three
 as yet unnamed species.
 d) An improved ability to identify female-only populations

2. The model system constructed and used in this thesis enables the
 importance of environmental parameters in explaining reproductive
 mode to be quantified

3. Parthenogenesis tends to occur more in less stable (or more arid) habi-
tats, while sexual reproduction tends to occur more in more stable
 (higher rainfall) habitats.

4. This, alongside patterns of species distribution, suggests that variation
 in reproductive mode is closely linked with processes of speciation and
 adaptive response to emptied niches.
The declaration page
is not included in this version of the thesis
ACKNOWLEDGEMENTS

Thank you Kerr, Rob, Rysi, Dan, Aline and Shaun for your support throughout this PhD; and my principal supervisor, Annette Koenders for support, guidance, and providing a host of valuable life experiences throughout the time spent working on this PhD. Thank you to my three co-supervisors, Koen Martens, Isa Schön and Stuart Halse for providing advice on each of your areas of expertise. Joe Krawiec and Tim Doherty volunteered their time, making most field collections for this thesis possible. Valentina Pierri, Merlijn Jocque, Analia Diaz, Janet Higuti, Neil Collier and Zohra Elouaazizi helped with initial training for lab based skills or data analysis techniques early on in the project. Pierre Horwitz, Adrian Pinder and Mike Scanlon provided equipment and advice for undertaking field work. Zohra Elouaazizi assisted with DNA sequencing, Julien Cilis assisted with scanning electron microscopy, and Claudine Behen inked many of the line drawings for this thesis. Thank you to Åse Wilhelmsen, Lutz Bachmann (Oslo Natural History Museum), Andrew Hosie, Ana Hara and Lee Betterridge (Western Australian Museum) for the use of museum collections, the use of laboratory space and equipment, and your hospitality in general. Thank you Patrick De Deckker, Dave Horne, Bram Van schoenwinkel, Merlijn Jocque, and Neil Collier for discussions that either directly led to the development of this project, or ultimately improved the outcomes. Robin J. Smith, Renate Matzke-Karasz, and an anonymous reviewer provided constructive comments that helped improve one of the chapters of this thesis. Yvonne Garwood, Anthea Ward, and Heidi Courard assisted with the often unseen workload of managing financial, and other administrative matters associated with the PhD, thank you. There are very few people at the School of Natural Sciences, Edith Cowan University, who have not helped me in some way during the course of my studies at ECU. Funds to undertake research contained within this thesis were provided by the Centre for Ecosystem Management (Edith Cowan University), the Australian Biological Resources Study, and myself.