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We systematically carried out image processing in which artifacts were removed and noise was
filtered from stacked images, using Beam hardening corrections algorithm followed by nonlocal means
filters [50] to obtain high-quality images [21]. In addition, 5 droplets of nonaqueous phase liquid were
identified in the porous space to measure the wetting state. Their projections on the XY, XZ, and YZ
planes were used to measure the contact angles (Figure 2).

Figure 2. Orthogonal slices of the saturated rock sample in a processed 3D image from X-ray
microcomputed tomography (micro-CT).

3. Results and Discussion

The contact angles were measured (refer to Figure 3) in all the three projected planes (refer to
Figure 2) for the randomly identified oil phase droplets. This was done to avoid the bias of the in situ
contact angle measurements in a single plane, which are generally measured in the plane perpendicular
to the direction of displacing fluid flow, as seen in the works of Kishvand et al. (2016) and Kuang et al.
(2020) [33–35,51,52]. This procedure, which is manual, tried to ensure that the topological principles
could be preserved as suggested by Sun et al. (2020) [6,53] (which is also subject to oversmoothing
using several filters). The error of measurements due to pixelization-related errors cannot be avoided
in any of the procedures but can be limited by repeat measurements for each visible three-phase contact
line, and we tried to keep the absolute error within 3◦, which is insignificant for such measurements.
The following subsections discuss the results obtained at initial and final conditions.

3.1. Initial Condition

Table 1 presents in situ contact angle data of the aqueous phase along the visible three-phase
contact line in XY, XZ, and YZ planes at initial condition. From this table, it can be observed that the
corresponding average aqueous phase contact angles for nonaqueous phase liquid droplet 1, droplet 2,
droplet 3, droplet 4, and droplet 5 are 89.18◦, 79.25◦, 82.85◦, 84.64◦, and 58.6◦, respectively. Thus, these
contact angle values strongly indicate that the surface of the rock pores are intermediate water-wet or
mixed wet [2], whereas an occasional weak water (or strong oil) wetting state can also be observed
as seen for the average aqueous phase contact angle of droplet 5. Thus, it can be inferred that this
three-phase system is predominantly intermediate water-wet or mixed wet at initial conditions.
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Figure 3. Exemplary in situ contact angles on XY plane for droplet 1. (a) Processed image. (b) Segmented
image: grains (white); alkane (grey); brine (black).

Table 1. In situ contact angle data of the aqueous phase along the visible three-phase contact line in XY,
XZ, and YZ planes at initial condition.

XY XZ YZ

Droplet 1

83.78◦ 86.54◦ 92.41◦

105.16◦ 87.58◦

86.15◦ 91.55◦

80.24◦

Droplet 2 81.11◦ 89.16◦ 68.74◦

87.61◦ 59.08◦ 89.8◦

Droplet 3 86.15◦ 92.15◦ 70.26◦

Droplet 4
91.26◦ 61.84◦ 102.76◦

80.85◦ 105.14◦

48.14◦ 102.48◦

Droplet 5 55.28◦ 55.3◦ 65.22◦

3.2. Final Condition after Aging

Table 2 presents the in situ contact angle data of the aqueous phase along the visible three-phase
contact line in XY, XZ, and YZ planes after aging for 21 days. The same droplets were identified to
measure the contact angles. The corresponding average aqueous phase contact angles for nonaqueous
phase liquid droplet 1, droplet 2, droplet 3, droplet 4, and droplet 5 are 92.73◦, 69.36◦, 73.56◦,
68.72◦, and 59.86◦, respectively. These results show that the wetting conditions are now changed to
predominantly weakly water-wet [2] on aging.

Thus, we observe that the wettability alteration is not drastic, but it indicates that the affinity of
the sandstone pore surface for the decane phase increased during the aging time, even at ambient
conditions. A previous study shows that the water-wet condition (≈27◦) for pure decane on a quartz
substrate at ambient conditions changes to a less water-wet state with the increase of temperature [54].
The same observations were also reported for higher molecular weight alkanes [54]. However, higher
alkanes wetted the quartz surface more than the lower alkanes [54]. Thus, it is expected that in a real
system (e.g., this study), the wettability of the sandstone surface will be more oil-wet by alkanes if the
temperature is raised as well as with the increase in the chain length.

Further, from previous studies, on polished silica surfaces, it was shown that the interface formed
between nonpolar alkane solvents and hydrophilic silica interfaces is polar [41]. In our previous study
using quartz plates [2], we postulated that this wettability alteration towards further oil wetting might
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be due to induced polarity at the interface [2]. The present study, which is at the real rock surface,
also strengthens our earlier hypothesis. The study is complementary to some works that advocate
the technique of silanization for instantly turning the rock surface to oil wetting initial conditions for
further studies, which is mostly based on the chemisorption of the oil phase accompanied by energy
minimization at the rock surface depending on the conditions of temperature and pressures [15,45–49].

Table 2. In situ contact angle data of the aqueous phase along the visible three-phase contact line in XY,
XZ, and YZ planes after aging.

XY XZ YZ

Droplet 1

108.43◦ 102.21◦ 128.68◦

123.34◦ 54.61◦ 90.97◦

47.13◦ 86.47◦

Droplet 2

85.88◦ 74.04◦ 58.04◦

94.28◦ 34.59◦ 67.4◦

69.44◦ 71.2◦

Droplet 3 73.78◦ 106.29◦ 40.6◦

Droplet 4 72.6◦ 72.68◦

40.97◦ 88.64◦

Droplet 5

51.58◦ 37.09◦

65.33◦

85.43◦

4. Conclusions

The present study utilized the technique on 2D projections of oil droplets from 3D micro-CT images
of decane and brine-saturated Doddington sandstone core plugs for in situ contact angle measurements
along the three-phase contact lines of randomly identified oil phase droplets. The contact angle
measurement on the projected XY, XZ, and YZ planes for 5 droplets reveals that the predominantly
initial intermediate water-wet (or mixed wet) conditions changed to predominantly weakly water-wet
conditions of the sandstone miniature core plugs on aging for 21 days at ambient conditions. It is
expected that this change for a real porous media can be drastic when the aging temperature and
pressure are raised, or if higher molecular weight alkanes are chosen. This work further strengthens
our hypothesis that the wettability alteration may not always be due to chemisorption, but induced
polarity for a polar substrate and nonpolar oil phase such as alkanes can also play a significant role.
The study also aids in the understanding of the initial wetting condition of paraffinic oil-bearing
sandstone reservoirs and well as the oil migration process. The investigation further complements
those studies that advocate the silanization of the rock surface for the desired wettability change
towards oil wetting state for carrying out enhanced oil recovery (EOR) and CO2 geosequestration
studies (but not limited to them).
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