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Abstract

This paper investigates the use of fuzzy inference for detection of abnormal changes in e-mail traffic
communication behaviour. Several communication behaviour measures and metrics are defined for extracting
information on the traffic communication behaviour of e-mail users. The information from these behaviour
measures is then combined using a hierarchy of fuzzy inference systems, to provide an abnormality rating for
overall changes in communication behaviour of suspect e-mail accounts. The use of fuzzy inference is then
demonstrated with a case study investigating the e-mail traffic behaviour of a person’s e-mail accounts from the

Enron e-mail corpus.
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INTRODUCTION

On 10" August 2006, 21 terror suspects were arrested in Britain on suspicion of plotting to blow up United States
bound commercial airflights with liquid explosives (Natta et al., 2006). It was reported that British security
services, MI5, had been monitoring these suspects for up to at least 12 months prior to making the arrests in
August 2006. The New York Times (Natta et al., 2006) reported that MI5 had used several sources of
information to monitor the activities of the British terror suspects. These methods included: bugging their
apartments, tapping their phones, monitoring their bank transactions, and eavesdropping on their Internet traffic
and e-mail messages.

This British terror case highlights the importance of monitoring the activities of terror suspects. Monitoring
helps law enforcement investigators keep track of what terror suspects are doing, as well as who they are
communicating with, and whether suspects are doing anything that indicates an unusual change in their pattern
of behaviour compared to their normal activities (e.g. informing terror cell members when to conduct the attack).
If the British security services had not been keeping watch on the activities of the British terror suspects and
made the arrests based on what they had observed, the world might have experienced another airline-related
tragic event, similar to the terrorist attacks in the United States on September 11, 2001 (Whitney and Strasser,
2004).

Another point to note from the New York Times article is how the use of multiple sources of information by
British Security Services may have helped to provide a broader perspective on what the terror suspects were
doing. Multiple sources of information such as phone tapping, monitoring of bank transactions, and
eavesdropping on Internet traffic and e-mail messages, provided the British security services with a variety of
sources for detecting any unusual patterns of behaviour or change from normal habits (e.g. an unusually large
bank withdrawal). One of the difficulties in dealing with multiple sources of information is how to combine or
“fuse” the information together. Some of the information sources may show evidence that unusual activity is



occurring, but sometimes it may not be clear to the investigator how to combine the information together.
Another problem is that it may be difficult for the investigator to know which monitored suspect should be
observed more closely either as a matter of priority or based on the available evidence.

Our research work is on the analysis of e-mail traffic communications, with a focus on determining how artificial
intelligence techniques could be useful in aiding the user/intelligence analyst to investigate a suspected
individual’s e-mail traffic communication behaviour. In our previous work (Lim et al., 2005, Lim et al., 2006) an
e-mail traffic analyser system was developed as a conceptual system to investigate the use of data visualisation
techniques and decision trees (Witten and Frank, 2005, Negnevitsky, 2004) for finding “unusual”
communication behaviour from simulated e-mail traffic data. Our recent work focuses on developing a new
anomaly detection module for the e-mail traffic analyser system, which analyses a list of suspects for deviations
from their normal patterns of communication behaviour in e-mail traffic and alerts the user when an abnormal
change in communication behaviour has occurred. The recent work also looks at what the e-mail traffic analyser
system can reveal from genuine e-mail traffic data. A diagram of the e-mail traffic analyser system is shown in
Figure 1.
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Figure 1: The e-mail traffic analyser system.

In this paper, a brief description is first provided on anomaly detection and how the method of anomaly detection
is being used to detect changes in e-mail traffic communication behaviour. The second part of the paper
describes defining e-mail traffic communication behaviour measures and how these will be used to record
behavioural information on the e-mail user being analysed. The third part of the paper describes how the



anomaly detection module will profile the behaviour of e-mail users and detect changes in communication
behaviour patterns. The fourth section describes how fuzzy inference is being used to combine information from
different communication behaviour measures. This is then followed by a case study of the Enron e-mail corpus,
comparing the alert results produced by individual communication behaviour measures and the results produced
after fusing the information together using fuzzy inference.

ANOMALY DETECTION

The main aim of our current work is to monitor the e-mail traffic of a suspected individual for any significant
deviations from their normal communication behaviour patterns. The purpose of this is to bring to the attention
of the user/analyst that an abnormal or unusual event is occurring and assist them in finding the location of the
unusual event in the data. Our aim is to just inform the user about the presence of an unusual change in
communication behaviour for the monitored suspect and allow the user to utilise data visualisation tools (Lim et
al., 2005, Lim et al., 2006) or other analysis tools to investigate the details of that unusual event. We leave it up
to the user to decide the context or meaning of the unusual event (e.g. is it a planned terrorist attack or a planned
birthday party?), rather than try to encode the contextual knowledge into the system.

The method being used to detect changes in e-mail traffic communication behaviour is anomaly detection, a
method that is commonly used in intrusion detection (Bace and Mell, 2001) to detect new types of intrusion
attacks, previously unknown to a computer system or computer network. Anomaly detection is based on the idea
that the computer system or computer network has a “normal” operating state, which can be used to determine if
the system is currently under attack from an unknown intruder. In intrusion detection, the intrusion detection
system (IDS) builds a model of the target computer system’s “normal” state of behaviour and uses that model to
determine if the current state of the system is exhibiting significant deviations from the normal state of
behaviour. If there are significant deviations, then the IDS informs the system or network administrator that there
is an abnormal change in behaviour, indicating a possible attack on the computer system or computer network.

Although anomaly detection is commonly used in computer network security (Mohay, 2003), the same principles
may also be applied for electronic surveillance applications when monitoring suspected individuals for changes
in communication behaviour. In our e-mail traffic analyser system, the anomaly detection module is used to
detect possible changes in e-mail traffic communication behaviour for a list of suspected individuals. The e-mail
traffic analyser system firstly requires the user to select a list of suspect e-mail addresses from the e-mail system
being analysed, to specify which e-mail accounts will be monitored. The user then selects a historical period of
time or “profiling period” (e.g. a period of 1 year, starting at two years ago), which is used by the anomaly
detection module to build behaviour profiles for all suspects and record their “normal” communication
behaviour patterns. After normal behaviour profiles have been created and stored in the e-mail traffic database
(Figure 1), the user then selects a recent period of time or “surveillance period” (e.g. a period of 6 months,
ending on last week), which is used by the anomaly detection module to determine whether the recent behaviour
of the suspects has significantly deviated from their “normal” communication behaviour.

DEFINING E-MAIL TRAFFIC COMMUNICATION BEHAVIOUR MEASURES

Before changes in communication behaviour patterns can be detected, communication behaviour measures need
to be defined in order for the anomaly detection module to determine what kind of information will be used to
record a change in communication behaviour. Thus, it is necessary to define communication behaviour
measures, in order to describe particular aspects of an individual’s e-mail traffic communication behaviour and
to describe how that individual’s communication behaviour may have changed at different periods of time. In
this work, communication behaviour measures can be defined based on three sets of information taken from the
header segments of e-mail messages: the sender (the “from” field), the recipient/s (the “To”, “CC”, and “BCC”
fields), and the date/time that the message was sent (from the “date” field). Using these three basic sets of
information from the header component of e-mail messages (excluding the content of e-mail messages), the
following types of communication behaviour measures can be defined:



* E-mail Traffic Volume — based on a count of the number of e-mails generated by an individual per
hour, per day, per week, or per month, and sent to a particular contact. This provides information on
the traffic volume flow of e-mails generated by an individual and the rate at which messages are
being sent to particular contacts.

*Delays Between E-mails Sent (or “Sending Delays”) — based on a measure of the time delays
between each e-mail message sent by an individual. This provides information on expected delays
between each message sent by an individual to particular contacts.

*Replying Response Time (or “Replying Delays”) — based on a measure of the time it takes for an
individual to write a response e-mail to messages received from particular associates. This provides
information on how quickly an individual is expected to reply to particular associates.

After defining the above communication behaviour measures, a set of metrics can be computed to produce a
number that describes and summarises information about a particular communication behaviour measure. Each
metric computed will provide information about an aspect of the monitored individual’s communication
behaviour. The following set of metrics were defined to describe and summarise each of the above
communication behaviour measures, using statistical methods (Salkind, 2004, Gravetter and Wallnau, 2004,
Chatfield, 1996):

* Consistency of Weekly E-mail Traffic Volume — computes the autocorrelation of the weekly volume
of e-mails produced by an individual, to indicate how “consistent” or “reliable” an individual is with
the weekly volume of e-mail traffic sent to particular associates. The autocorrelation, r, produces a
number between —1.0 to +1.0 to indicate the relationship between each time-series point in the
weekly e-mail traffic volume data. This is computed using the autocorrelation formula from
(Chatfield, 1996):

N-1

Z (xt - )?(1) )(xt+1 - X(Z) )
1=

where X, ..., Xy, are a set of N observations,

5, ]S b -5 0
Xy X T Xy H

t=1

N-1
)_C(l) = sz /(N _1) , is the mean of the first N — 1 observations, and
=]
N
)?(2) = Z)Ct /(N —1) , is the mean of the last N — 1 observations.

1=
* Percentage of Weekly E-mail Traffic Volume — computes the average percentage of e-mails sent to
particular associates each week (e.g. 10% of e-mails per week to contact A, 40% per week to contact
B, 50% per week to contact C).

*Median of Sending Delays — computes the most commonly occurring time delays between e-mails
sent to a particular associate, by using the statistical median.

*Median of Replying Delays — computes the most commonly occurring response delay between e-
mails replied to a particular associate, by using the statistical median.

It should be noted that when analysing e-mail traffic, one could also analyse the flow of e-mail messages in
terms of the direction of the e-mail traffic (i.e. e-mail messages are either being sent or received by an
individual). By taking the direction of e-mail traffic into account, the original four sets of metrics described
above can be expanded into nine metrics, which summarises and describes an individual’s incoming or outgoing
e-mail traffic communication behaviour with each of their contacts. The diagram in Figure 2 shows the mapping
of the nine metrics in relation to the communication behaviour measures. Note that the metric titled “Median Of



Combined Replying Delays With Contacts” considers the most commonly occurring response delay for both
incoming and outgoing e-mail traffic, hence providing information about the speed of the send-response
interactions between the individual and a particular associate.

These nine metrics are being used to record information about the state of the suspected individual’s traffic
communication behaviour patterns for the anomaly detection module. Note that the above is not an exhaustive
list of all possible communication behaviour measures or metrics that can be extracted from e-mail header
information (i.e. sender, recipient, date/time information). The list defined above is the basic set of e-mail traffic
behaviour measures that we have chosen to focus upon for this work.

Other researchers working on similar or related e-mail surveillance applications have explored different types of
measures that can be extracted from sender, recipient, and date/time information. In the work by Stolfo et al.
(2003a, 2003b), they have taken a pattern-based or habit-based approach where they consider particular habits of
e-mail users, such as defining a measure for the time of day the user normally sends e-mails and a measure for
the frequency of communication with particular contacts (“recipient frequency”). Another approach considered
are ratio-based measures, where Jiang et al. (2005) defined measures such as: ratio of new addresses vs. former
addresses (measuring the rate that new e-mail addresses appear), ratio of new senders vs. former senders
(measuring the rate that new sending addresses appear), ratio of e-mails sent over time (measuring the volume of
e-mails sent). Additional e-mail traffic behavioural measures can be defined by using other header information
fields (Tanenbaum, 2003) such as texttHTML formatting of the e-mail, presence of attachments, or MIME file
attachment type (Martin et al., 2005).

Consistency of
Weekly E-mail

Median of

Traffic Volume Percentage of 5 ISencsiingt .
Received From Weekly E-mail elays Sent To .
Contacts Traffic Volume Contacts Median of

Sending Delays
Received From
Contacts

Received From
Contacts

Consistency of
Weekly E-mail
Traffic Volume
Sent To
Contacts

Sending

E-mail Traffic Delays

Volume

Percentage of
Weekly E-mail
Traffic Volume

Sent To Contacts

E-mail Traffic
Communication
Behaviour Measures

=
o
w
B

Replying
Delays

Median of

Replying Median of

Delays To Replying

Contacts Delays From
Contacts

Median of

Combined
Replying Delays
With Contacts




Figure 2: Mapping of the different patterns of behaviour that we are measuring from e-mail message headers.

ANALYSING FOR CHANGES IN COMMUNICATION BEHAVIOUR

After the nine metrics were defined, these were used to build “normal” behaviour profiles for each of the suspect
e-mail accounts during their profiling period. To build the normal behaviour profiles, each of the suspect’s
communication links with an associate is analysed and the nine metrics are computed for each communication
link, which are then stored as the suspect’s behaviour profile in the e-mail traffic database. Figure 3 shows how
the nine metrics are computed for each communication link with particular associates.

Suspect's e-mall aocount

Complie hine metrics for each
communication iink

Suspect's associatel/social confact
Figure 3: Diagram of how nine metrics are computed for each of the suspect’s communication links.

To detect a change in communication behaviour, the nine metrics are again computed for each of the suspect’s
communication links during the surveillance period and the recent communication behaviour measurements are
compared with the measurements from the profiling period. If the recent behaviour of any communication link
shows significant deviations from their previous communication behaviour patterns, then the user is alerted to
the presence of an abnormal change in behaviour. In addition to alerting the user about changes in
communication behaviour, the anomaly detection module also informs the user if there are new associates that
have appeared in the surveillance period, which were not present in the suspect’s “normal” behaviour profiling
period.

The work by (Jiang et al., 2005, Stolfo et al., 2003a, Stolfo et al., 2003b, Martin et al., 2005) focuses on
providing information on deviations in behaviour for each of the communication behaviour measures that they
record from e-mail users. However, the problem with their work is that they present the
user/administrator/analyst with a lot of information about each of their communication behaviour measures, but
do not summarise the e-mail accounts that exhibit the most deviation in communication behaviour. For the user,
all of the communication behaviour measures presented may be quite useful, but on first glance there is too
much information for them to determine which e-mail account is exhibiting the most deviation in communication
behaviour and maybe thus the most interesting. Summarising all of the suspect e-mail accounts’ change in
behaviour is important, because if the user is trying to analyse the data for a large number of e-mail accounts
(e.g. more than 10), which e-mail account should they pay attention to first? Which communication links should
receive first priority in the investigation?

COMBINING INFORMATION USING FUZZY INFERENCE TECHNIQUES

To summarise the changes in communication behaviour of suspect e-mail accounts, we investigate the use of
fuzzy inference techniques. Fuzzy inference is a technique that employs the use of a concept called fuzzy logic
(Zadeh, 1965). This is an artificial intelligence technique used to assist the computer to interpret vague or
uncertain terms. As humans, we often use vague terms to describe things that we observe in the world around us,
e.g. “the weather is hot”, “that man is tall”, “the danger risk is high”. Computers normally cannot understand
vague terms and must compute observations using crisp numbers, e.g. “the weather is 37.5°C”, “that man is 182
cm tall”, “the danger risk is 89%”. Fuzzy logic helps computers to interpret vague or uncertain terms in a similar
manner to the way humans do, through the use of fuzzy sets (Zadeh, 1965). Figure 4 provides an example of one

of the fuzzy sets used by the anomaly detection module.
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Figure 4: Example of a fuzzy set used by our anomaly detection module.

Fuzzy inference builds upon the use of fuzzy logic and fuzzy sets (Mamdani and Assilian, 1975, Negnevitsky,
2004), using fuzzy heuristic rules that encode knowledge using vague or uncertain terms. For example: “IF
temperature is hot, THEN air conditioner output is high”, “IF temperature is warm, THEN air conditioner output
is medium”. Fuzzy inference systems operate by processing input data that is crisp (e.g. 37.5°C), interpreting that
value by “fuzzifying” it (e.g. 37.5°C is a member of the term “hot”), applying the fuzzy rules to determine the
output (e.g. air conditioner output is high), then “defuzzifying” the output to produce a crisp number (e.g. air
condition output level = 90%). One of the advantages of fuzzy inference is that it is able to process data that
contains uncertain information and also has the ability to process input from several measurement sensors in
parallel. Fuzzy inference is often used in decision support systems (Turban and Aronson, 2001) to provide advice
on things that contain a level of uncertainty or risk, such as, for example, real estate evaluation (Bagnoli and
Smith, 1998). Figure 5 shows an example of one of the fuzzy inference systems used by our anomaly detection
module, which were designed using the MATLAB fuzzy toolbox (Mathworks, 2006).
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Figure 5: Example of a fuzzy inference system used by our anomaly detection module.

For the anomaly detection module, we use a hierarchy of several fuzzy inference systems, shown in Figure 6, to
combine the input measurements from the nine communication behaviour metrics, and output a recommendation
for the overall deviation in communication behaviour for each communication link (i.e. between the suspect and
an associate). The final output recommendation given by the fuzzy inference hierarchy produces a number in the
range of 0.0 to 1.0, where numbers close to 0.0 signify very little change in overall communication behaviour
and numbers close to 1.0 signify a very large change in overall communication behaviour. The output fuzzy sets
in Figure 7 shows how the output recommendation is interpreted by the fuzzy inference system before producing
a crisp output value. The case study in the next section demonstrates the use of the fuzzy inference hierarchy for
summarising the amount of communication behaviour change for a suspected individual’s communication links
and compares it to the use of the outputs produced using a standard threshold anomaly detection approach (Bace
and Mell, 2001).
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Figure 6: The fuzzy inference hierarchy used for the anomaly detection module, where each block is a fuzzy
inference system.
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communication behaviour.

CASE STUDY - THE ENRON E-MAIL CORPUS

The e-mail data used for the case study is the Enron e-mail corpus. When the company Enron was investigated
for fraudulent accounting practices in the United States in 2002, the Federal Energy Regulatory Commission
(FERC) publicly released a corpus of e-mails belonging to some of the Enron employees (Diesner et al., 2005).
There are currently several versions of the Enron e-mail corpus data that are based on the original e-mail corpus,
which are available for researchers to use. A raw form of the e-mail data is provided by Cohen (2004) and other
versions of the data based on Cohen’s version are provided by (Fiore and Heer, 2005, Shetty and Adibi, 2005). A



summary of how the Enron e-mail data was processed by several researchers is described by Diesner et al.
(2005).

The version of the Enron e-mail dataset used for this case study is the “ISI” Enron e-mail dataset made available
by Shetty and Adibi (2005). The ISI Enron e-mail dataset contains the e-mail data from the mailboxes of 151
Enron employees, and contains 252,759 e-mail messages. This particular dataset was chosen because it is already
formatted for MySQL databases, has documentation on how the data was cleaned, and the structure of the
database is suitable for our research work. The ISI Enron e-mail dataset set was filtered into our e-mail traffic
database by extracting only the sender, recipient, and date/time information, and ignoring other information not
used in our work, such as the content of e-mail messages. The data was also filtered so that messages sent to
multiple recipients were considered as separate messages sent to multiple recipients at the same time. The reason
for this filtering choice is to enable the communication links to be analysed individually by the e-mail traffic
analyser system. After filtering the Enron e-mail traffic data into the e-mail traffic database, the data was further
processed to store database information about the sending delays between each e-mail sent and the replying
delays for response times to received messages. A simple statistical analysis of the Enron e-mail data showed that
there were 75,547 unique e-mail addresses in the e-mail data, 2,042,442 messages were sent (after considering
multiple recipients as separate e-mails), and most of the e-mail messages sent (2,063,748 or 99.966% of
messages) were between 1999 to the end of 2002.

Selecting A Suspect To Analyse

There were a number of key people associated with the Enron financial crisis in 2001 who were considered for
analysis. A list of people associated with setting up the fraudulent financial records were given by Fusaro and
Miller (2002), some of whom were also part of senior management in Enron. Out of the list of people
considered, only a few of them had their full e-mail traffic information collected as part of the sample taken from
the 151 former Enron employees. Based on these considerations, the person selected for this case study was
Jeffrey Skilling.

Skilling first joined Enron in 1990 as the chief executive to be in charge of developing Enron’s trading services,
became CEO of Enron in February 2001, then unexpectedly resigned as CEO on 14™ August 2001 for “personal
reasons”. The reason for selecting Jeffrey Skilling is that he was a key person involved in transforming Enron
from a traditional gas-line operator to a “new-economy” trading company in the 1990’s (Fusaro and Miller,
2002). He also had a short 6-month run as CEO of Enron before resigning in August 2001, and most of his
mailbox information is available as part of the Enron e-mail dataset.

Before analysing Jeffrey Skilling’s e-mail traffic, it had to be determined which out of the 75,547 unique e-mail
addresses belonged to Jeffrey Skilling. To find Jeffrey Skilling’s e-mail addresses, a wildcard database search
was performed for possible e-mail addresses matching “j%skilli%” and “skilli%”, where “%” is the wildcard
character for the search. The results of this search returned 15 possible matching e-mail addresses, shown in
Table 1.

Table 1: A listing of e-mail addresses possibly belonging to Jeffrey Skilling.

Possible Matching E-mail Addresses for Jeffrey Skilling

‘jeff.skilling @enron.com', 'jeffrey.k.skilling @enron.com', 'jeffrey.skilling @enron.com',
‘jeffreyskilling @yahoo.com', 'jeffrey_skilling @enron.com', 'jeff_skilling @ enron.com',
'jskilli.enron @enron.com', 'jskilli @ei.enron.com', 'jskilli @enron.com', 'jskilling @ enron.com',

'skilli@ei.enron.com', 'skilli@enron.com', 'skilling @enron.com', 'skilling @tribune.com',

'skillingj @enron.com'

Profiling the Suspect’s Normal Behaviour Patterns

The Enron e-mail dataset mainly covers a time-span from 1999 to end of 2002 with the exception of outlier
messages dated at years such as 0001 and 2044, which were excluded from the analysis. During the 1999 — 2002



time-span, there were a number of key events that occurred, ending with the company’s declaration of
bankruptcy in December 2001 (Fusaro and Miller, 2002, Fox, 2003). Based on the knowledge of when these key
events occurred, the normal behaviour profiling period was selected from 1% January 1999 to 1% August 2000.
This period of time was selected because it was before Enron faced its 2001 financial crisis, the period ends at
about 6 months before Jeffrey Skilling becomes CEO of Enron in February 2001, and it was before a change in
organisational structure resulting from Jeffrey Skilling becoming CEO. Figure 8 shows a diagram of Jeffrey
Skilling’s e-mail addresses and the people communicating with those addresses during the profiling period,
visualised using GUESS (Adar, 2006).

Detection of Abnormal Changes in Behaviour

To detect abnormal changes in Jeffrey Skilling’s communication behaviour, the surveillance period selected for
analysis was 1* February 2001 to 1¥ September 2001, which was the period of time when Jeffrey Skilling became
CEO of Enron in Feburary 2001 and also resigned as CEO in August 2001. A diagram of Jeffrey Skilling’s e-
mail addresses and his associates during the surveillance period is shown in Figure 9. The anomaly detection
module detected, using standard threshold anomaly detection techniques, a series of alerts for some of the nine
communication behaviour metrics and also detected the appearance of new associate e-mail addresses, shown in
Table 2. This table shows what alerts were generated when the changes in behaviour were analysed separately for
each of the communication behaviour metrics.

Using the same surveillance period, the fuzzy inference anomaly detection technique was used to analyse Jeffrey
Skilling’s e-mail traffic data and the alerts generated from this are shown in Table 3. The results in Table 3
shows how the alerts are presented to the user when the measurements from all of the communication behaviour
metrics are combined, to produce an abnormality rating for each of the suspects’ communication links. Each of
the results is sorted in descending order according to the abnormality rating.

The alert results shown in Table 3, show that when the interaction between jeff.skilling@enron.com and
rosalee.fleming @enron.com was investigated, they had an abnormality rating of 0.092071181977. This uncovered
not much change in behaviour during the surveillance period. The time series visualisation provided by
TimeSearcher 2 (Aris et al., 2005) in Figure 10, confirms that there was not much deviation in communication
between Jeffrey Skilling and Rosalee Fleming, despite the spike in e-mail traffic that was outside of the profiling
and surveillance period. An analysis of the interaction between jeff.skilling@enron.com and
steven.kean@enron.com, which had an abnormality rating of 0.5, uncovered a reasonable change in
communication behaviour during the surveillance period. Figure 11 shows increase in e-mail traffic activity from
Steven Kean to Jeffrey Skilling, suggesting there might have been a change in relationship during the
surveillance period. According to the organisational role spreadsheet provided by Shetty and Adibi (2005),
Steven Kean was actually the Vice President and Chief of Staff at Enron, which might have explained why he
had more communication with Jeffrey Skilling after he became CEO in February 2001.
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Figure 9: Jeffrey Skilling’s circle of associates from I February 2001 to 1" September 2001 (7 months).

Table 2: Listing of alerts generated using the standard threshold anomaly detection technique for the anomaly
detection module (note: individual communication link details aren’t shown in the table).

E-mail Account Types of Alert - Number of Alerts Generated

‘jeff.skilling @enron.com’ AppearanceNewContacts — 763; CombinedSpeedOfReplies — 5;
SendingDelaysFromContacts — 17; SendingDelaysToContacts — 502;
SpeedOfRepliesFromContacts — 3; SpeedOfRepliesToContacts — 4;
WeeklyConsistEmailsReceived — 2; WeeklyConsistEmailsSent — 8;
WeeklyPercentEmailsReceived — 3;

‘jeffrey.k.skilling @enron.com’' | NO ALERTS

‘jeffrey.skilling@enron.com' | AppearanceNewContacts — 2; SendingDelaysFromContacts — 1;
WeeklyConsistEmailsReceived — 4;

‘jeffreyskilling @yahoo.com’ | NO ALERTS

ljeffrey_skilling@enron.com' | AppearanceNewContacts — 1; WeeklyConsistEmailsReceived — 1;

‘jeff_skilling @enron.com’ AppearanceNewContacts — 6; WeeklyConsistEmailsReceived — §;

‘jskilli.enron @enron.com’ AppearanceNewContacts — 1; WeeklyConsistEmailsReceived — 1;

'iskilli @ei.enron.com’ AppearanceNewContacts — 4; SendingDelaysFromContacts — 1;
WeeklyConsistEmailsReceived — 3;

'jiskilli@enron.com' AppearanceNewContacts — 21; SendingDelaysFromContacts — 1;
WeeklyConsistEmailsReceived — 1; WeeklyPercentEmailsReceived - 1

‘iskilling @enron.com'’ AppearanceNewContacts — 1; WeeklyConsistEmailsReceived — 1;
'skilli @ei.enron.com’ AppearanceNewContacts — 1; WeeklyConsistEmailsReceived — 1;
'skilli@enron.com’ AppearanceNewContacts — 3; SendingDelaysFromContacts — 1;

WeeklyConsistEmailsReceived — 3;

'skilling @enron.com’ AppearanceNewContacts — 3; WeeklyConsistEmailsReceived — 2;
WeeklyConsistEmailsSent — 1;

'skilling @tribune.com' AppearanceNewContacts — 1; SendingDelaysFromContacts — 1;
WeeklyConsistEmailsReceived — 1;

'skillingj @enron.com’ AppearanceNewContacts — 1; WeeklyConsistEmailsReceived — 1;

Table 3: Listing of rated alerts generated using fuzzy inference for the anomaly detection module.

E-mail Account Associate E-mail Address Abnormality Rating

Jjeff.skilling @enron.com steven.kean @ enron.com 0.5

Jjskilli@enron.com markskilling @ hotmail.com 0.5
Jjeff.skilling @enron.com karen.denne @enron.com 0.3
Jjeff-skilling @enron.com kelly.johnson @enron.com 0.3
Jjeff.skilling @enron.com liz.taylor @enron.com 0.3
Jjeff.skilling @enron.com markskilling @ hotmail.com 0.3
Jjeff.skilling @enron.com wilson.kriegel @ enron.com 0.3




Jjeff.skilling @enron.com

chris.abel@enron.com

0.113355289747

Jjeff-skilling @enron.com rosalee.fleming @enron.com 0.092071181977
Jjeff.skilling @enron.com aahanch@enron.com 0.091424688331
Jjeff-skilling @enron.com aalkhay@enron.com 0.091424688331

[514 more e-mail addresses...]

[514 more e-mail addresses...]

[514 more abnormality ratings of
0.091424688331 or less...]
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Figure 10: The weekly time series e-mail traffic of Jeffrey Skilling and Rosalee Fleming, focusing on the
surveillance period from I" February 2001 (week 108) to I" September 2001 (week 138).
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Figure 11: The weekly time series e-mail traffic of Jeffrey Skilling and Steven Kean, focusing on the surveillance
period from 1" February 2001 (week 108) to 1* September 2001 (week 138).

DISCUSSION

The case study shows that fusing together different communication behaviour measurements with fuzzy
inference and presenting the results as abnormality rankings, helps to summarise the degree of overall changes in
communication behaviour for suspect e-mail accounts. In addition, the fuzzy inference results also helped to
prioritise which e-mail communication links were exhibiting the most abnormal changes in behaviour. The use
of visualisation in Figures 10 and 11 helped to verify these abnormal changes in communication behaviour. The
case study showed that fuzzy inference makes it easier to interpret the e-mail traffic anomaly detection results, in
comparison to presenting individual types of anomaly detection results separately.

Although fuzzy inference helps to summarise the e-mail traffic anomaly detection results, one of the drawbacks
with using fuzzy inference is that a fuzzy inference system is complex to design, and it takes a great deal of
effort to build and fine-tune its performance. It is often said that: “improving the system becomes rather an art
than engineering” (Negnevitsky, 2004), meaning that it often takes some trial & error and experience to
determine if the system is performing the way it is expected. Another drawback with our use of fuzzy inference
was that the design of the fuzzy rules and fuzzy sets were manually constructed, based on one of the author’s
current empirical knowledge of e-mail traffic. However, there are ways of automating some of the design process
when developing fuzzy inference systems. An example of this is where (Dickerson et al., 2001) used a fuzzy C-
means algorithm (Bezdek, 1981) to automate the part of the process of designing the fuzzy sets for their network
intrusion detection system.

Since this work is research in progress, one of the things to note for further work is that the fuzzy inference
hierarchy shown in Figure 6 illustrates only one of the possible groupings for combining the inputs for fuzzy
inference. This may not necessarily be the best possible grouping, so other input combinations will need to be
tested to see if they affect the results given by the fuzzy inference hierarchy. Other issues that will need to be
considered in our further work is the duration of time required to profile and observe the suspect’s change in
behaviour, and whether or not the suspect’s behaviour should be updated periodically since it may change
gradually over time?



CONCLUSION

We have shown how using fuzzy inference techniques may make the e-mail traffic anomaly detection results
easier for the user/analyst to interpret, through ranking the degree of abnormality for different communication
links between the suspect and their associates. Most approaches shown by other researchers, focus on presenting
the user a whole selection of information on different communication behaviour measures, but do not provide a
ranking for the user/analyst to decide which e-mail addresses or communication links receives higher priority in
the investigation of anomalous behaviour. The advantage of fusing together information from different
communication behaviour measures to perform e-mail traffic anomaly detection, and investigating a person’s
traffic communication behaviour from the Enron e-mail corpus was also shown. Future work will involve
comparing the results from the analysis of our simulated e-mail data and real e-mail data, investigating the use of
different input grouping combinations for the fuzzy inference hierarchy, and investigating different time
durations for the profiling and surveillance of the e-mail user’s traffic behaviour.
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