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ABSTRACT This article investigates the effects of high penetration levels of Electric Vehicle (EV) charging
on power distribution transformers and proposes a new solution to minimize its negative impacts. There
has been growing concern over Greenhouse Gas (GHG) emissions within the transportation sector, which
accounts for about 23% of total energy-related carbon-dioxide emissions. The main solution to this problem
is the electrification of vehicles. However, large scale integration of EVs into existing grid systems poses
some challenges. One major challenge is the accelerated aging of expensive grid assets such as transformers.
In this article, a demand response mechanism based on the thermal loading of transformers, is proposed. The
proposed solution is modeled as an optimization problem, where a new time of use (ToU) tariff is used to shift
the EV load considering the thermal loading of transformers, thereby minimizing their accelerated aging.
The simulation results show that the accelerated aging of transformers can be reduced without augmenting
the existing grid.

INDEX TERMS Electric vehicles (EVs), time of use (ToU) tariff, loss of life (LoL), distribution transformer
thermal aging.

Abbreviations P Exponent of loss function vs. top-oil
temperature rise.

LoL  Loss of life of transformer. . .
tror  Oil thermal time constant for rated load.

SOC  State of charge.

W Winding time constant at hot-spot location
E m of ITOTS. .
SS Sum of squared errors in hours.
Parameters 04 Ar'nbllent temperature. .
8 Spot electricity price in £ hour OHR Winding hot-spot temperature over top-oil at
t .
.. . rated load.
B Spot electricity price in k™ hour. .
o . . On Winding hot spot temperature of
AbBy Winding hot-spot temperature rise over top-oil transformer
temperature. A Incentive in.k”' hour
Abror  Top-oil temperature rise over ambient Ak Incentive in " hour.
temperature at rated load. dt Daily milcace driveﬁ in km
Abro  Top-oil temperature rise over ambient y g .. .
e Energy consumption in kWh/km.

temperature of transformer. Epar  Capacity of battery in KWh.

Efficiency of the charger.
K SSE . y . g E.ons Energy consumed by EV.
Ay Successive difference of SSE. .
E,;  Energy required to charge EV.
7 Number of EVs per household. e m
Eik Cross elasticity in t"* hour.
E; Self elasticity in * hour.
The associate editor coordinating the review of this manuscript and Faa Accelerated aging factor of transformer.
approving it for publication was S. Ali Arefifar . Fgpa  Equivalent aging factor of transformer.
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Fio Equivalent aging factor based on proposed
method.

F gg A Equivalent aging factor based on uncontrolled
charging.

LEV EV load.

Lyormar  Nameplate insulation life of transformer.

Lg Residential load.

Ly Ratio of initial load to the rated load.

Lt Total load on transformer.

L; Ratio of ultimate load to the rated load.

szeg’;f Life expectancy of transformer based on
proposed method.

szegc’;, Life expectancy of transformer based on
uncontrolled charging.

m Exponent of load squared vs. winding gradient.

N Number of EVs.

n EV index.

NEvs Number of EVs.

NHouse ~ Number of Household.

P?lfp cak Off-peak price at time .

preck Peak price at time ¢.

P! Threshold-1 price at time 7.

P2 Threshold-2 price at time .

r Ratio of load loss at rated load to no-load loss.

Snom Nominal apparent power of transformer.

S; Apparent power of transformer at " hour.

Soc?.  Initial SOC of the n EV.

SOCi,  Minimum SOC of EV battery.

S0C!  SOC of the n* EV at time ¢.

T Time horizon.

t Time slot index.

thiin Transformer’s temperature to start off-peak
price.

thpeak Transformer’s temperature to start peak price.

thgar 1 Transformer’s temperature to start shoulder-1
price.

thar 2 Transformer’s temperature to start shoulder-2
price.

Ly EV load.

Xpen Penetration level of EVs.

I. INTRODUCTION

Electric Vehicles (EVs) are becoming increasingly popu-
lar due to growing concerns about global warming and
greenhouse gas emission [1], [2]. EVs produce signifi-
cantly less carbon emissions compared to internal combustion
engine (ICE) vehicles, even when the source of electricity
is from non-renewable resources. It has been predicted that
penetration levels of EVs will substantially increase in com-
ing decades, where it has been forecasted that by 2040, about
30% of the global passenger fleet will be electric [3].

Most of the research and work related to EV focuses on
their integration into the transport system from the user’s
viewpoint and means of mitigating the associated problems.
Whereas, it is also equally important to reduce the impact of

210184

the inevitable integration of EV from the perspective of the
utility (e.g., transformer aging, line overloading, etc). One of
the biggest obstacles to successful integration of EVs into
current transportation systems is their negative impacts on
power distribution system [4]-[6]. Authors in [4] and [5] have
concluded that simultaneous charging of EV and peak load
periods will overload the distribution system. Furthermore,
augmentation investment cost can rise to 15%, and energy
losses can reach 40% with EV penetration level of 60% [6].
Therefore, determination of the hosting capacity of the distri-
bution system is vital. Reference [7] looks into determining
the maximum hosting capacity based on voltage constrained
method and proposes a controlled charging as a facilitator
for EV integration. Marginal hosting capacity calculation is
proposed in [8] based on linear power flow model, and it can
be used to identify nodes that are more impactful in using
the network capacity. In [9], the concept of EV chargeable
region optimization model is proposed without violating the
technical constrain of the network. As most of the charg-
ing load of EVs takes place on the low voltage side of the
grid, negative impacts will be more pronounced. The power
demand of typical EV chargers at AC level 2 is about 19.2 kW
[10], which is almost twenty times the power demand of a
typical household appliance [11]. This can lead to an unstable
system with real-time power mismatch leading to voltage
and frequency deviations. The distribution system grid should
accommodate the additional EV load without jeopardizing
the stability of the network, as augmentation of the grid
usually takes decades due to grid assets’ long service life [12].
Therefore, the effect of aggregated uncoordinated charging
will have a catastrophic effect on a power system, especially
its transformers. Transformers are considered to be the most
critical and expensive element of an electric network, where
replacing them will be very costly. When they fail, critical
infrastructure such as hospitals and industries, to name a few,
will suffer [13], [14].

Therefore, this article investigates the negative impacts on
distribution assets, particularly accelerated aging of distribu-
tion transformers, due to integration of EVs. Loading trans-
formers beyond their nameplate rating increases temperature
of mineral insulating oil and winding, which subsequently
deteriorates the insulating papers wrapped around the wind-
ing, thereby reducing the nominal life of transformers [15].

The integration of EV into power distribution systems is
inevitable, where charging EVs without jeopardizing the net-
work is of paramount importance. To address the aforemen-
tioned problem, this article proposes a solution for charging
EVs based on the temperature of the transformer, where
the demand response is determined by a time of use tariff.
Compared to current research, the key contributions to this
article are as follows.

1) In this article, we introduce a demand response mecha-
nism to minimize the accelerated aging of transformers
by implementing a new time of use (ToU) price signal
based on the thermal loading of transformers. We con-
sider the impact of EV loads and ambient temperature,
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and model the research challenge as an optimisation
problem.

2) To validate the proposed solution, we used multiple

case studies and conducted comprehensive analysis.
We observed promising results for the proposed solu-
tion, which are presented in this article.

The rest of this article is structured as follows. Section II
introduces previous work on the impacts of EV on distribu-
tion transformers. Proposed solution to reduce the impact of
integration of EV is defined in Section III, presenting a sys-
tem model and proposed method for solving the problem of
LoL minimization of the distribution transformer. Section IV
introduces the findings of the simulation and discusses the
introduced case studies followed by a conclusion.

Il. RELATED WORK

High penetration levels of EVs, Photovoltaics (PVs), and
Energy Storage Systems (ESSs) modifies the shape of
load curves seen by distribution transformers. In particular,
the natural coincidence of conventional peak load and likely
EV demand will cause significant overload at the distribution
level [16]-[18]. It has also been pointed out in [19] and [20]
that the effect of the EV will be dramatic, as the diversity of
load is relatively lower in the distribution level than in the
transmission level.

A comprehensive literature review on the effects of various
loads and other factors on power distribution transformers
has been conducted in [21]. A smart protection model for
the transformer was proposed to address new network chal-
lenges due to integration of new types of load and generation.
An online monitoring system was considered as essential to
protect the transformer from abnormal loading and faults.

Authors in [22] have investigated the impact of additional
EV load at a factory car-park, using lognormal probability
distribution to predict the initial state of charge and using
transient transformer aging model defined in IEEE 57.91 to
calculate the transformer’s LoL. The authors concluded that
fast charging should be avoided as it overloads the trans-
former at penetrations as low as 15%. Further, given that
factory workers park their cars for 8 hours, this allows suffi-
cient time to fully charge vehicles using slow charging modes.
Therefore, there is no need to consider fast charging. The
authors propose a solution by only using slow charging modes
as the car is normally parked for about 8 hours. Although this
is feasible in some situations, in reality, some owners might
have different requirements for charging duration depending
on the use of their EV.

A methodology to determine the impact of high penetration
of EVs on the thermal aging of distribution transformers
was developed in [23]. It was concluded that transformer
LoL is mainly dependent on ambient temperature and the
loading of the transformer. It was also highlighted that shift-
ing the charging load of EVs to off-peak hours, which are
overnight and early morning hours, is not necessarily good
for transformer aging, as it prevents the transformer from
cooling down. One of the proposed solutions shifts some

VOLUME 8, 2020

of the charging load of residential areas to public charging
in industrial and commercial areas, to reduce pressure on
residential distribution transformers.

Authors in [24] and [25] have evaluated the impact of
different types of charging strategies on transformer ther-
mal aging. Charging strategies were categorized into central,
decentralized, and hierarchical types. It was concluded that
hierarchical charging strategies are most preferred in terms of
transformer loss of life whereas centralized charging strate-
gies (valley-filling) showed the greatest LoL.

A data-driven PEVs charging strategy based on a stochas-
tic game model is used to measure the transformer aging
[26]. Here a linear supply function is used for changing the
charging behavior of EV owners. However, this article does
not look into the thermal loading of the transformer. In [27],
authors consider fixed ToU tariff and compares the EV load,
when it acts only as a load and when EV participates in V2H
(Vehicle to Home). Essentially the ToU tariff is predeter-
mined by the utility and is independent of the load including
the EV. Authors in [28] have considered an agent-based
approach where real time price signal is used to minimize
the congestion problem at MV/LV transformer. Although this
article looks into the thermal loading of the MV/LV trans-
former, it does not consider the influence of ambient tempera-
ture on the thermal loading of the transformer. Authors in [29]
have investigated several EV charging schemes in a parking
lot. This article assumes that the operator can communicate
with each car or charger at least every 15 minutes’ interval.
Again, the ToU price is predetermined and it is independent
of the EV load.

As discussed above, while researchers have analyzed the
impact on distribution transformers due to EV charging load,
none of these paper provide a solution without augmentation
to the distribution network. Most of the proposed solutions
are based on the assumption that a very good communication
link exists between the customers and utility or the aggrega-
tors. This article introduces a new ToU pricing mechanism
based on the transformer’s temperature to minimize distri-
bution transformer loss of life. The method proposed in this
article works without any modification to existing physical
infrastructure.

Ill. PROPOSED SOLUTION TO REDUCE IMPACT

ON TRANSFORMERS

A. SYSTEM MODEL

1) MODELING OF EV LOAD

Firstly, the Monte Carlo Simulation (MCS) is used to generate

the aggregated EV load curve for uncoordinated charging.

Secondly, it is used to estimate the total load demand by the

EV fleet in the studied horizon, which is 24 hours. As EV

charging is a stochastic process, MCS can be used to accu-

rately estimate aggregated EV load demand over time [30].
Charging start time and charging duration data were

acquired from NHTS (2017), accounting for 129,696 house-

holds [31]. The NHTS survey included 4,766 hybrid or
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FIGURE 2. Daily mileage.

electric vehicles out of 222,183 vehicles. Previous survey
data (2009 NHTS) did not include or specify electric vehicles
separately, which would make assumptions derived from the
previous survey for EV load modeling incorrect.

As reported in [32], more than 80% of EVs are charged
at home; therefore, the time at which vehicle owners start
charging is modeled using the final home arrival data of EVs.
Charging duration is derived from the daily distance traveled.
The cumulative distribution function (cdf) for home arrival
time and daily mileage are derived similarly to [33] and [34]
as shown in Fig.1 and Fig.2, respectively.

The number of EVs connected to the distribution network
can be determined by (1). The penetration level of EVs varies
from 0 to 50% as estimated in [3] and [35]. The value of u is
estimated as 2 based on the findings in the 2017 NHTS.

NEevs = Xpen X NHouse X 14 (D

EV charging load is estimated using Algorithm 1 [36],
[37]. In this article, two types of EVs are selected for
investigation: namely Nissan LEAF (24 kWh) and Chevy
Volt (16 kWh). Charging level 2 with a charging capacity
of 3.7 kW, is selected to estimate the energy required by the
battery.

210186

Algorithm 1 EV Load Computation
Input: Ep,,: Capacity of battery in kWh
d: daily mileage driven in km
e: energy consumption in kWh/km
n: efficiency of charger
1: Set minimum state of charge

30% if EV is Chevy Volt,
SOCpin = . . .
5% if EV is Nissan LEAF,
2: Compute the energy consumed by the vehicle
B dxe
cons — Ebatt

(98]

: Compute the state of charge (SOC) of the battery

d
SOCZ";” = max |:SOCmin, <1 - Econs_)i|
Epar

4: Calculate the energy required to charge the vehicle

1-S80C
Ereq - T

Output: Required energy to charge the vehicle E,,

X Epay

2) MODELING OF THE RESIDENTIAL LOAD AND AMBIENT
TEMPERATURE
It is important to model existing load properly, in order for
results to be valid. Most researchers to date have represented
existing load using a single load curve that shows an aver-
age load demand. This model does not include variations of
load for different seasons. Therefore, the load model based
on models developed in [38] are used in this article. The
load profiles are taken from the National Feeder Taxonomy
Study (NTFS) developed by the Australian Commonwealth
Scientific and Industrial Research Organisation (CSIRO).
Ambient temperature data was acquired from the Bureau
of Meteorology, Australian Government [39]. Refined
daily half-an-hour temperature data from May 2016 to
April 2017 was used from a weather station located at Perth,
Western Australia. Fig.3 shows four representative ambient
temperature clusters based on a Euclidean K-mean method.
Representative numbers of clusters were derived using (2)
and (3). The maximum value of Af(SE was used to determine
the most suitable number of clusters [40].

K
SSE = Z Z (d;j — p)? 2

i=1\ peC;
AMEE = SSEg_1 + SSEx 1 — (2 x SSEy) A3)
3) MODELING DISTRIBUTION TRANSFORMER LoL

Thermal aging equations from the IEEE Std. C57.91 [41]
were used for dynamic modeling of the transformer. The LoL
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of the transformer was calculated using (4), where T is the
number of time slots, usually chosen as 24 and L,,rmq 1S
the nameplate insulation life of the transformer at rated load
which is usually considered to be 180000 hours.

Fgpa.T.100

LoL(%) = @

Lnormal

The average aging factor Fggpy is given by (5). For every
time step, the actual accelerated aging factor Fu4 is given
by (6), determining the transformer’s lifetime degradation.
This empirical formula is dependent on the hot-spot temper-
ature of the transformer. If the hot-spot temperature is higher
than the reference hot-spot temperature (usually its 110°C),
the Fa4 is greater than 1 and vice versa.

N
Zn:l FAA,n-Atn

FEQA = T <N . ©)
Zn:l At”
15000 _ 15000
FAA —e 383 0y +273 (6)

Transformer lifetime aging is dependent on hot-spot tem-
perature and is given by (7).

O = 64 + Abrp + Aby @)

VOLUME 8, 2020

where 0y H is the distribution transformer’s hot-spot tem-
perature, 84 is the ambient temperature, Afrp is the top-oil
temperature rise over the ambient temperature, and A6y is
the winding hot-spot temperature over top-oil temperature.

The increases in hot-spot temperature due to winding and
oil are given by 8 and 9, respectively.

_ 2m __ y2m _ TA*[ 2m
AOp: = Our { (L7 — L")\ L —e™w )t + 1L .OnR
®)

where 6y is the change in hot-spot temperature for every time
step t, Ogg is the winding hot-spot temperature at rated load
over top-oil temperature, L, and L,_; are the ratios of final
load to rated load and the initial load to the rated load, m is
the exponent of load squared versus the winding gradient, and
Ty is the winding time constant at the hot-spot location.

L2 +1)\ (L2,¢c+DY
MTOJ:MTOR!( = ) - tr1+1

r ( Pl ¢>f_‘ll) At

x 1 —exp )
tror (¢~ — 91))
where,
=L (r+1)
p1 =L (r+1)
tr=1,...,24
n=1,...,N

where A6rog is the top-oil temperature rise at rated load over
ambient temperature, r is the ratio of load loss at rated load to
no-load loss, t7pr is the rated load oil thermal time constant,
and p is the loss function exponent versus the rise in top-oil
temperature.

Here, LoL of the transformer is derived as a function of the
transformer’s load and ambient temperature. All the symbols
in (8) and (9) are constants except L; and L;_1.

Since the maximum loading of the transformer is depen-
dent on the hot-spot temperature as given in (6), the amount
of additional EV load, a particular transformer can support at
any point of time is mainly dependent on the following factors
as per (7):

1) Ambient temperature.

2) Existing residential load.

Out of the two factors listed above, residential load is fur-
ther dependent on ambient temperature. The maximum load
that the transformer can support depends on the difference
between the maximum transformer temperature (given by
the manufacturer) and the ambient temperature. Since the
ambient temperature of the next day’s is a known priory
with very high accuracy, the allowable transformer loading
is calculated using (6) — (9). The allowable loading of the
transformer based on hot-spot temperature without the EV is
due to existing residential load and ambient temperature.
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TABLE 1. Summary of optimization parameters and variables.

Type

Parameters/Variables

Input Parameters

Output Parameters
Decision Variables

Network Data, Residential
Load Profile, EV Load Profile

Faa
PPe* and thpeqr,

—
Residential
‘I Lo/ad
fil
a ,_profile
DG and
ESS data
Distribution
Network

DIgSILENT T
PowerFactory

System Modelling

Network Analysis

Optimization
Objective function and
constraints

Python

Output
LoL minimization
by ToU pricing

FIGURE 5. Proposed methodology.

B. PROPOSED MODEL

The proposed methodology to find optimal ToU price
and time subject to objective function constraints is given
in Fig. 5. The summary of input variables, output variables,
and decision variables are given in Table 1.

The main idea is to determine optimal ToU pricing depen-
dent on ambient temperature. The relationship between cus-
tomer demand and price of electricity is given in (10) and is
based on [42]. It proposes two demand response models based
on TOU and emergency demand response method. The same
model is expanded and used in [43], and [44]. This model uses
the demand-price elasticity concept based on the principle of
psychology and economy. The model can be used for both
price-based or incentive-based programs. However, in this
article, only the price-based program is used.

Ly
L =Ly + E.—— [ — fo + Al
Bo
24 L
+ Y Enk—— B — fo+ Al (10)
P Bo
k£t
where
t,k=1,...,24

The starting time and duration of the various electricity
ToU price can be determined based on the percentage loading
of the transformer. From this, the share of peak load, shoulder
load, and off-peak load can be calculated and using (10),
various tariffs can be determined.

The following objective function and the associated con-
straints define the optimization problem. The objective is to
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Charging power (kWh)

v

B Time (hrs) B

FIGURE 6. Typical charging power profile of EV [30].

minimize the F44 of the transformer which is a function of
existing residential load and additional EV load.

24
min Y " [Faa (Lr. + Lev i) At] (11)
t=1
The constraints that must be met during the process of opti-

mization are as follows:
Transformer Capacity Limit:

St < Snom (12)
Transformer Demand:
N
Ly =Lri+ Y Liy, (13)
n=1
Electrical Vehicle SOC:
n n n At
SOC; = SOC,_ | + | nLgy ,—— (14)
" Epan
d
SOCZ-’:”- = max |:SOCm,-n, (1 — Econs >:| (15)
Ebatt
SOCZeP = SOCpey (16)

Lithium-ion Battery Charging Characteristics:

, Lgv* if0<t <1,
LEV,t = th—t

17
Ly (trtl) iftyy <t <, (17

Constraint (12) shows that the total apparent power after
the addition of EV must not exceed the rated capacity of
the transformer in order to avoid accelerated aging due to
high temperature. Constraint (13) gives the total demand/load
experienced by the transformer at any given time 7. Con-
straint (14) gives the SOC of n™ EV at time ¢ for a period
of time At. The initial SOC}; of n™ EV depends on the
previous driving distance and is calculated by (15). SOCip
is selected if the calculated SOC falls below the minimum
value on order to avoid the degradation of the battery. The
EV must be sufficiently charged to be used for the next day,
where this condition is given in (16). Constraint (17) gives the
charging power of EV based on the typical charging profile of
Fig. 6. The actual charging profile is simplified by piecewise
linearization [23], [45], and [46].
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TABLE 2. Self and cross elasticity.

Peak Shoulder_1 Shoulder_2  Off Peak
Peak -0.1 0.009 0.009 0.01
Shoulder_1  0.009 -0.1 0.009 0.01
Shoulder_2  0.009 0.009 -0.1 0.01
Off_Peak 0.01 0.009 0.009 -0.1

IV. NUMERICAL SIMULATION AND RESULTS

A. INPUT DATA AND PARAMETERS

Decision variables are Pf cak and thpeq (time at which the
peak price starts). The relationship between four different
ToU tariffs and the threshold temperature at which each
tariff is applied is given in (18). To determine the ToU tariff
using (10), Table 2 shows the self and cross elasticity used
between the various tariffs based on the work in [47].

The values of the decision variables are optimized using
the Simplicial Homology Global Optimization (SHGO) algo-
rithm. It is a promising derivative free and recently published
global optimization (GO) algorithm based on integral homol-
ogy and combinatorial topology [48], [49]. The main advan-
tage of SHGO is that it can determine unique local minima
which are locally convex (approximately) with relative ease
compared with other optimization algorithms. A core i7 PC
with 8 GB RAM was used for the simulation, where it was
able to solve the problem within a few minutes.

In this work; three penetration levels of EVs, namely 10%,
25%, and 50% (based on (1)); three representative residential
load profiles (i.e. summer load, winter load, and shoulder
load); and four representative temperature profiles have been
considered (as given in Fig.3).

PI% i Oy > thyeat
P i thar 1 < O < thpeak

P, = y T - s
t psar2 if thsar 2 < 60g < thear 1 1

t
P;}ﬁ‘peak if thmin =< 9H =< thsdr_2

where

2
thvdr ( peak — thmin) g + thmin
thsdr (

+ thmin

1
th peak — thmin) 5

sdr 1 ( Ppeak _ Poﬁ‘peak) i + Pojfpeak

P;dr 2 ( Ppeak . Puﬁ‘peak) 1 + Poﬁpeak
3

B. RESULTS AND DISCUSSION

This article analyzed the load experienced by the distribu-
tion transformer. Load varies throughout the year and is
comprised of residential load and additional load from EV,
which is further dependent on penetration levels. The demand
response of residential load and EV load is carried out sepa-
rately, as residential load can be shifted to either side of the
time duration as the loads are more flexible. Since EV cannot
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FIGURE 8. ToU tariff based on EV load.

be charged before its arrival time, EV charging loads are only
shifted to the later time based on the ToU tariff signal.

The results for a case with 25% EV penetration, winter
load, and representative ambient temperature-4 are shown
in Fig. 7 to Fig. 12. The demand response of residential load
is shown in Fig. 7, where it can be seen that the load is
shifted to either side of the load profile depending on the
ToU tariff. A major portion of the load from peak hours and
a small portion of the load from shoulder-1 period are shifted
to off-peak time and shoulder-2 time periods, respectively.
Fig. 8 shows the demand response of the EV charging load.
Since most EVs will be used during the day time, where
survey data shows that about 20% of the EVs return home
after 15:00 hr and about 80% by 20:00 hr; therefore, EV loads
are only shifted to the later time after arrival based on
ToU tariff.

Fig. 9 shows the demand response of the total load based
on the ToU tariff signal. The hot-spot temperature goes above
its threshold temperature from 14:00 hrs to 22:00 hrs for
uncoordinated charging. The demand response proposed here
is able to shift the load to off-peak hours and maintain the
temperature of the transformer within the limit. The peak
load of about 1.22 p.u at 18:00 hr is shifted to a peak load
of 0.845 p.u. at 00:00 hr. The ToU tariff varies in-between
AUD 0.2 per kWh to AUD 0.8 per kWh. The optimization
finds the best value of TOU tariffs and the start time of
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FIGURE 10. Hot-spot temperature and Accelerated ageing factor for
uncoordinated charging.

each tariff (namely, peak, shoulder-1, shoulder-2, and off-
peak) and time duration, which gives the minimum Fgg. For
this particular case, the tariff starts with shoulder-2 of AUD
0.319 per kWh at 07:00 hr and changes to shoulder-1 of
AUD 0.438 per kWh for the time period between 08:00 hr to
13:00 hr. At 14:00 hr the peak tariff of AUD 0.557 per kWh
is applied to divert the EV charging load and the residential
load to minimize the F44 of the transformer. The tariff only
changes to shoulder-2 at 00:00 hr, so that the EVs can start
charging, and it further decreases to an off-peak tariff of AUD
0.2 per kWh after 01:00 hr until 06:00 hr.

The F44 for uncoordinated EV charging is given in Fig. 10.
The hot-spot temperature crosses the threshold temperature
of 110°C in between 16:00 hr to 21:00 hr and F44 reaches a
peak of 20 at 18:00 hr. The F44 only becomes more than 1 at
17:00 (i.e. one hour later than the time hot-spot temperature
crosses its threshold of 110°C) hrs due the thermal time
constant of the transformer. The proposed solution of shifting
the load of the transformer based on the temperature of the
transformer is shown in Fig. 11. It can be observed that the
load profile changes based on the response to the ToU tariff
signal and the optimization has done so by minimizing the
equivalent aging of the transformer (Fgp). The hot-spot tem-
perature due to the new load of the transformer reaches very
near to the threshold temperature at 18:00 hr and 00:00 hr, but
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FIGURE 12. Influence of ambient temperature on the hot-spot
temperature.

the Fa4 only reaches a value of 0.28. This happens due to the
thermal time constant of the transformer, where if managed
properly, a higher amount of load can be accommodated by
the transformer. The new load of the transformer significantly
decreases Fa4, and it never crosses the limit.

The influence of ambient temperature on the transformer’s
hot-spot temperature is shown in Fig. 12 (case with 50%
EV penetration, winter load, and representative ambient
temperature-3). Accordingly, the hot-spot temperature rises
significantly between 12:00 hrs till 16:00 hrs due to high
ambient temperature between 25°C and 30°C. Therefore,
it is important to manage the total load of the transformer
based on the hot-spot temperature, which is further dependent
on the ambient temperature. The amount of additional EV
charging load that a particular transformer can handle without
overloading can vary significantly for a place where ambient
temperature varies throughout the day and throughout the
year.

Table 3 shows the life expectancy of the transformer for
thirty-two scenarios. The accelerated aging of the transformer
is not affected by 10% of EV penetration. Accelerated aging
of the transformer goes above 1 after the EV penetration
reaches 25%. The impact of ambient temperature is evi-
dent as the Fgpa is below 1, for representative ambient
temperature-1, but it is more than one for other ambient
temperatures. The same trend can be seen for EV penetration
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TABLE 3. Aging of transformer.

EV Penetration (%) Seasons Ambient Temp PP €k (§/kWh) thpeak (°C) Fg[j 4 Fggjrt Li fegz’;, (years) Li feesg’;]“” (years)
10 Winter 1 0.523 87.5 0.218 0.014 20.55 20.55
10 Winter 2 0.507 87.5 0.294 0.022 20.55 20.55
10 Winter 3 0.513 87.5 0.395 0.029 20.55 20.55
10 Winter 4 0.531 87.5 0.545 0.043 20.55 20.55
10 Summer 1 0.621 60 0.183 0.004 20.55 20.55
10 Summer 2 0.572 85 0.247 0.008 20.55 20.55
10 Summer 3 0.559 85 0.330 0.012 20.55 20.55
10 Summer 4 0.673 60 0.447 0.015 20.55 20.55
10 Threshold 1 0.546 87.5 0.155 0.007 20.55 20.55
10 Threshold 2 0.510 87.5 0.210 0.012 20.55 20.55
10 Threshold 3 0.524 87.5 0.285 0.014 20.55 20.55
10 Threshold 4 0.501 87.5 0.402 0.026 20.55 20.55
25 Winter 1 0.527 87.5 0.920 0.028 20.55 20.55
25 Winter 2 0.526 87.5 1.206 0.041 17.04 20.55
25 Winter 3 0.522 87.5 1.573 0.061 13.06 20.55
25 Winter 4 0.558 87.5 2.091 0.079 9.83 20.55
25 Summer 1 0.584 87.5 0.895 0.010 20.55 20.55
25 Summer 2 0.565 87.5 1.169 0.017 17.58 20.55
25 Summer 3 0.551 87.5 1.517 0.027 13.54 20.55
25 Summer 4 0.651 65 1.990 0.029 10.32 20.55
25 Threshold 1 0.550 87.5 0.711 0.013 20.55 20.55
25 Threshold 2 0.532 87.5 0.934 0.020 20.55 20.55
25 Threshold 3 0.539 87.5 1.231 0.027 16.69 20.55
25 Threshold 4 0.525 87.5 1.663 0.049 12.35 20.55
50 Winter 1 0.545 87.5 8.409 0.098 2.44 20.55
50 Winter 2 0.544 87.5 10.648 0.145 1.93 20.55
50 Winter 3 0.525 87.5 13.414 0.287 1.53 20.55
50 Winter 4 0.587 87.5 17.166 0.241 1.20 20.55
50 Summer 1 0.573 110 10.149 0.051 2.02 20.55
50 Summer 2 0.586 65 12.789 0.101 1.61 20.55
50 Summer 3 0.545 110 15.999 0.116 1.28 20.55
50 Summer 4 0.682 65 20.185 0.121 1.02 20.55
50 Threshold 1 0.574 87.5 6.346 0.033 3.24 20.55
50 Threshold 2 0.570 87.5 8.065 0.050 2.55 20.55
50 Threshold 3 0.576 87.5 10.267 0.068 2.00 20.55
50 Threshold 4 0.563 87.5 13.290 0.120 1.55 20.55

levels of 25% and 50% for all seasons, as the expected life
of the transformer lowers as ambient temperature profile
increases.

The expected life of the transformer is assumed to be
180,000 hours, which is about 20.55 years. The last two
columns of Table 3 show the expected life of the transformer
for uncontrolled charging of EV load and charging based on
temperature as proposed. The obtained results show that with
the use of the proposed strategy, the transformer will last until
its lifetime of 20.55 years for all scenarios.

V. CONCLUSION

This article has presented a comprehensive methodology to
measure a rise in the loss of life of power transformers due
to EV charging loads to power distribution systems. Com-
prehensive and realistic data were used to model EV load and
applied into the thermal model of the transformer. A new ToU
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pricing to shift the EV load based on temperature is proposed
and it does not need any new augmentation to the network,
unlike methods proposed in other papers.

Thirty-two charging scenarios with three levels of EV pen-
etrations with three real representative residential loads, and
four real representative ambient temperatures were consid-
ered in the paper. The paper makes the following conclusions:

1) Results show that the annual LoL of the residential
transformer will reach 98.23% with a 50 percent pene-
tration of EVs in summer, corresponding to 1.02 years
of transformer life expectancy for the ’worst case’
charging scenario.

2) Results indicate that the smart charging scenario pro-
vides a better outcome from the loss of life reduction
perspective. Results also reveal that, under the same EV
loading conditions, the LoL of the transformers differs
significantly over different seasons of the year. The
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values of LoL due to EV charging are mainly increased
with higher ambient temperature and higher residential
load. This problem is mitigated as the results show that
the proposed method is able to manage EV integration
up-to 50%.
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