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A B S T R A C T

Background aim:Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury.
However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent
therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette
transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation.
Methods: The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion
and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to gener-
ate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal prod-
uct (ATMP). This product has been approved by the German competent regulatory authority to be tested in a
clinical trial to treat therapy-resistant chronic venous ulcers.
Results: As of now, 12 wounds in nine patients have been treated with 5 £ 105 autologous ABCB5+ MSCs per cm2

wound area, eliciting a median wound size reduction of 63% (range, 32�100%) at 12 weeks and early relief of pain.
Conclusions: The authors describe here their GMP- and European Pharmacopoeia-compliant production and
quality control process, report on a pre-clinical dose selection study and present the first in-human results.
Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clini-
cally relevant wound closure strategy for patients with chronic therapy-resistant wounds.
© 2020 International Society for Cell & Gene Therapy. Published by Elsevier Inc. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Mesenchymal stromal cells (MSCs) are currently the most com-
monly used non-hematopoietic adult stem cells in regenerative
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medicine research, providing attractive advantages over other stem
cell types. MSCs can be relatively easily isolated from human tissues
and expanded ex vivo. They can modify the host’s immune environ-
ment, secrete trophic factors and exhibit a certain trans-differentia-
tion potential [1]. MSCs are being investigated for the treatment of
numerous inflammatory, degenerative and autoimmune diseases
[2�10]. In general, MSC-based therapies have appeared feasible, ben-
eficial and safe. Among more than 1400 patients treated in clinical
trials with adipose-derived MSCs, very few treatment-related
adverse events have been reported [11].

For most potential clinical indications, ex vivo cell expansion is
required to produce sufficient and scalable cell numbers. However,
MSC expansion poses several challenges. Prolonged culture can result
in various changes, including morphological abnormalities, attenu-
ated expression of specific surface markers, reduced proliferation,
replicative senescence and shifting differentiation potential [12].
Gene expression signatures and functionality can be considerably
altered by parameters such as media supplements, culture conditions
or culture duration [13]. Since both therapeutic success and patient
safety will strongly depend on reliable quality and homogeneity of
the expanded cells, the establishment of validated, continuously con-
trolled procedures that comply with the principles of Good
Manufacturing Practice (GMP) for safe and reproducible isolation and
expansion of MSCs at a clinical-grade level is crucial [14].

The adenosine triphosphate-binding cassette transporter ABCB5 [15]
specifically marks a dermal immunomodulatory MSC subpopulation
[16,17]. Skin-derived ABCB5+ MSCs express the minimal set of mesen-
chymal lineage markers [18] CD90, CD105 and CD73, while lacking
hematopoietic lineage markers CD34, CD14, CD20 and CD45, and show
significantly increased adipogenic, osteogenic and chondrogenic differ-
entiation potential compared with donor-matched ABCB5� fibroblasts
or bone marrow-derived MSCs [19]. Similar to adipose tissue-derived
MSCs, ABCB5+ MSCs suppress reactive oxygen species release and extra-
cellular trap formation from activated human peripheral neutrophils
[17]. In a mouse model of chronic wounds, ABCB5+ MSCs improved
wound healing via IL-1RA-mediated shift of prevailing pro-inflammatory
M1 macrophages toward the anti-inflammatory M2 subtype [19].
Against the background of substantial patient burden and socioeconomic
impact caused by chronic wounds [20,21], ABCB5+ MSCs represent a
promising candidate for cell-based wound therapy.

This stimulated the authors to develop a validated manufacturing
process to expand, isolate and manufacture human dermal ABCB5+

MSCs as an advanced therapy medicinal product (ATMP). Recently,
the authors presented our pre-clinical in vivo data demonstrating the
local and systemic safety and tolerability of our product [22]. Here
the authors describe our GMP- and European Pharmacopoeia-com-
pliant production and quality control process. Enrichment of ABCB5+

MSCs, which constitute only about 2.5% of the total dermal cell popu-
lation [19], is achieved in a three-step process involving (i) plastic
adherence selection, (ii) culture in a highly efficient MSC-selecting
medium and (iii) isolation of the ABCB5+ cells using antibody-based
magnetic cell sorting. Furthermore, the authors report on a pre-clini-
cal dose selection study and present the first in-human results in
therapy-resistant chronic venous ulcers (CVUs).

Methods

Tissue procurement and processing

Skin sampling occurred in accordance with the German Act on Organ
and Tissue Donation, Removal and Transplantation (Transplantationsge-
setz). After obtaining written informed donor consent, an elliptical
~3 £ 1.5 cm2 excisional skin biopsy was taken from behind the ear.
Donors whowere serologically positive for HIV1/2 or had active hepatitis
B virus, hepatitis C virus or active syphilis (Clinical Laboratory Improve-
ment Amendments-positive/Treponema pallidum antibodies �1:80/

fluorescent treponemal antibody IgM/rapid plasma reagin) were
excluded. The manufacturing process took place in a European Union
GMP grade B clean room facility under laminar air flow (A in B). Biopsy
tissue was disinfected using povidone-iodine solution (Braunol and
Braunoderm; B. Braun, Melsungen, Germany), washed, dissected and
subjected to two-step enzymatic digestion using collagenase (Collage-
nase NB 6 GMP Grade; Nordmark, Uetersen, Germany), followed by
non-animal recombinant trypsin (TrypZean; Sigma-Aldrich, Taufkirchen,
Germany). Following filtration and washing/centrifugation, pellets were
resuspended in a stem cell-favoring medium.

Cell expansion and isolation

Cells were cultured as unsegregated cell cultures in a stem cell-
favoring medium (Ham’s F-10 supplemented with fetal calf serum, L-
glutamine, fibroblast growth factor 2, HEPES, hydrocortisone, insulin,
glucose and phorbol 12-myristate 13-acetate) at 37°C, 3.1% carbon
dioxide (CO2) and 90% humidity. During the first 4�6 days of culture,
the medium contained penicillin/streptomycin and amphotericin B.
Medium was changed at regular intervals to facilitate depletion of
non-adherent cells from the culture. Cells were expanded by serial
passaging from a C6 well via T25 and T75 flasks to T175 flasks (see
supplementary Figure 1). When �70% confluency was reached, cells
were harvested using non-animal recombinant trypsin and transferred
to the next larger vessel. After seven passages, ABCB5+ MSCs were iso-
lated using magnetic beads (micromer TC1 epoxy; Micromod, Rostock,
Germany) coated with a mouse anti-human monoclonal antibody
directed against sequence 493�508 (RFGAYLIQAGRMTPEG) of ABCB5
extracellular loop three [15] (antibody bulk production: Maine Bio-
technology Services, Portland, ME, USA; antibody GMP purification:
Bibitec, Bielefeld, Germany; virus depletion and safety evaluation of
the antibody according to [23]: Charles River, Erkrath, Germany). After
enzymatic (TrypZean) detachment of the beads from the cell surface, the
isolated ABCB5+ MSCs were cryopreserved in CryoStor CS10 freeze
medium (BioLife Solutions, Bothell, WA, USA) and stored in the vapor
phase of liquid nitrogen. The manufacturing process allowed for multiple
successive isolation cycles after further subcultivation (up to 16 passages
in total). Several in-process controls and release criteria monitored and
confirmed the quality of the cell cultures and the isolated cells for each
isolated cell batch (see supplementary Figure 1).

Real-time quantitative polymerase chain reaction

For detection of Cdkn1a expression (forward, AAGACCATGTG-
GACCTGTCA, reverse, TTAGGGCTTCCTCTTGGAGA), RNA was purified
using the RNeasy mini kit (Qiagen, Hilden, Germany) and reverse
transcribed with the Applied Biosystems high-capacity complemen-
tary DNA reverse transcription kit (Thermo Fisher Scientific). Poly-
merase chain reaction (PCR) was performed using the Applied
Biosystems Power SYBR Green PCR master mix (Thermo Fisher Scien-
tific) in a standard program running in an Applied Biosystems Ste-
pOne cycler (Thermo Fisher Scientific). Reactions were repeated in
triplicate. Integrity of the amplified products was confirmed by melt-
ing curve analysis. Efficiency was measured using serial dilution of
complementary DNA. Glyceraldehyde 3-phosphate dehydrogenase
served as endogenous control. Quantitation of transcript relative to
the calibrator was based on a 2�DDCT algorithm.

Cell cycle analysis

Cells (2 £ 106) were harvested and fixed with ice-cold 70% (v/v) eth-
anol (added dropwise while vortexing) for at least 30 min at 4°C. After
washing in 0.02% ethylenediaminetetraacetic acid, cells were resus-
pended in RNase A (Thermo Fisher Scientific) and propidium iodide solu-
tion and measured flow cytometrically (BD Accuri C6; BD Biosciences,
Heidelberg, Germany) using standard gating strategies.
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Estimation of cumulative population doubling and division rate

For each passage, cell divisions per passage were calculated as
n = [logN�logN0]/log2 where N is the cell number at harvest and N0

the cell number at seeding. Cumulative population doubling (CPD)
was calculated by adding the number of cell divisions for each pas-
sage to the sum of the population doubling values of the previous
passages. To calculate the division rate, the number of cell divisions
per passage was divided by the interval between two passages.

Karyotyping

Karyotyping by G-bands by trypsin using Giemsa banding was
performed by an academic contract laboratory. In total, 54 samples
from different donors and cell passages were analyzed visually, cov-
ering about 350�400 bands in 26�32 metaphases.

Gene expression analysis

Total RNA was isolated using an RNeasy kit (Qiagen, Hilden, Ger-
many). Gene expression was analyzed by a specialized laboratory ser-
vice provider using validated microarray technology (human gene
expression 8 £ 60K microarray; Agilent Technologies, Santa Clara,
CA, USA). Quality and integrity of the total RNA was evaluated using
the 2100 Bioanalyzer (Agilent Technologies).

Microarrays were performed on samples from four various pas-
sages (out of passages seven to 16) per donor for eight donors. Within
each donor, data sets were quantile-normalized and the sets from the
three higher passages then compared with the lowest passage. From
each of these between passage combinations the median gene ratio
(including all genes with an average signal >20 and at least 2-fold
differential regulation, i.e., log2 <�1 or >1) was determined. These
values were used to determine the median gene ratio for each delta
passage value (i.e., passage number difference) for all donors.

Batch analyses

Batch analyses followed validated GMP-compliant procedures
according (where applicable) to the requirements of the European
Pharmacopoeia (Table 1).

Microbiological examination

Microbiological examination was performed by a certified aca-
demic contract laboratory. Cell suspension samples were diluted in
sodium chloride peptone buffer, inoculated in BacT/ALERT BPN
(anaerobic) and BacT/ALERT BPA (aerobic) culture bottles

(bioM�erieux, N€urtingen, Germany), respectively, and incubated in
the BacT/ALERT 3D60 (bioM�erieux) microbial detection system.
After 7 days of incubation, all negative samples were seeded onto
solid culture medium.

Mycoplasma testing

Cell suspension samples were spiked with internal control DNA
and genomic DNA isolated using the Microsart anchored multiplex
PCR extraction kit. Isolated DNA was subjected to quantitative PCR,
including positive and negative controls (Microsart ATMP Myco-
plasma kit), an internal isolation control and 10 colony-forming unit
sensitivity standards for Mycoplasma orale, M. fermentans and
M. pneumoniae (Minerva Biolabs, Berlin, Germany).

Endotoxin testing

After cell isolation, separation from the antibody-conjugated
beads and centrifugation, supernatant was diluted 1:10 with Endo-
safe (Charles River, Charleston, SC, USA) limulus amebocyte lysate
reagent water and transferred into an Endosafe PTS cartridge
(0.05 EU/mL), which was loaded into an Endosafe PTS reader.

Determination of cell count and vitality

Propidium iodide solution (1 mg/mL) was added to cell suspen-
sion samples to stain dead cells. Measurement was performed flow
cytometrically (BD Accuri C6) and cell count and vitality calculated.

Determination of viability, CD90 expression and bead residues

Cell suspension samples were incubated with calcein acetoxymethyl
ester (to stain metabolically active cells) and an Alexa Fluor 647-conju-
gated anti-human CD90 antibody (BioLegend, London, UK). Fluorescence
was measured flow cytometrically (BD Accuri C6) and viability and con-
tent of CD90+ cells calculated. Using cell-free ABCB5 antibody-conjugated
bead solution, a gate for detection of potential microbead residues was
defined in the forward scatter/side scatter dot plot, and calcein-negative
events in that gate were used to calculate residual beads.

Determination of ABCB5+ cell content

After isolation, but before enzymatic detachment of the microbe-
ads (which leads to loss of ABCB5 from the cell surface), the ABCB5+

cell content was determined after incubation with an Alexa Fluor
647-coupled donkey anti-mouse secondary antibody (Thermo Fisher
Scientific) targeting the anti-ABCB5 antibody used for cell isolation.

Table 1
Specifications and results from routine batch analysis.

Parameter n Test method Specification Results

Microbiological control 155 BacT/ALERT system (adapted to 2.6.27 Ph. Eur.) No growth No growth in 99.35% of samples analyzed
Mycoplasma 155 Nucleic acid test-based assay (2.6.7 Ph. Eur.) Not detectable (<10 CFU/mL) Not detectable in 100% of samples analyzed
Endotoxin level 155 Limulus amebocyte lysate test (2.6.14 Ph. Eur.) �2 EU/mL �2 EU/mL in 100% of samples analyzed
Cell count 155 Flow cytometry (2.7.29 Ph. Eur.) 2.5 £ 106 to 25 £ 106 cells per cryovial Within specified range
Cell vitality 155 Flow cytometry (2.7.29 Ph. Eur.) �75% 98.27% § 1.01%a

Cell viability 155 Flow cytometry (2.7.29 Ph. Eur.) �90% 99.1% § 1.1%a

CD90 expression 155 Flow cytometry �90% CD90+ cells 98.48% § 3.3%a

Bead residues 155 Flow cytometry �0.5% 0.03% § 0.03%a

ABCB5+ cell content 155 Flow cytometry �90% 94.61% § 2.1%a

Angiogenic differentiation 155 Tube formation assay Capillary structure formation Capillary structure formation in 100% of samples
analyzed

IL-1RA secretion 75b ELISA >125 pg/mL >125 pg/mL in 99.7% of samples analyzed

CFU, colony-forming units; ELISA, enzyme-linked immunosorbent assay; EU, endotoxin units; Ph. Eur., European Pharmacopoeia.
a Values are mean § standard deviation.
b Historically, the IL-1RA secretion assay was implemented in the authors’ regular test matrix at a later date, which is the reason for the lower sample number.

A. Kerstan et al. / Cytotherapy 23 (2021) 165�175 167



To allow for discrimination between ABCB5+ cells and free bead-anti-
body complexes, calcein acetoxymethyl ester was added to the cell
suspension before incubation. Fluorescence was measured flow cyto-
metrically (BD Accuri C6). By gating only events with high calcein
fluorescence (indicative of viable cells), unbound bead-antibody com-
plexes were excluded from the ABCB5+ cell calculation.

Tube formation assay

ABCB5+ MSCs were seeded in stem cell medium in a well of a 24-
well plate coated with Geltrex basement membrane matrix (Thermo
Fisher Scientific) and incubated for 19�22 h at 37°C and 3.1% CO2.
Tube structures were photographed using an inverted microscope
(DM IL light-emitting diode; Leica, Wetzlar, Germany) equipped with
a digital camera (DFC320; Leica) at £40 magnification and the photo-
graphs qualitatively analyzed per visual inspection for signs of capil-
lary structure formation. Human umbilical vein endothelial cells
(Thermo Fisher Scientific) and human skin melanoma cells (SK-MEL-
28; American Type Culture Collection, Manassas, VA, USA) served as
positive and negative controls, respectively.

IL-1RA secretion assay

Human monocytic (THP-1) cells (LGC Standards; Wesel, Germany)
were differentiated to macrophages by incubation in differentiation
medium containing 150 nmol/mL phorbol 12-myristate 13-acetate for
48 h at 37°C and 5% CO2. In two wells of a 24-well plate,
1 £ 105 macrophages were co-cultivated with 2 £ 104 ABCB5+ MSCs.
In one of the two wells, M1 polarization was achieved by stimulation
by adding 50 IU/mL interferon g (Imukin; Boehringer, Ingelheim, Ger-
many) at the start of the co-cultivation and 50 IU/mL interferon g and
20 ng/mL lipopolysaccharides from Escherichia coli O111:B4 (Sigma-
Aldrich) after 24 h. After 48 h, supernatants were collected and ana-
lyzed for IL-1RA using a colorimetric sandwich enzyme-linked immu-
nosorbent assay kit (Quantikine; R&D Systems, Abingdon, UK).

Dose selection study

Wound healing model
Animal experiments were performed by a specialized contract

research organization, meeting the animal protection requirements
defined in EU Directive 2010/63/EU [24] and the German Animal Pro-
tection Act. The experimental design was approved by the competent
local authority (AZ 55.2-1-54-2532.2-33-13; Regierung Oberbayern,
Germany).

Forty-six female NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ (NSG) mice
(Charles River Wiga, Sulzfeld, Germany) were injected with 200 mg/kg
metamizole for peri-surgery pain relief and anesthetized by isoflurane
inhalation to receive two circular dermoepidermal full-thickness
wounds set paravertebrally on their backs using a 10-mm biopsy
punch. Next, 1.875 £ 105 (low dose), 3.75 £ 105 (low to mid dose),
7.5 £ 105 (mid to high dose) or 1.5 £ 106 (high dose) human skin-
derived ABCB5+ MSCs (pooled from seven donors) suspended in 40mL
vehicle (lactated Ringer’s solution containing 2.5% human serum albu-
min and 0.4% glucose) were dropped on both wounds (n = 10 mice
each). As control, six mice received 40 mL vehicle per wound. Wounds
were covered with Tegaderm film dressing (3M, Neuss, Germany) and
additionally secured using an elastic adhesive bandage and Leukoplast.
For pain relief, mice received 1 mg/kg meloxicam subcutaneously
before and up to 3 days after wound setting.

Animals were followed up for 13 days. The wound healing process
was documented by standardized photography using an EOS 450D
digital camera (Canon) and ImageJ 1.47 processing and analysis soft-
ware (National Institutes of Health, Bethesda, MD, USA). Thereafter,
animals were killed by CO2 inhalation and wounds macroscopically
evaluated. After fixation in neutral buffered formaldehyde (4%),

wounds were embedded in Paraplast for histopathological and
immunohistochemical examination.

Histopathology
Hematoxylin and eosin-stained slides were histologically evalu-

ated for wound contraction, neovascularization, collagen deposition,
fibroblast proliferation, granulation tissue formation, inflammatory
cells, re-epithelialization, necrosis, fibrinogen deposition and hemor-
rhage. Observations were quantified as grade 1 (minimal), grade 2
(slight), grade 3 (moderate), grade 4 (marked) and grade 5 (massive).
Data were recorded and analyzed using PathData 10.1 (Pathology
Data Systems, Pratteln, Switzerland).

Immunohistochemistry
Paraffin-embedded sections were immunohistochemically stained

using rabbit anti-human/mouse CD31 at 1:50 (ab28364; Abcam), rab-
bit anti-human CD31 at 1:50 (IHC-00055; Bethyl, Montgomery, TX,
USA) and rabbit anti-human/mouse cytokeratin 14 at 1:1000 (PRB-
155P; Covance/BioLegend), respectively, following validated multistep
labeling protocols. In a prior protocol validation study, the anti-human
CD31 primary antibody did not cross-react with mouse tissue, and
negative control tissues (using the same protocol without the primary
antibodies) did not give any positive signal in human or mouse skin
sections. Dako EnVision-HRP rabbit/3,30-diaminobenzidine (Agilent
Technologies) was used as a detection system. For positive control,
human and NSG mouse skin sections were stained for each marker.
Sections were evaluated using a DMR microscope (Leica) equipped
with an Axiocam digital color camera with AxioVision 4.0 software
(Carl Zeiss, Jena, Germany). Positivity was quantified as no (�), slight
(1+), moderate (2+), strong (3+) and intense (4+).

Statistics
Kruskal-Wallis test was performed, followed by Dunn’s multiple

comparisons, to compare the mean values between treatment
groups. P < 0.05 was considered statistically significant.

Clinical trial

First in-human data were collected in an ongoing phase 1/2a clini-
cal trial (NCT02742844) evaluating the efficacy and safety of autolo-
gous in vitro-expanded ABCB5+ MSCs for treatment of conventionally
incurable CVUs. The protocol and all relevant documents were
approved by the local ethics committee at the University of
W€urzburg, Germany (164/15_ff), and the competent German regula-
tory authority, Paul Ehrlich Institute, Langen, Germany (2527/01). All
patients gave written informed consent to participate in the trial.

Adult patients were eligible if they presented with a leg CVU
(5�50 cm2), defined as a therapy-resistant leg ulcer that had failed to
improve within 3 months or heal within 12 months of optimal phlebo-
logical treatment, diagnosed by Doppler ultrasonography, ankle-brachial
index (0.9�1.3) and physical and dermatological examination. Exclusion
criteria were ulcers extending to the underlying muscle, tendon or bone;
diabetes mellitus (hemoglobin A1c >7.5%); peripheral artery disease
requiring treatment; acute or untreated deep vein thrombosis; ulcer
infection; skin disorders or (pre-)cancerous lesions adjacent to the ulcer.

ABCB5+ MSCs were derived from a patient’s skin biopsy and
expanded as described earlier over 6�20 weeks, depending on the
number of subcultivation and ABCB5+ cell isolation cycles required to
produce the quantity of cells demanded (as defined by the patient’s
wound size). Patients whose CVU enlarged >25% or diminished >50%
during this period were excluded from efficacy (but not safety) evalu-
ation, ensuring that only those ulcers that had been arrested in a
chronic state were evaluated. On the day of treatment (day 0), the
wound was debrided under local anesthesia, a suspension containing
1 £ 107 ABCB5+ MSCs per 1 mL vehicle dropped onto the wound sur-
face to supply 5 £ 105 cells per cm2 wound area and the wound
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covered with Tegaderm film dressing. Between day 1 and day 3, the
Tegaderm dressing was replaced with a foam dressing—Mepilex
(M€olnlycke, D€usseldorf, Germany) or Biatain (Coloplast, Hamburg,
Germany)—which was used until week 12. In addition, patients
received standard compression dressings. Patients presenting with
more than one ulcer were offered to have the other wounds (defined
as non-target ulcers) treated, depending on whether therapy of the
target ulcer appeared efficacious and safe.

Wound healing was documented by standardized photography
(Surface Pro 3 tablet; Microsoft Corporation, Redmond, WA, USA)
using PictZar planimetry software (BioVisual Technologies, Elmwood
Park, NJ, USA). Primary efficacy endpoint was the percentage of
wound size reduction at week 12. Main secondary efficacy endpoints
were quantitative and qualitative wound parameters and pain score

per visual analog scale (ranging from 0 = no to 10 = worst imaginable
pain), which were assessed throughout the 12-week period. Primary
safety outcome measure was the occurrence of adverse events
throughout the 12 months following treatment.

Results

Characteristics of cultured ABCB5+ MSCs

Cultured ABCB5+ MSCs exhibited typical fibroblast-like spindle-
shaped MSC morphology characterized by a small cell body and a
few long and thin cell processes (Figure 1A). Cell proliferation, mea-
sured by live cell counting over 13 days of culture, slowed down in
parallel with increasing cell confluency (Figure 1B). After reaching

Figure 1. Morphology and growth behavior of cultured ABCB5+ MSCs. (A) Cultured MSCs at about 80% confluency, displaying a spindled-shaped appearance. Magnification £200.
(B) Live cell count measured over time (upper panel) in parallel with cell confluency as determined visually (lower panel) from representative donors. (C) Cdkn1a gene expression
(means of relative quantification + SD) was determined at 30%, 70% and 99% confluency. (D) Cell cycle phase distribution expressed as mean (§ SD) percentage of cells in G1, S and
G2/M phases; n = 503 batches from 260 donors. SD, standard deviation. (Color version of figure is available online).
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100% confluency, live cell count did not increase further, indicating
that the cells were arrested in a non-proliferative state. In line with
this, messenger RNA expression of Cdkn1a (encoding the senescence
marker p21) was induced up to 7-fold at 99% confluency (Figure 1C).
Cell cycle analysis of 503 batches from 260 donors consistently
revealed an expectable phase distribution, with the majority of cells
(72.4% § 8.5%) being in the G1 phase (Figure 1D).

Process validation

Growth behavior
CPD values, division rates and yield of ABCB5+ cells were com-

pared in 15 donors up to 16 passages. CPD values increased linearly
with passage number, demonstrating exponential growth
(Figure 2A). Mean division rate was approximately 0.35 per day, cor-
responding to cell doubling about every 3 days (Figure 2B).

Genetic stability
Of 43 samples covering passages three to 16, 32 samples (75%)

exhibited an inconspicuous karyotype, eight samples (19%) exhibited
an aberrant karyotype (such as mosaic structures, loss of chromo-
somes or micro-mosaics in singular cells) and three samples (7%)
exhibited a pathologic karyotype. In exemplary analyses, those

cultures that exhibited an aberrant karyotype in passage five did not
show any abnormalities in passage 11, suggesting a trend toward
loss of abnormal karyotypes with increasing passage.

Gene expression
Gene expression microarrays were performed on samples from

eight donors. Gene expression profiles showed no significant differ-
ences between batches from a given donor and between donors (see
supplementary Figure 2). Analysis of the gene ratios for each delta
passage value (i.e., difference between numbers of two passages that
were compared with each other) showed that the gene expression
profile did not significantly change with increasing delta value
(Figure 2C; also see supplementary Table 1). Analysis of the gene
expression ratios at Dmax (i.e., between the two samples with the
greatest passage number difference) of all eight donors (42 992 genes
per analysis in total) revealed that only 2.4% (range, 0.3�5.2%) of
genes were highly differentially (>5-fold) regulated (see supplemen-
tary Figure 3A). There was no correlation between the percentage of
differentially regulated genes and the delta passage value. In an
intra-donor (one of the two donors with the highest Dmax value)
analysis of the three delta passages, the percentage of highly differen-
tially regulated genes ranged from 2% to 3% (see supplementary
Figure 3B).

Figure 2. Validation of the expansion process of ABCB5+ MSCs. (A,B) Validation of passage number. Individual CPDs (n = 15 donors, represented by different colors) (A) and mean
(§ SD) division rates (n = 15 donors) (B), plotted against the respective passage number, demonstrating continuous cell expansion during up to 16 passages. (C) Comparability and
homogeneity of batches between different passages of a given donor and between different donors as assessed by microarray-based gene expression analysis performed on samples
from four various passages per donor for eight donors. Within each donor, the quantile-normalized data sets from the three higher passages were compared with the lowest pas-
sage. From each of these between-passage comparisons, the median gene ratio (of all genes that had shown an average signal >20 and at least 2-fold differential regulation) was
determined. These values were used to calculate the median gene ratio (mean§ SD) for each delta passage value over all eight donors; n = number of between-passage comparisons
with the delta passage value specified. Original microarray data were uploaded in Gene Expression Omnibus (accession no. GSE145589) and are available at https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE145589. (D) Relative amount (mean percentage § SD) of ABCB5+ cells in culture, plotted against the respective passage number (n = 17 donors)
(left panel), and absolute yield of ABCB5+ MSCs shown as single values from 500 batches derived from 260 donors, giving a mean count of 26.27 £ 106 ABCB5+ MSCs per batch (rep-
resented by red line, SD = 19.76 £ 106) (right panel). SD, standard deviation. (Color version of figure is available online).
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ABCB5+ cell content
The percentage of ABCB5+ cells in culture showed a continuous

but statistically non-significant decline during the expansion process,
from 9.7% at passage seven to 5.3% at passage 16. Mean yield of
ABCB5+ MSCs was 26.3 £ 106 cells per batch (Figure 2D).

Batch quality control

Batch analyses were performed on 155 cell batches (IL-1RA secre-
tion assay, 75 batches). Overall, >98% of batches fulfilled the release
specifications (Table 1).

Dose selection study

Topical application of manufactured human ABCB5+ MSCs in
the low- to mid- and high- to mid-dose regimen facilitated clo-
sure of punch biopsy wounds in NSG mice, as evidenced by sig-
nificantly lower mean wound sizes from day 9 on compared with
control (Figure 3A�C). The high-dose group was retrospectively
excluded from inter-group wound size comparisons since in this
group the baseline wound size was significantly lower compared
with control. At day 13, about 30% of the wounds in the mid- and
high-dose groups had fully healed, in contrast to none of the

Figure 3. Effect of topical application of ABCB5+ MSCs on healing of experimental full-thickness skin wounds in NSG mice. (A�C) Wound sizes (means of both wounds of each ani-
mal) at 9 days (A), 11 days (B) and 13 days (C) after vehicle (control) or MSC application. (D) Total number of fully closed wounds at 13 days after vehicle (control) or MSC applica-
tion, shown as percentage value for each group. (E�G) Immunohistochemical evaluation of the wounds for human CD31 (E), unspecific CD31 (antibody-detected mouse and human
CD31) (F) and cytokeratin 14 (G). Expression was semi-quantitatively quantified as no (�), slight (1+), moderate (2+), strong (3+) and intense (4+) positivity. Shown are group means
§ SD. Control: vehicle only (n = 12 wounds, six animals). Low dose: 1.875 £ 105 ABCB5+ MSCs per wound (n = 18 wounds, nine animals; one animal was prematurely euthanized).
Low to mid dose: 3.75 £ 105 ABCB5+ MSCs per wound (n = 19 wounds, 10 animals; one wound was pathologically not evaluable). Mid to high: 7.5 £ 105 ABCB5+ MSCs per wound
(n = 20 wounds, 10 animals). High dose: 1.5 £ 106 ABCB5+ MSCs per wound (n = 20 wounds, 10 animals). The high-dose group was excluded from wound size analysis (A�C)
because of significantly smaller baseline wound size values (not shown). Non-parametric Kruskal-Wallis test followed by Dunn’s multiple comparisons. *P < 0.05, **P < 0.01, ***P <

0.001 versus control. d., dose; IHC, immunohistochemistry; SD, standard deviation. (Color version of figure is available online).
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vehicle-treated and 5% (one out of 18) of the low-dose-treated
wounds (Figure 3D). One animal in the low-dose group was
euthanized on day 7 due to loss of body weight and poor general
condition, which was attributed to high physical strain caused by
the relatively large wounds. No cell treatment-related clinical
findings were noted.

Histologically, wound contraction was slightly enhanced in all
cell-treated groups versus control (P < 0.05 for low to mid dose
only). Similarly, cell-treated groups exhibited somewhat greater
mean scores for collagen accumulation (P < 0.05 for low to mid
and high dose) and re-epithelialization (not significant) than con-
trol (data not shown). No obvious differences between groups
were observed for fibroblast proliferation, inflammatory cells,
granulation tissue formation and neovascularization. Occasionally,
small focal necroses, exudation of fibrin fibers and hemorrhages
were noted in some animals across all groups. Immunohisto-
chemically, the wounds showed a dose-dependent increase in
CD31 expression, which was significant for human CD31 but not
for unspecific CD31 (as no antibody to specifically detect mouse
CD31 was available, the authors had to use an antibody that
detected both mouse and human CD31) and cytokeratin 14
expression (Figure 3E�G).

Clinical trial in CVU patients

Thus far, 12 CVUs (nine target and three non-target wounds) in
nine patients (three men/six women, median age 77 years [range,
48�83], median body mass index 31 kg/m2 [range, 25�38]) have
been treated with autologous ABCB5+ MSCs. At baseline, the nine tar-
get ulcers had persisted between 5 months and 60 years (median,
15 years) and were between 1.8 cm2 and 45 cm2 in size. Three target
ulcers were excluded from efficacy evaluation because the wounds
had shown a healing tendency during the period of ex vivo cell
expansion; the other six target ulcers were eligible for efficacy evalu-
ation. In these patients, the target wound size decreased with time,
achieving a median reduction of 59% (range, 29�84%) at week 6 and
63% (range, 32�100%) at week 12 (Figure 4; also see supplementary
Figure 4). This was accompanied by wound quality improvement and
early-onset pain relief starting day 1�3 after cell transfer, as reflected
by the median visual analog scale pain score dropping from 4 at base-
line to 1.5 at week 12. Immunohistochemical analysis of cell debris
covering the wound of one patient at day 23 after cell application
most likely demonstrated the presence of applied ABCB5+ cells facing
the ulcer contact side (see supplementary Figure 5).

During the 12-month safety follow-up, no adverse event related
to cell treatment was reported in any patient. One pre-treatment-
emergent adverse event related to skin biopsy (pain) occurred.

Discussion

To enable safe, effective and reproducible therapeutic use of
human ABCB5+ MSCs, the authors developed and validated a
manufacturing and quality control process through which these cells
can be derived from human skin biopsies, expanded, isolated and
manufactured as a clinical-grade ATMP, guaranteeing reliable cell
quality and homogeneity. Cultured ABCB5+ MSCs exhibited normal
growth behavior, without any signs of overgrowth potential
(Figure 1B�D). CPD values and division rates indicated homogeneous
cell expansion during (at least) 16 passages (Figure 2A,B), and passag-
ing did not appear to significantly affect gene expression (Figure 1C).
Even though the percentage of ABCB5+ cells showed a certain
decrease with higher passage numbers, cell yield was still sufficient
at passage 16 (Figure 2D).

A major concern regarding the safety of therapies using ex vivo-
expanded cells is the risk of genetic changes that may lead to tumori-
genic transformation [25,26]. Karyotypic assays covering

passages three to 16 detected aberrant karyotypes in 19% and patho-
logic karyotypes in 7% of analyzed samples. A certain degree of aber-
rant karyotypes occurring during MSC culture has also been reported
by others [27�31]. This was essentially attributed to the artificial
growth conditions in two-dimensional culture associated with
enhanced cell replication and, consequently, errors in cell division. In
addition, the authors cannot rule out whether an aberrant phenotype
detected during culture was already present in the donor tissue. In any
case, an important question is whether such karyotypic aberrations
confer a selective growth advantage [29]. Exemplary analyses sug-
gested a trend toward loss of abnormal MSC karyotypes when the pas-
sage number increased further, which has also been described by
others [28�31]. These observations have been linked to apoptosis, cell
cycle arrest or replicative senescence caused by deleterious DNA alter-
ations [29�31] and might indicate that karyotypic alterations in MSCs
during culture are not associated with a selective growth advantage,
but rather confer a growth disadvantage to the affected cell [29]. On
the functional level, the authors have implemented several in-process
controls, including morphology, contact inhibition, time between pas-
sages (CPD), cell cycle analysis and detection of possible aneuploidies
to identify signals of non-physiological cell behavior during cell expan-
sion. Furthermore, a thorough pre-clinical study program on the in
vivo safety of the authors’ cell product has not revealed any signal for
tumorgenicity of ex vivo-expanded ABCB5+ MSCs [22].

Comparative gene expression analysis, revealing only rare varia-
tions between different passages of a given donor and between
donors, indicated intra- and inter-donor homogeneity (Figure 2D; also
see supplementary Figure 3). These findings suggest that the authors’
manufacturing process does not induce significant alterations in the
gene expression profile of ABCB5+ MSCs during passaging.

Before being released, each batch of ABCB5+ MSCs undergoes a
series of tests to verify its conformity with pre-specified criteria
(Table 1). Overall, >98% of 155 batches produced thus far have ful-
filled the specifications. Batch testing includes two potency (function-
ality) assays to test for endothelial differentiation ability (tube
formation assay) and immunomodulatory properties (IL-1RA secre-
tion assay). So far, no robust data exist that would allow quantitative
correlation of the amount of secreted IL-1RA with the magnitude of
the clinical effect. For this reason, in routine batch analysis, the
authors monitor whether the batch exceeds a minimal secretion level
of 125 mg/mL IL-1RA to basically demonstrate biologically active
cells.

To select a starting dose for first in-human use of the manufac-
tured ABCB5+ MSC product, a Good Laboratory Practice study was
carried out in a mouse wound healing model. In this study, treatment
with 3.75 £ 105 cells per wound or higher accelerated wound healing
(Figure 3A�D). Increases in cytokeratin 14 and CD31 expression in
the wound tissue indicated increased accumulation of epithelial and
endothelial cells, respectively, after treatment with human ABCB5+

MSCs (Figure 3E�G). It is noteworthy that enhanced CD31 expression
was, to a great extent, attributable to an increase in human-specific
CD31 positivity. This observation suggests that a portion of the
grafted cells had trans-differentiated to the endothelial lineage,
which is supported by several reports of other authors on in vivo
endothelial trans-differentiation of transplanted MSCs [32�37].

The lowest cell dose at which acceleration of wound healing was
observed in the mouse model (i.e., 3.75 £ 105 cells per wound)
roughly corresponded to 5 £ 105 cells/cm2 wound surface area,
which was set as the starting dose for first in-human use. In the clini-
cal trial, a maximum baseline wound size of 50 cm2 (to guarantee the
required cell quantity was supplied) was defined. This translates into
a maximum per-patient cell load of 2.5 £ 107 cells, corresponding to
a maximum cell dose of 4.2 £ 105 MSCs per kg (assuming 60 kg body
weight). This dose is nearly 800 times below the subcutaneous no-
observed-adverse-effect level (as recommended by the US Depart-
ment of Health and Human Services [38]) of 3.33 £ 108 ABCB5+ MSCs
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per kg previously determined in a pre-clinical Good Laboratory Prac-
tice study on repeated-dose toxicity [22].

The authors’ first in-human data suggest that cell therapy facili-
tated tissue repair of CVUs that had not adequately responded to

prior guideline-adherent standard (compression) therapy [39�42].
Under pre-defined conditions, excluding those ulcers from efficacy
evaluation that showed a healing tendency during the period of ex
vivo cell expansion, topical application of 5 £ 105 ABCB5+ MSCs per

Figure 4. Effect of topical application of 5 £ 105 autologous skin-derived ABCB5+ MSCs per cm2 wound area on healing of human chronic venous ulcers. (A) Photographs of the tar-
get wounds of three representative patients before (day 0, upper panel) and 12 weeks after (lower panel) cell application. For photographs of all patients who were eligible for effi-
cacy evaluation, see supplementary Figure 4. (B) Wound closure kinetics before (during cell expansion) and throughout the 12-week period following cell application (efficacy
follow-up). Shown are all patients who were eligible for efficacy evaluation. For patient 8, wound size data at week 4 are missing. Increase in the wound after week 6 coincided
with two changes in routine wound care; namely, less frequent (once instead of twice weekly) dressing changes and a switch to less absorbent dressing (Mepilex instead of Biatain).
For patient 9, wound size data at week 6 are missing; instead, week 7 measurement is included in the graph. Red shaded areas highlight the first 6 weeks of efficacy follow-up, dur-
ing which wound healing was most pronounced. w6, week 6; w7, week 7; w12, week 12. (Color version of figure is available online).
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cm2 wound area elicited a median wound size reduction of 63%
(range, 32�100%) within 12 weeks. The absence of any treatment-
related adverse event in all patients confirmed good tolerability and
overall safety of therapy.

It is noteworthy that wound healing rate was greatest until
week 6 (Figure 4B, red shaded area), slowing down thereafter, even
if a certain portion of this outcome can be attributed to an increase
in the wound of patient 8 coinciding with changes in routine wound
care (Figure 4B). These findings support the idea that the initial
impact of ABCB5+ MSCs on chronic wounds predominantly relies on
transient, immunomodulatory effects rather than on longer-lasting
processes such as engraftment and (trans-)differentiation. Indeed,
chronic wounds such as non-healing CVUs typically fail to progress
through the normal pattern of wound repair (i.e., hemostasis,
inflammation, proliferation and remodeling), remaining instead in a
chronic inflammatory state characterized by unrestrained accumula-
tion of activated pro-inflammatory M1 macrophages [43]. By releas-
ing IL-1RA, ABCB5+ MSCs have been shown to shift the prevalence
of M1 macrophages in chronic wounds toward repair-promoting
anti-inflammatory M2 macrophages, thus helping the wound over-
come its chronic inflammatory state [19]. Conceivably, once the
wound has left the state of chronic inflammation and entered the
physiological pattern of wound repair, the wound may benefit from
further modes of action of MSCs, such as trans-differentiation into
endothelial cells required for blood vessel formation, as observed in
the dose selection study (Figure 3E,F) and phenotypically demon-
strated by the tube formation assay, and paracrine secretion of pro-
angiogenic growth factors, as has been described for various MSC
types in the literature [44�46]. Thus, a second application of
ABCB5+ MSCs after the initial beneficial effect has tapered off might
be capable of resuming the healing process to finally lead to com-
plete wound closure.

Mainly due to the nature of our ATMP, the present clinical trial
comes with some limitations. First, the number of treated patients is
small, owing to the labor- and time-consuming manufacturing pro-
cess, which, in the autologous setting, must be carried out for each
patient individually. Second, the authors could not include a control
group, as placebo treatment would not ethically justify a sham biopsy
to mimic MSC isolation. Third, wound size at screening needed to be
limited to 50 cm2 to guarantee the required cell quantity was supplied
in every case. All these limitations could potentially be overcome by
using allogeneic ABCB5+ MSCs, which could be manufactured as a
readily available off-the-shelf product. This is considered feasible given
that the low immunogenicity and the immunomodulatory properties
of culture-expanded MSCs contribute to a diminished immune
response to allogeneic MSCs [47�50]. Moreover, pre-clinical and clini-
cal trials directly comparing the safety and therapeutic efficacy of
autologous and allogeneic MSCs have revealed similar outcomes [51]
or even a greater efficacy of allogeneic cells [16,52]. As a result, the
authors are currently testing ABCB5+ MSCs in the allogeneic setting in
two ongoing clinical trials in patients with CVUs (NCT03257098) and
diabetic foot ulcers (NCT03267784).

It is worth noting that it is not only patients suffering from local
inflammatory conditions who may benefit from ABCB5+ MSC therapy.
The substantial anti-inflammatory potential of ABCB5+ MSCs and
their convincing safety profile make our ATMP a promising candidate
for intravenous treatment of systemic inflammatory conditions as
well. Thus far, significant benefit delivered by human ABCB5+ MSCs
in pre-clinical models of epidermolysis bullosa [53] and liver disease
[54] has stimulated further clinical trials of allogeneic ABCB5+ MSCs
in recessive dystrophic epidermolysis bullosa (NCT03529877) and
acute-on-chronic liver failure (NCT03860155).

Funding

No funding was received.

Declaration of Competing Interest

MHF and NYF are inventors or co-inventors of US and international
patents assigned to Brigham and Women’s Hospital and/or Boston
Children’s Hospital, Boston, Massachusetts, USA, licensed to TICEBA
GmbH, Heidelberg, Germany, and RHEACELL GmbH & Co. KG, Heidel-
berg, Germany. MHF and KS-K serve as scientific advisors to TICEBA
and RHEACELL and participate in corporate-sponsored research collab-
orations with RHEACELL. EN-R, JE, HMS, SB, NS and SS are employees
of TICEBA. KK, KD and NT are employees of RHEACELL. CG is chief exec-
utive officer and MAK chief scientific officer of TICEBA and RHEACELL.

Author Contributions

Conception and design of the study: AK, JE, HMS, MGa, SB, NS, SS,
GFM, DPO, NYF, CG, MHF and MAK. Acquisition of data: AK, KR, PS,
SE, PH, SB, NS and SS. Analysis and interpretation of data: AK, EN-R,
JE, HMS, AMW-G, MGo, KK, KD, NT, KS-K and MAK. Drafting or revis-
ing the manuscript: AK, EN-R, JE, HMS, MGa, AMW-G, MG, KR, PS, SE,
PH, KK, KD, SB, NS, SS, NT, GFM, DPO, NYF, CG, KS-K, MHF and MAK.
All authors have approved the final article.

Acknowledgments

The authors thank the Section of Medical Microbiology and
Hygiene (Prof. Dr. med. Klaus Heeg, head) at the Center of Infectious
Diseases, Heidelberg University Hospital, Heidelberg, Germany, for
the microbiological examinations; the Institute of Human Genetics
(Prof. Dr. med. Christian Schaaf, head), Heidelberg University Hospi-
tal, for karyotyping; OakLabs GmbH, Hennigsdorf, Germany, for the
gene expression analyses; Aurigon Life Science GmbH, Tutzing, Ger-
many, for conducting the animal study; and FGK Clinical Research
GmbH, Munich, Germany, for expert support in the clinical trial.

Supplementary materials

Supplementary material associated with this article can be found
in the online version at doi:10.1016/j.jcyt.2020.08.012.

References

[1] Menaa F, Shahrokhi S, Prasad Shastri V. Impact and challenges of mesenchymal
stem cells in medicine: an overview of the current knowledge. Stem Cells Int
2018;2018:5023925.

[2] Yun CW, Lee SH. Enhancement of functionality and therapeutic efficacy of cell-
based therapy using mesenchymal stem cells for cardiovascular disease. Int J Mol
Sci 2019;20:982.

[3] Zhao L, Chen S, Yang P, Cao H, Li L. The role of mesenchymal stem cells in hemato-
poietic stem cell transplantation: prevention and treatment of graft-versus-host
disease. Stem Cell Res Ther 2019;10:182.

[4] Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: prop-
erties and clinical application. Stem Cells Int 2018;2018:3057624.

[5] Mukai T, Tojo A, Nagamura-Inoue T. Mesenchymal stromal cells as a potential
therapeutic for neurological disorders. Regen Ther 2018;9:32–7.

[6] Cho J, D’Antuono M, Glicksman M, Wang J, Jonklaas J. A review of clinical trials:
mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus.
Am J Stem Cells 2018;7:82–93.

[7] de Miguel MP, Prieto I, Moratilla A, Arias J, Aller MA. Mesenchymal stem cells for
liver regeneration in liver failure: from experimental models to clinical trials.
Stem Cells Int 2019;2019:3945672.

[8] Bochon B, Kozubska M, Surygala G, Witkowska A, Kuzniewicz R, Grzeszczak W,
et al. Mesenchymal stem cells—potential applications in kidney diseases. Int J Mol
Sci 2019;20:2462.

[9] Fan XL, Zhang Z, Ma CY, Fu QL. Mesenchymal stem cells for inflammatory airway
disorders: promises and challenges. Biosci Rep 2019;39:20182160.

[10] Rivera-Izquierdo M, Cabeza L, Lainez-Ramos-Bossini A, Quesada R, Perazzoli G,
Alvarez P, et al. An updated review of adipose-derived mesenchymal stem cells
and their applications in musculoskeletal disorders. Expert Opin Biol Ther
2019;19:233–48.

[11] Toyserkani NM, Jorgensen MG, Tabatabaeifar S, Jensen CH, Sheikh SP, Sorensen JA.
Concise review: a safety assessment of adipose-derived cell therapy in clinical tri-
als: a systematic review of reported adverse events. Stem Cells Transl Med
2017;6:1786–94.

174 A. Kerstan et al. / Cytotherapy 23 (2021) 165�175

https://doi.org/10.1016/j.jcyt.2020.08.012
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0001
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0001
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0001
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0002
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0002
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0002
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0003
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0003
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0003
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0004
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0004
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0005
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0005
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0006
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0006
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0006
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0007
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0007
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0007
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0008
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0008
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0008
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0009
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0009
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0010
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0010
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0010
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0010
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0011
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0011
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0011
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0011


[12] Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative
senescence of mesenchymal stem cells: a continuous and organized process. PLoS
One 2008;3:e2213.

[13] Liu S, de Castro LF, Jin P, Civini S, Ren J, Reems JA, et al. Manufacturing differences
affect human bone marrow stromal cell characteristics and function: comparison
of production methods and products from multiple centers. Sci Rep
2017;7:46731.

[14] Torre ML, Lucarelli E, Guidi S, Ferrari M, Alessandri G, De Girolamo L, et al. Ex vivo
expanded mesenchymal stromal cell minimal quality requirements for clinical
application. Stem Cells Dev 2015;24:677–85.

[15] Frank NY, Pendse SS, Lapchak PH, Margaryan A, Shlain D, Doeing C, et al. Regula-
tion of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-bind-
ing cassette transporter. J Biol Chem 2003;278:47156–65.

[16] Schatton T, Yang J, Kleffel S, Uehara M, Barthel SR, Schlapbach C, et al. ABCB5
identifies immunoregulatory dermal cells. Cell Rep 2015;12:1564–74.

[17] Jiang D, Muschhammer J, Qi Y, Kugler A, de Vries JC, Saffarzadeh M, et al. Suppres-
sion of neutrophil-mediated tissue damage—a novel skill of mesenchymal stem
cells. Stem Cells 2016;34:2393–406.

[18] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al.
Minimal criteria for defining multipotent mesenchymal stromal cells. The Inter-
national Society for Cellular Therapy position statement. Cytotherapy 2006;8:
315–7.

[19] Vander Beken S, de Vries JC, Meier-Schiesser B, Meyer P, Jiang D, Sindrilaru A,
et al. Newly defined ATP-binding cassette subfamily B member 5 positive der-
mal mesenchymal stem cells promote healing of chronic iron-overload
wounds via secretion of interleukin-1 receptor antagonist. Stem Cells
2019;37:1057–74.

[20] Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC. Mesenchymal stromal cells
and cutaneous wound healing: a comprehensive review of the background, role,
and therapeutic potential. Stem Cells Int 2018;2018:6901983.

[21] Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem cells in skin regeneration,
wound healing, and their clinical applications. Int J Mol Sci 2015;16:25476–501.

[22] Tappenbeck N, Schr€oder HM, Niebergall-Roth E, Hassinger F, Dehio U, Dieter K,
et al. In vivo safety profile and biodistribution of GMP-manufactured human skin-
derived ABCB5-positive mesenchymal stromal cells for use in clinical trials. Cyto-
therapy 2019;21:546–60.

[23] International Conference on Harmonization of Technical Requirements for Regis-
tration of Pharmaceuticals for Human Use. In: ICH Harmonised Tripartite Guide-
line Q5A(R1): Viral safety evaluation of biotechnology products derived from cell
lines of human or animal origin; 1999. https://ichguideline.weebly.com/uploads/
2/6/2/1/26210522/q5a_r1__step4.pdf [accessed 4 May, 2020].

[24] European Parliament and Council of the European Union. Directive 2010/63/EU of
the European Parliament and of the Council of 22 September 2010 on the protec-
tion of animals used for scientific purposes. Official Journal of the European Union
2010;L276:33–79.

[25] Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, et al. Accumulated
chromosomal instability in murine bone marrow mesenchymal stem cells leads
to malignant transformation. Stem Cells 2006;24:1095–103.

[26] Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, et al.
Long-term cultures of bone marrow-derived human mesenchymal stem cells fre-
quently undergo spontaneous malignant transformation. Cancer Res 2009;69:
5331–9.

[27] Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, et al. Long-term cultured mesen-
chymal stem cells frequently develop genomic mutations but do not undergo
malignant transformation. Cell Death Dis 2013;4:e950.

[28] Ueyama H, Horibe T, Hinotsu S, Tanaka T, Inoue T, Urushihara H, et al. Chromo-
somal variability of human mesenchymal stem cells cultured under hypoxic con-
ditions. Journal Cell Mol Med 2012;16:72–82.

[29] Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, et al. Clinical-
grade production of human mesenchymal stromal cells: occurrence of aneuploidy
without transformation. Blood 2010;115:1549–53.

[30] Binato R, de Souza Fernandez T, Lazzarotto-Silva C, Du Rocher B, Mencalha A, Piz-
zatti L, et al. Stability of human mesenchymal stem cells during in vitro culture:
considerations for cell therapy. Cell Prolif 2013;46:10–22.

[31] Stultz BG, McGinnis K, Thompson EE, Lo Surdo JL, Bauer SR, Hursh DA. Chromo-
somal stability of mesenchymal stromal cells during in vitro culture. Cytotherapy
2016;18:336–43.

[32] Ben Menachem-Zidon O, Gropp M, Ben Shushan E, Reubinoff B, Shveiky D. Sys-
temically transplanted mesenchymal stem cells induce vascular-like structure
formation in a rat model of vaginal injury. PLoS One 2019;14:e0218081.

[33] Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, et al. Kidney-derived mesenchymal
stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kid-
ney Int 2008;74:879–89.

[34] Yue WM, Liu W, Bi YW, He XP, Sun WY, Pang XY, et al. Mesenchymal stem cells
differentiate into an endothelial phenotype, reduce neointimal formation, and
enhance endothelial function in a rat vein grafting model. Stem Cells Dev
2008;17:785–93.

[35] Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, et al. Transplantation of hypoxia-
preconditioned mesenchymal stem cells improves infarcted heart function via
enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg
2008;135:799–808.

[36] Song YS, Lee HJ, Park IH, Kim WK, KU JH, Kim SU. Potential differentiation of
human mesenchymal stem cell transplanted in rat corpus cavernosum toward
endothelial or smooth muscle cells. Int J Impot Res 2007;19:378–85.

[37] Fu X, Fang L, Li X, Cheng B, Sheng Z. Enhanced wound-healing quality with bone
marrow mesenchymal stem cells autografting after skin injury. Wound Repair
Regen 2006;14:325–35.

[38] U.S. Department of Health and Human Services. In: Food and Drug Administra-
tion. Guidance for Industry: Chronic Cutaneous Ulcer and Burn Wounds—Devel-
oping Products for Treatment; 2006. https://www.fda.gov/media/71278/
download [accessed 31 July, 2020].

[39] O'Donnell Jr. TF, Passman MA, Marston WA, Ennis WJ, Dalsing M, Kistner RL, et al.
Management of venous leg ulcers: clinical practice guidelines of the Society for
Vascular Surgery and the American Venous Forum. J Vasc Surg 2014;60(suppl
2):3S–59S.

[40] Franks PJ, Barker J, Collier M, Gethin G, Haesler E, Jawien A, et al. Management of
patients with venous leg ulcers: challenges and current best practice. J Wound
Care 2016;25(suppl 6):S1–67.

[41] European Dermatology Forum. Evidence-based (S3) guidelines for diagnostics and
treatment of venous leg ulcers. J Eur Acad Dermatol Venereol 2016;30:1843–75.

[42] Marston W, Tang J, Kirsner RS, Ennis W. Wound Healing Society 2015 update on
guidelines for venous ulcers. Wound Repair Regen 2016;24:136–44.

[43] Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unre-
strained proinflammatory M1 macrophage population induced by iron impairs
wound healing in humans and mice. J Clin Invest 2011;121:985–97.

[44] An Y, Liu WJ, Xue P, Ma Y, Zhang LQ, Zhu B, et al. Autophagy promotes MSC-medi-
ated vascularization in cutaneous wound healing via regulation of VEGF secre-
tion. Cell Death Dis 2018;9:58.

[45] Tao H, Han Z, Han ZC, Li Z. Proangiogenic features of mesenchymal stem cells and
their therapeutic applications. Stem Cells Int 2016;2016:1314709.

[46] Ge Q, Zhang H, Hou J, Wan L, Cheng W, Wang X, et al. VEGF secreted by mesen-
chymal stem cells mediates the differentiation of endothelial progenitor cells into
endothelial cells via paracrine mechanisms. Mol Med Rep 2018;17:1667–75.

[47] Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and
immunologic properties of differentiated and undifferentiated mesenchymal
stem cells. Exp Hematol 2003;31:890–6.

[48] Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simo-
netti DW, et al. T cell responses to allogeneic human mesenchymal stem
cells: immunogenicity, tolerance, and suppression. J Biomed Sci 2005;12:
47–57.

[49] Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not
immune privileged. Nat Biotechnol 2014;32:252–60.

[50] Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no more:
measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem
Cell Res Ther 2017;8:288.

[51] Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Sun-
cion VY, et al. Comparison of allogeneic vs autologous bone marrow-derived
mesenchymal stem cells delivered by transendocardial injection in patients
with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA
2012;308:2369–79.

[52] Premer C, Blum A, Bellio MA, Schulman IH, Hurwitz BE, Parker M, et al. Allogeneic
mesenchymal stem cells restore endothelial function in heart failure by stimulat-
ing endothelial progenitor cells. EBioMedicine 2015;2:467–75.

[53] Webber BR, O'Connor KT, McElmurry RT, Durgin EN, Eide CR, Lees CJ, et al. Rapid
generation of Col7a1�/� mouse model of recessive dystrophic epidermolysis bul-
losa and partial rescue via immunosuppressive dermal mesenchymal stem cells.
Lab Invest 2017;97:1218–24.

[54] Hartwig V, Dewidar B, Lin T, Dropmann A, Ganss C, Kluth MA, et al. Human skin-
derived ABCB5+ stem cell injection improves liver disease parameters in Mdr2KO
mice. Arch Toxicol 2019;93:2645–60.

A. Kerstan et al. / Cytotherapy 23 (2021) 165�175 175

http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0012
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0012
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0012
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0013
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0013
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0013
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0013
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0014
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0014
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0014
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0015
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0015
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0015
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0016
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0016
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0017
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0017
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0017
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0018
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0018
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0018
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0018
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0019
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0019
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0019
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0019
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0019
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0020
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0020
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0020
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0021
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0021
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0022
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0022
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0022
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0022
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0022
https://ichguideline.weebly.com/uploads/2/6/2/1/26210522/q5a_r1__step4.pdf
https://ichguideline.weebly.com/uploads/2/6/2/1/26210522/q5a_r1__step4.pdf
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0024
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0024
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0024
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0024
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0025
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0025
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0025
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0026
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0026
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0026
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0026
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0027
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0027
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0027
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0028
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0028
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0028
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0029
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0029
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0029
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0030
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0030
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0030
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0031
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0031
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0031
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0032
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0032
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0032
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0033
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0033
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0033
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0034
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0034
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0034
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0034
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0035
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0035
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0035
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0035
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0036
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0036
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0036
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0037
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0037
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0037
https://www.fda.gov/media/71278/download
https://www.fda.gov/media/71278/download
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0039
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0039
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0039
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0039
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0040
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0040
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0040
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0041
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0041
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0042
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0042
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0043
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0043
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0043
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0044
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0044
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0044
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0045
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0045
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0046
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0046
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0046
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0047
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0047
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0047
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0048
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0048
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0048
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0048
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0049
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0049
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0050
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0050
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0050
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0051
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0051
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0051
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0051
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0051
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0052
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0052
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0052
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0053
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0053
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0053
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0053
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0053
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0053
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0054
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0054
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0054
http://refhub.elsevier.com/S1465-3249(20)30851-3/sbref0054

	Ex vivo-expanded highly pure ABCB5+ mesenchymal stromal cells as good manufacturing practice-compliant autologous advanced therapy medicinal product for clinical use: Process validation and first in-human data
	Authors

	Ex vivo-expanded highly pure ABCB5+ mesenchymal stromal cells as Good Manufacturing Practice-compliant autologous advanced therapy medicinal product for clinical use: process validation and first in-human data
	Introduction
	Methods
	Tissue procurement and processing
	Cell expansion and isolation
	Real-time quantitative polymerase chain reaction
	Cell cycle analysis
	Estimation of cumulative population doubling and division rate
	Karyotyping
	Gene expression analysis
	Batch analyses
	Microbiological examination
	Mycoplasma testing
	Endotoxin testing
	Determination of cell count and vitality
	Determination of viability, CD90 expression and bead residues
	Determination of ABCB5+ cell content
	Tube formation assay
	IL-1RA secretion assay
	Dose selection study
	Wound healing model
	Histopathology
	Immunohistochemistry
	Statistics

	Clinical trial

	Results
	Characteristics of cultured ABCB5+ MSCs
	Process validation
	Growth behavior
	Genetic stability
	Gene expression
	ABCB5+ cell content

	Batch quality control
	Dose selection study
	Clinical trial in CVU patients

	Discussion
	Funding
	Declaration of Competing Interest
	Author Contributions
	Acknowledgments

	Supplementary materials
	References



