

 77

An important queuing model is described in the next section.

1) The M/M/1 Queue

The characteristic of this model are :

1) Interarrival time distribution is exponential ;

2) Service time distribution is exponential ;

3) There is only one server;

4) Service regulation is first come, first served; and

5) Indefinite number of elements.

Probability of n>0 in the system at time t+h is approximated by the summation of

probabilities as follows:

1) The probability of n elements in the system at time t, and no element arrival,

and no element departing in length h, is approximated by

 { })1)(1()(hhtpn µλ −−

2) The probability of n elements in the system at time t, and no element arrival,

and one element departing in length h, is approximated by

 { }))(()(hhtpn µλ

3) The probability of n-1 elements in the system at time t, and one element

arrival, and no element departing in length h, is approximated by,

 { })1)(()(1 hhtpn µλ −−

4) The probability of n+1 elements in the system at time t, and no element arrival,

and one element departing in length h, is approximated by,

))(1)((1 hhtpn µλ−+

So ≅+)(htpn { })1)(1()(hhtpn µλ −− + { }))(()(hhtpn µλ + { }))(()(hhtpn µλ +

 { })1)(()(1 hhtpn µλ −−

Since h2 converges to zero,

 { }))(())((1)()(11 htphtphhtphtp nnnn µλµλ +− ++−−≅+

In the same way when n = 0

 { }))(()1)(()1)()((1)1()()(10100 htphtphhtphtphtp µλλµλ +−=−+⋅−≅+

)()()()(
)()(

lim 110
tptptp

h
tphtp

nnn
nn

h
µλµλ +−+=

−+
+−→

 ; 0>n

)()(
)()(

lim 10
00

0
tptp

h
tphtp

h
µλ +−=

−+
→

 ; 0=n

 78

 So)(tp
dt
d

n)()()()(11 tptptp nnn µλµλ +−+= +−

)()()(100 tptptp
dt
d

µλ +−=

For steady system, ∞→t when µλ < , that is

 1<=
µ
λ

ρ

When nnn ptpandtp
dt
dt →→∞→)(0)(, , K,2,1,0=n

 010 =+− pp µλ ; 0=n

 0)(11 =+−+ +− nnn ppp µλµλ ; 0>n

The difference equation results in the target distribution as follows:

 n
np ρρ)1(−= ; K,2,1,0=n

The distribution is a geometric distribution with mean and variance as follows:

 ()nE =
ρ

ρ
−1

 ()nVar = 2)1(ρ
ρ

−

The geometric mean illustrates the important characteristic of queuing system as

follows:

ρ

ρ
−

==
1

)(nELS

ρ

ρ
µ
λ

−
=−=

1

2

Sq LL

)1(

1
ρµλ −

== S
S

L
W

)1(ρµ

ρ
λ −

== q
q

L
W

µ
λ

−= 10P

n

n PP 







=

µ
λ

0

 79

2) The M/G/1 Queue

The characteristic of this model is composed of :

1) Interarrival time distribution which is Exponential distribution;

2) Service time distribution that is general distribution;

3) Only one capacity;

4) Service regulation which is first come, first served; and

5) Indefinite number of element.

In this case we need to know mean and variance of departing distribution, assume that

the mean is equal µ , the variance is equal 2σ . Mean of service time is equal
µ
1 and

variance of service time is equal 2σ . The important characteristic of queue system is as

follows:

 1<=
µ
λ

ρ

 ρ−= 10P

)1(2

222

ρ
ρρλ

−
+

=qL

λ

q
q

L
W =

µ
1

+= qq WW

3) The M/M/S Queue

The characteristic of this model is composed of :

1) Interarrival distribution which is Exponential distribution;

2) Service time distribution which is Exponential distribution with mean

µ
1 ;

3) m servers;

4) Service regulation which is first come, first served; and

5) Indefinite number of element.

 80

Assume that there are S service capacities, and each capacity has one server. Service

rate of each capacity is equal µ , so the mean of all capacities is equal µµ nn = when

Sn ≤ , if Sn ≥ and all capacities are maximum service, µ=µ Sn and λλ =n .





≥
≤≤

=
SnS

Snn
n µ

µ
µ

0

 K,2,1,0=n

Since µλ S> , so means of arrival rate is less than the maximum of service rate.

 0P =

∑
−

= −
⋅










+








1

0 1

1
!!

1

S

n

Sn

S
Sn

µ
λ

µ
λ

µ
λ

 nP =















≥⋅









≤≤⋅









−
SnP

SS

SnP
n

Sn

n

,
!

0,
!

0

0

µ
λ

µ
λ

Sµ

λ
ρ =

 qL = 2

0

)1(! ρ

ρ
µ
λ

−










S

P
S

 qW =
λ

qL

 sW =
µ
1

+qW

 sL =
µ
λ

µ
λ +=+ qq LW)1(

4) G/G/1 for The heavy –traffic approximation

Kleinrock (1976) applied the G/G/1 queue for the heavy-traffic approximation when

1≅ρ . The wait time distribution is an approximation exponential distribution with the

mean given as follows:

 81

()

()tW

ytyW

ba

ba

ρ
σσ

σσ
ρ

−
+

≅









⋅

+
−

−−≅

12

)1(2exp1)(

22

22

where ,1;
λµ

λ
ρ == t

 2
aσ : variance of interarrival time; and

 2
bσ : variance of service time

2.6 Queuing generation

Consider a queuing system (Banks, Carson, Nelsun, &Nicol ,2001) over a period of

time T , and ()tL denote the number of customers in the system at time t.

 Let iT denote the total time during []T,0 in which the system contained

 exactly i customers.

We can estimate the number of customers in the system over a period of time T at any

time t by L̂ , the time-weighted-average number.

T

iT
L i

i∑
∞

== 1ˆ

Since the total area under the function ()tL can be decomposed into rectangles of height

i and length iT

 ∫=
T

dttL
T

L
0

)(1ˆ

 L→ as ∞→T

Here L is the long-run time-average number in the system.

 ()tLQ denotes the number of customers waiting in line(queue)

 Q
iT denotes the total time during []T,0 in which exactly i customers are

 waiting in the queue.

We can estimate the number of customers waiting in the queue from time 0 to time T

by QL̂ , the observed time-average number of customers waiting in the queue as

follows:

 82

 ∑
∞

=

=
0

ˆ
i

Q
iQ iTL

 = dttL
T

T

Q)(1

0
∫

 QL→ as ∞→T

Here QL is the long-run time-average number of customers waiting in the queue.

In queuing simulation over a period of time T , we can record iW , the wait time that

customer i spends in the system during []T,0 , for Ni ,,2,1 K= . The average time spent

in the system per customer is called the average system time. The formula to compute

average system time is given by :

 Ŵ =
N

W
N

i
i∑

=1

For a stable system, as ∞→N

 WW →ˆ

Here W is called the long-run average system time.

In addition, we specially consider the time that customer i spends in the queue. Let Q
iW

denote the total time that customer i spends waiting in the queue. We can compute the

observed average time is spent in the queue (called delay) by the formula:

N

W
W

N

i

Q
i

Q

∑
== 1ˆ

 QW→ , as ∞→N

Here QW is the long-run average per customer.

2.7 The evaluation function

The evaluation of the effectiveness of the traffic control at the intersection is generally

based on the delay or wait time which is known as the ‘wait mean’. It is obtained by the

calculation of the combined time of each car spent on its wait time at the red light

divided by the total number waiting cars. As a consequence, the longer the wait mean

the less effective is the traffic control. However, wait mean should not be the only

indicator to judge the effectiveness of the traffic control; the number of cars moving in

 83

and out of the intersection including drive mean should also be taken into account to

evaluate the effectiveness. This is supported by the model of Kelsey & Bisset (1993)

presenting a cost function that consist of such factors to evaluate traffic flow

performance. The value of the function will be used to evaluate the performance of

traffic flow under fuzzy controller against the conventional controller. The lower the

cost function the better the performance.

 Cost =

mean
in

out

mean

Drive
Car
Car
Wait









⋅100

Waitmean : The average waiting time in seconds that all cars spend behind the

 red light.

Drivemean : The average time in seconds that all cars spend behind the green light.

Carout : The number of cars that are exiting the intersection.

Carin : The number of cars that are entering the intersection.

 84

Chapter 3

Research Methodology

3.1 The conceptual research

To calculate the optimal length of the traffic signal on each phase of the cycle, firstly we

need to estimate traffic intensity that arrives and departs at the intersections and the

length of the current cycle time based on statistical methods. These estimators are crisp

inputs for fuzzy logic control. Then crisp outputs are produced by using the process of

fuzzy logic control. The crisp output is the degree of traffic signal change for each

phase. Finally the optimal length of traffic signal is the period of time between the

connective change points. This concept can be conceptualized as shown below:

 Figure 3.1 Conceptual map(Adapted from Wang, 1994, p. 6)

 Traffic estimator
- arrival of cars
- departure of cars
- current time

Fuzzy Rule
Base

Fuzzy
Inference

Engine

Defuzzifier

Degree of change
on each phase

 Fuzzy sets in U

Fuzzy sets in V

Fuzzy system

x in U

y in V

Fuzzifier

 85

3.2 The input process methodology

There are three important inputs consisting of: the number of cars passing the green

light, the number of cars stopping behind the red light and length of the current cycle

time. To estimate the value of these inputs, we need to study traffic at the actual

intersections, and use statistical methods to estimate the number of cars and the length

of current cycle time.

3.2.1 Traffic control at actual intersections studied

1) Traffic network studied

The optimal traffic signal light time was studied at four important intersections in the

inner city of Ubon Rachathani Province consisting of : Uboncharearnsri , Clock Hall,

Chonlaprathan , and Airport intersections. The network diagram representing the four

intersections is shown as Figure 3.2

 86

 H I

 G B C

 A D

 E

 F

 Figure 3.2 Diagram of traffic network consisting of the four intersections A, B, C

 and D with car flow from E, F,G, H and I

 87

According to Vardi’s notation (1996), there are 72 source-destination pairs (SD), made

up of 54 direct routes and 18 direct links.

 The 54 direct routes are as follows;

CDAAC →→≡ EDAAE →→≡ GBAAG →→≡

HBAAH →→≡ ICDAAI →→→≡ ABCCA →→≡

ADEEA →→≡ ABGGA →→≡ ABHHA →→≡

ADCIIA →→→≡ DCBED →→≡ EDCBBE →→→≡

FABBF →→≡ ICBBI →→≡ BADDB →→≡

BADEEB →→→≡ BAFFB →→≡ BCIIB →→≡

EDCCE →→≡ FABCCF →→→≡ GBCCG →→≡

HBCCH →→≡ CDEEC →→≡ CDAFFC →→→≡

CBGGC →→≡ CBHHC →→≡ FADDF →→≡

GBCDDG →→→≡ HBCDDH →→→≡ ICDDI →→≡

DAFFD →→≡ DCBGGD →→→≡ DABHHD →→→≡

DCIID →→≡ FADEEF →→→≡ GBAFFG →→→≡

EDCIIE →→→≡ HBAFFH →→→≡ FABGGF →→→≡

FABHHF →→→≡ FADCIIF →→→→≡ HBGGH →→≡

ICBGGI →→→≡ GBHHG →→≡ GBCIIG →→→≡

ICBHHI →→→≡ HBCIIH →→→≡ EDAFFE →→→≡

 ICDEEI →→→≡

 HBADEEH →→→→≡

 EDCBGGE →→→→≡

 EDCBHHE →→→→≡

 ICDAFFI →→→→≡

 GBADEEG →→→→≡

 88

 The 18 direct links are as follows:

BAAB →≡ ABBA →≡ CBBC →≡

BCCB →≡ DCCD →≡ CDDC →≡

DAAD →≡ ADDA →≡ FAAF →≡

AFFA →≡ EDDE →≡ DEED →≡

ICCI →≡ CIIC →≡ HBBH →≡

BHHB →≡ GBBG →≡ BGGB →≡

2) Flow phase of each intersection studied

Flow phase refers to the time length of the green lights which allows the cars to directly

move toward their targeted directions. The phase is in fact counted from the end of the

red light and the start of the ember light. This means that phase stands between the red

and the ember light. Each intersection has different phase form.

The next subsection will present the phase at each intersection by a diagram.

 Let represent cars that pass the green light

 represent cars that stop behind the red light

The diagrams presenting the phases at each intersection are as follows:

 89

2.1) The form of flow phase at Uboncharearnsri intersection

There are three phases at Uboncharearnsri intersection.

Figure 3.3 Diagram to present the flow phases at Uboncharearnsri intersection.

PHASE 2

PHASE 1

PHASE 3

 90

2.2) The form of flow phases at Clock Hall intersection

There are three phases at Clock Hall intersection.

 Figure 3.4 Diagram to present the flow phases at Clock Hall intersection.

PHASE 1 PHASE 2

PHASE 3

 91

2.3) The form of the flow phases at Chonraprathan intersection

There are three phases at Chonraprathan intersection.

Figure 3.5 Diagram to presenting the flow phases at Chonlaprathan intersection

PHASE 1

PHASE 2

PHASE 3

 92

2.3) The form of the flow phases at Airport intersection

There are four phases at Airport intersection :

Figure 3.6 Diagram to present the flow phases at Airport intersection

PHASE 1

PHASE 2

PHASE 3

PHASE 4

 93

3.2.2 Traffic estimation by using mix models

This section presents the statistical method used to estimate the number of cars that

depart from an intersection to other intersections according to a mixture of maximum

likelihood estimation and Bayesian inference. This section also explains the method

used to compute the length of current cycle time.

3.2.2.1 Notation used

Let Xj denote the route count belonging to a direct route , or the number of cars that

depart from specified sources to destination, for j = 1, 2, 3, …, 72 . The details of each

Xj are as follows:

 X1 : the number of cars from source A to destination B

 X2 : the number of cars from source A to destination C

 X3 : the number of cars from source A to destination D

 X4 : the number of cars from source A to destination E

 X5 : the number of cars from source A to destination F

 X6 : the number of cars from source A to destination G

 X7 : the number of cars from source A to destination H

 X8 : the number of cars from source A to destination I

 X9 : the number of cars from source B to destination A

 X10 : the number of cars from source C to destination A

 X11 : the number of cars from source D to destination A

 X12 : the number of cars from source E to destination A

 X13 : the number of cars from source F to destination A

 X14 : the number of cars from source G to destination A

 X15 : the number of cars from source H to destination A

 X16 : the number of cars from source I to destination A

 X17 : the number of cars from source B to destination C

 X18 : the number of cars from source B to destination D

 X19 : the number of cars from source B to destination E

 X20 : the number of cars from source B to destination F

 X21 : the number of cars from source B to destination G

 X22 : the number of cars from source B to destination H

 X23 : the number of cars from source B to destination I

 94

 X24 : the number of cars from source C to destination B

 X25 : the number of cars from source D to destination B

 X26 : the number of cars from source E to destination B

 X27 : the number of cars from source F to destination B

 X28 : the number of cars from source G to destination B

 X29 : the number of cars from source H to destination B

 X30 : the number of cars from source I to destination B

 X31 : the number of cars from source C to destination D

 X32 : the number of cars from source C to destination B

 X33 : the number of cars from source C to destination F

 X34 : the number of cars from source C to destination G

 X35 : the number of cars from source C to destination H

 X36 : the number of cars from source C to destination I

 X37 : the number of cars from source D to destination C

 X38 : the number of cars from source E to destination C

 X39 : the number of cars from source F to destination C

 X40 : the number of cars from source G to destination C

 X41 : the number of cars from source H to destination C

 X42 : the number of cars from source I to destination C

 X43 : the number of cars from source D to destination E

 X44 : the number of cars from source D to destination F

 X45 : the number of cars from source D to destination G

 X46 : the number of cars from source D to destination H

 X47 : the number of cars from source D to destination I

 X48 : the number of cars from source E to destination D

 X49 : the number of cars from source F to destination D

 X50 : the number of cars from source G to destination D

 X51 : the number of cars from source H to destination D

 X52 : the number of cars from source I to destination D

 X53 : the number of cars from source E to destination F

 X54 : the number of cars from source G to destination E

 X55 : the number of cars from source H to destination E

 X56 : the number of cars from source I to destination E

 X57 : the number of cars from source F to destination G

 X58 : the number of cars from source F to destination H

 95

 X59 : the number of cars from source F to destination I

 X60 : the number of cars from source G to destination F

 X61 : the number of cars from source H to destination F

 X62 : the number of cars from source I to destination F

 X63 : the number of cars from source G to destination H

 X64 : the number of cars from source G to destination I

 X65 : the number of cars from source H to destination G

 X66 : the number of cars from source I to destination G

 X67 : the number of cars from source H to destination I

 X68 : the number of cars from source I to destination H

 X69 : the number of cars from source E to destination G

 X70 : the number of cars from source E to destination H

 X71 : the number of cars from source E to destination I

 X72 : the number of cars from source F to destination E

Let X denote the direct route count matrix, X is the row matrix with dimension

1X72 as follows:

 =X []7221 ,,, XXX K

Let Yi denote the route count corresponding to direct link, or the number of cars that

depart from the source to destination, for i = 1, 2, 3, …, 18 . The details of each Yi

are as follows:

 Y1 : the number of cars from source A to destination B

 Y2 : the number of cars from source B to destination A

 Y3 : the number of cars from source B to destination C

 Y4 : the number of cars from source C to destination B

 Y5 : the number of cars from source C to destination D

 Y6 : the number of cars from source D to destination C

 Y7 : the number of cars from source A to destination D

 Y8 : the number of cars from source D to destination A

 Y9 : the number of cars from source A to destination F

 Y10 : the number of cars from source F to destination A

 Y11 : the number of cars from source D to destination E

 Y12 : the number of cars from source E to destination D

 Y13 : the number of cars from source C to destination I

 96

 Y14 : the number of cars from source I to destination C

 Y15 : the number of cars from source B to destination H

 Y16 : the number of cars from source H to destination B

 Y17 : the number of cars from source B to destination G

 Y18 : the number of cars from source G to destination B

Let Y denote the direct link count matrix, Y is the row matrix with dimension 1X18 as

follows:

 =Y []1821 ,,, YYY K

 Let jλ denote the population mean of the number of cars that depart from

source to destination, for j = 1, 2, 3, …, 72 .

 Let λ denote the population mean route count matrix with dimension

721× as follows

 λ =],,,[7221 λλλ K

3.2.2.2 Estimation of route count mean based on the EM

This section presents the statistical method to estimate the route count mean based on

the EM algorithm. Observe Yi at period k in the actual situation, and

Let ()k
jX denote the number of cars for direct route j at measurement period k . We

assume that

 ()k
jX ~ Poisson (jµ) ; 72,2,1 K=j . Kk ,,2,1 K= is independent.

 ()kX is the number of cars in vector form for direct route.

 () =kX () () ()[]/
7221 ,,, kkk XXX K

 ()k
iY is the number of cars that are observed from direct link i

 at measurement period k.

 ()kY is the number of cars in vector form for direct links.

 ()kY = () () ()[]/
1821 ,,, kkk YYY K

Let A denote the 18x72 routing matrix for this network. The matrix A is a zero-one

matrix whose rows correspond to the direct link, its columns correspond to direct routes,

 97

and its entries, ija are 1 or 0 according to whether link i does or does not belong to the

direct path of the SD pair j .

So matrix A is defined by =A][ija

 ija = 1; for (i, j) = (1,1),(1,6),(1,7),(1,25),(1,26),(1,27),(1,57),(1,58),(1,69),(1,70)

(2,9),(2,10),(2,14),(2,15),(2,20),(2,33),(2,51),(2,60),(2,61)(3,17),(3,18),(3,19),(3,23),

(3,40),(3,41),(3,54),(3,55),(3,64),(3,67),(4,10),(4,24),(4,4,30),(4,33),(4,34),(4,35),

(4,46),(4,66),(4,68),(5,16),(5,18),(5,19),(5,31),(5,32),(5,50),(5,52),(5,54),(5,55),(5,56)(5

,62)(6,2),(6,8),(6,37),(6,38),(6,39),(6,45),(6,46),(6,47),(6,59),(6,71)(7,2),(7,3),(7,4),(7,8)

,(7,39),(7,49),(7,51),(7,59),(7,72),(8,11),(8,12),(8,16),(8,25),(8,26),(8,44),(8,53),

(8,62),(8,69),(8,70),(9,5),(9,20),(9,33),(9,44),(9,53),(9,60),(9,61),(9,62)(10,13),

(10,27),(10,39),(10,49),(10,57),(10,58),(10,59),(10,72)(11,4),(11,19),(11,32),(11,43),

(11,55),(11,56),(11,72)(12,12),(12,26),(12,38),(12,53),(12,68),(12,69),(12,70),(12,71),

(13,8),(13,23),(13,36),(13,47),(13,59),(13,64),(13,67),(13,71)(14,16),(14,30),(14,42),

(14,52),(14,56),(14,62),(14,66),(14,68),(15,7),(15,22),(15,35),(15,46),(16,58),(15,63),

(15,68),(15,70),(16,15),(16,29),(16,41),(16,51),(16,55),(16,61),(16,65),(16,67)(17,6),

(17,21),(17,34),(17,57),(17,65),(17,66),(17,69),(18,14),(18,28),(18,40),(18,54),(18,60)(1

8,63),(18,64)

ija = 0; for the other ()ji,

So we derive the relation between ()kY and ()kX in equation form as follow:

 () ()kk AXY = Kk ,,2,1, K=

From the matrix form we can write 18 equations that present Yi and Xj as follow:

 Y1 = X1+X6+X7+X25+X26+X27+X57+X58+X69+X70

 Y2 = X9+X10+X14+X15+X20+X33+X51+X60+X61

 Y3 = X17+X18+X19+X23+X40+X41+X54+X55+X64+X67

 Y4 = X10+X24+X30+X33+X34+X35+X46+X66+X68

 Y5 = X16 +X18+X19+X31+X32+X50+X52+X54+X55+X56+X62

 Y6 = X2+X8 +X37+X38+X39+X45+X46+X47+X59+X71

 Y7 = X2+X3+X4+X8+X39+X49+X51+X59+X72

 Y8 = X11+X12+X16+X25+X26+X44+X53+X62+X69+X70

 Y9 = X5+X20+X33+X44+X53+X66+X61+X62

 Y10 = X13+X27+X39+X49+X57+X58+X59+X72

 Y11 = X4+X19+X32+X43+X55+X56+X72

 Y12 = X12+X26+X38+X53+X68+X69+X70+X71

 Y13 = X8+ X23+X36+X47+X59+X64+X67+X71

 98

 Y14 = X16+ X30+X42+X52+X56+X56+X62+X66+X68

 Y15 = X7+X22+X35+X46+X58+X63+X68+X70

 Y16 = X15+X29+X41+X51+X55+X61+X65+X67

 Y17 = X6+X21+X34+X57+X65+X66+X69

 Y18 = X14+X28+X40+X54+X60+X63+X64

Our goal is to estimate µ = ()7221 ,,, µµµ K from () () ()KYYY ,,, 21 K based on

maximum likelihood estimation and sample moments using the following 7 steps.

Step 1 Let positive refer to the population of number of car passing direct route on

traffic network

 µ =),,,(7221 µµµ K ; arbitrary.

Step 2 Observe daily data on direct links for 20 days from 08:00 – 08:30 am
() ≡1Y () () ()()1

18
1

2
1

1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M
()20Y ≡ () () ()()20

18
20

2
20

1 YYY ,,, K

Calculate

()

20

20

1
∑

== k

k
i

i

Y
Y

Step 3 Estimate µ with µ̂)ˆ,...,ˆ,ˆ(7221 µµµ= based on applied algorithm

 µj ← ∑
∑∑ =

==

18

1
72

1

18

1

i

k
kik

iij

i
ij

j

a

Ya

a µ

µ

Step 4 Generate jX from Poisson distribution with the estimator of parameter

 7221 ,,,;ˆ K=jjµ for 100 days

Step 5 Generate daily data on direct links for 100 days depending on jX in step 4

() ≡1Y () () ()()1
18

1
2

1
1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M
()100Y ≡ () () ()()100

18
100

2
100

1 YYY ,,, K

Calculate

()

100

100

1
∑

== k

k
i

i

Y
Y

 99

Step 6 Go to step 3 to estimate µ 50 times so we get)1(µ̂ ,)2(µ̂ ,…,)50(µ̂

Step 7 Calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ based on 50 estimations then we get µ̂

as the unbiased estimator of µ , route count.

3.2.2.3 Estimation of route count base on Bayesian inference

This section presents the statistical method to estimate route count based on Bayesian

inference. The Bayesian inference use to infer route count jX when we know jλ (from

EM algorithm) and iY (from observation), for i = 1,2, …, 18. j = 1,2,…,72.

From the posterior distribution of X by given λ and Y ;

 p ()yx ,λ ∝ 2f ()xy p ()λx

where 2f ()xy is degenerate at AXY = and

 p ()λx α ∏
=

c

i i

x
i

x

i

1 !
λ

So we can infer the route count, iX by using the Gibb sampler to draw X from

p ()λx , and then evaluate Y by the equation AXY =

The detailed procedure to estimate jX , 72,,2,1 K=j by given jλ and iY ,

18,,2,1 K=i by using the mixure of maximum likelihood and Bayesian inference is

based on seven steps as follows:

 Step 1 Generate 10 vectors X from 72 independent Poisson distributions

with parameter vector µ that has already been estimated based on EM in section 3.2.2.2

 Step 2 Draw sample value of 10 parameter vectors λ from 72 conditionally

independent posterior distributions;)(jj Xp λ is a Gamma distribution with shape

parameter 1+jX and scale parameter 1; 72,,2,1 K=j .

 Step 3 For each parameter vector λ , in iteration t sample a candidate *
jX of

the element of X with priority from conditionally Poisson distribution produces all the

other elements :

 *
jX ~ Poisson(*

jX)1−
−
t

jX ;

Where 1−
−
t

jX represents all the element of X except for jX at their current values:

 1−
−
t

jX =),,,,,(1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK

 100

 set






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

*)1,min(

 r =
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

 where
!

)(
j

x
j

j x
e

Xp
jj λλ−

= , ()jXU =
!j

x
j

x
e jj µµ−

 Step 4 Directly compute the element of Y by AXY =

 Step 5 Let k
tjX be the draw from 10 parallel sequences of iteration t of

the kth element of X (t =1, 2, …, n ; j = 1, 2, …, 10), compute B and W , the

between and within-sequence variances for each kth:

 ∑
=

−=
10

1

2
...)(

9 j
j XXnB , where ∑

=

=
n

i

k
ijj X

n
X

1
.

1 , ∑
=

=
10

1
... 10

1
i

jXX

 ∑
=

=
10

1

2

10
1

j
jSW , where ∑

=

−
−

=
n

i
j

k
ijj XX

n
S

1

2
.

2)(
1

1 and)1(1ˆ −+= n
W
B

n
R

 Step 6 Return to step 2 and iterate until 1ˆ →R for all kth element.

 Step7 Estimate route count for each direct route by

 ∑
=

=
10

110
1ˆ

j

k
njk XX , k = 1,2, …, 72

 where kX̂ is the estimator of route count for direct route kth

 k
njX is the latest draw for parallel j

3.2.3 Calculation of the length of the current cycle time

This section presents the statistical formula to calculate the length of the current cycle

time on each phase of actual intersections studied. Treat each intersection as a service

system and cars as customers with each phase of the intersection as a server.

As discussion in the previous chapter, interarrival time follows the exponential

distribution. Therefore, we can generate interarrival time from an exponential

distribution. The parameter of the distribution is defined by traffic intensity estimated

from an the mixed model in section 4.2.2. Finally the length of the current cycle time

since the last traffic light change to the moment that any car arrives at the intersection is

 101

the total of all interarrival times of the cars that arrive at the intersection in the current

period.

 Let iC be the ith car that arrive at the intersection,

 iA be interarrival time between iC and 1+iC ,

 jC be the first car after the last traffic light change,

 nC be the car at the moment,

 and L be the length of the current cycle time

So L = ∑
−

=

1n

ji
iA

3.3 The fuzzy system process methodology

This section presents the method to combine the linguistic and numerical information

from the previous input process methodology to derive output, the degree of traffic

light change of each phase. Fuzzy logic systems with fuzzifier and defuzzifier will be

used.

3.3.1 Fuzzifier

The fuzzifier performs a mapping from numerical information input such as number of

cars behind the green light, number of cars behind the red light and the length of the

current cycle time in to a fuzzy set. The number of cars behind the red or the green

lights are assigned to fuzzy set as “zero”, “low”, “medium” and “high”. And the length

of the current cycle time is assigned to fuzzy set as “short”, “medium” and “long”.

Numerical information output , degree of traffic light change are assigned to fuzzy set

as “no”, “probably no” “maybe”, “probably yes” and “yes”. The membership function

of these fuzzy sets are defined below.

3.3.1.1 The membership function of the fuzzy set defined by the number of cars

 behind the green light

Fuzzy sets of the number of cars behind green light are assigned as “zero”, “low”,

“medium”, and “high. The membership function of the fuzzy sets are triangular or

trapezoidal according to the Figure 3.7- 3.10 as follows:

 102

xµ





>
≤≤−

=
1,0

10,1
)(

0

00
0 x

xx
xxµ

Figure 3.7 The membership function form for fuzzy set “zero”

 (Adapted from Kelsey & Bisset, 1993, P. 266 and Teodorovic &

 Vukadinovc, 1998, p. 51)

xµ











>
≤<−

≤<
≤≤

=

3,0
32,3

21,1
10,

)(

0

00

0

00

0

x
xx

x
xx

xxµ

 Figure 3.8 The membership function form for fuzzy set “low”

 (Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&

 Vukadinovc, 1998, p. 51)

 103

xµ











≥
<≤−
<≤−

<

=

4,0
43,4
32,2

2,0

)(

0

00

00

0

0

x
xx
xx

x

xxµ

Figure 3.9 The membership function form for fuzzy set “medium”

 (Adapted from Kelsey & Bisset, 1993, P.266 and Teodorovic&

 Vukadinovc, 1998, p. 51)

xµ









≥
<≤−

<
=

4,1
43,3

3,0
)(

0

00

0

0

x
xx

x
xxµ

 Figure 3.10 The membership function form for fuzzy set “high”

 (Adapted from Kelsey&Bisset, 1993, p.266 and Teodorovic&

 Vukadinovc, 1998, p. 51)

 104

3.3.1.2 The membership function of the fuzzy set defined by the number of cars

 behind the red light.

Fuzzy sets of the number of cars behind the red light are assigned as “zero”, “low”,

“medium”, and “high”. The membership function of the fuzzy sets are triangular or

trapezoid according to the Figure 3.11-3.14 as follows:

0 1 2

1

x (cars/second)

xµ





≥
<≤−

=
1,0

10,1
)(

0

00
0 x

xx
xxµ

 Figure 3.11 The membership function form for fuzzy set “zero”

 (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

0 1 2 3 4 5 6

1

x (cars/second)

xµ













≥

<≤−

<≤
<≤

=

6,0

63,
3

2

31,1
10,

)(

0

0
0

0

00

0

x

xx
x
xx

xxµ

 Figure 3.12 The membership function form for fuzzy set “low”

 (Adapted from Kelsey & Bisset, 1993, p. 267 and Teodorovic&

 Vukadinovc, 1998, p. 51)

 105

xµ














≥

<≤−

<≤−

<

=

9,0

96,
3

3

63,1
3

3,0

)(

0

0
0

0
0

0

0

x

xx

xx
x

xxµ

Figure 3.13 The membership function form for fuzzy set “medium”(Adapted from

 Kelsey&Bisset, 1993, p.267 and Teodorovic& Vukadinovc, 1998, p. 51)

xµ












<
≥

<≤−

=
6,0
9,1

96,2
3

)(

0

0

0
0

0

x
x

xx

xxµ

Figure 3.14 The membership function form for fuzzy set “high”(Adapted from

 Kelsey&Bisset, 1993, p.267 and Teodorovic& Vukadinovc, 1998, p. 51)

 106

3.3.1.3 The membership function of the fuzzy set defined by the length of the

 current cycle time

Fuzzy sets of the length of current cycle time are assigned as “short”, “medium” and

“long”. The membership function of the fuzzy sets are trapezoid according to the Figure

3.15-3.17 as follow:

xµ










≥

<≤−

<≤

=

60,0

6030,
30

2

300,1

)(

0

0
0

0

0

x

xx
x

xxµ

Figure 3.15 The membership function form for fuzzy set “short”(Adapted from Kelsey

 & Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51)

 107

0 10 20 30 40 50 60 70 80 90

1

x (second)

xµ














≥

<≤−

<≤−

<

=

90,0

9060,
30

3

6030,1
30

30,0

)(

0

0
0

0
0

0

0

x

xx

xx
x

xxµ

 Figure 3.16 The membership function form for fuzzy set “medium”(Adapted from

 Kelsey&Bisset, 1993, p.267 and Teodorovic & Vukadinovc, 1998, p. 51)

xµ










≥

<≤−

<

=

90,1

9060,
3
2

20

60,0

)(

0

0
0

0

0

x

xx
x

xxµ

Figure 3.17 The membership function form for fuzzy set “long”(Adapted from

 Kelsey & Bisset, 1993, p. 267 and Teodorovic & Vukadinovc, 1998, p. 51)

 108

3.3.2 Fuzzy rule base

This section provides a list of rules in notation form that govern traffic control at

intersections. The fuzzy rule base consists of a collection of fuzzy IF-THEN rules

according to Kelsey and Bisset’s (1993) fuzzy rules base.

 Let x1 : number of cars that are behind the green light.

 x2 : number of cars that are behind the red light.

 x3 : current of cycle time.

 y : degree of change.

 F1 : fuzzy set for the number of cars behind the green light is zero.

 F2 : fuzzy set for the number of cars behind the green light is low.

 F3 : fuzzy set for the number of cars behind the green light is medium.

 F4 : fuzzy set for the number of cars behind the green light is high.

 F5 : fuzzy set for the number of cars behind the red light is zero.

 F6 : fuzzy set for the number of cars behind the red light is low.

 F7 : fuzzy set for the number of cars behind the red light is medium.

 F8 : fuzzy set for the number of cars behind the red light is high.

 F9 : fuzzy set for length of the current cycle time is short.

 F10 : fuzzy set for length of the current cycle time is medium.

 F11 : fuzzy set for length of the current cycle time is long.

 G1 : fuzzy set for degree of change is no.

 G2 : fuzzy set for degree of change is probably no.

 G3 : fuzzy set for degree of change is maybe.

 G4 : fuzzy set for degree of change is probably yes.

 G5 : fuzzy set for degree of change is yes.

Using to the previous notations, the rule base in notation form are as follows:

 Rule 1 IF x1 is F1 and x2 is F5 THEN y is G1

 Rule 2 IF x1 is F1 and x2 is F6 THEN y is G5

 Rule 3 IF x1 is F1 and x2 is F7 THEN y is G5

 Rule 4 IF x1 is F1 and x2 is F8 THEN y is G5

 Rule 5 IF x1 is F5 THEN y is G1

 Rule 6 IF x1 is F2 and x2 is F6 THEN y is G1

 Rule 7 IF x1 is F3 and x2 is F7 THEN y is G1

 Rule 8 IF x1 is F4 and x2 is F8 THEN y is G1

 109

 Rule 9 IF x1 is F2 and x2 is F7 and x3 is F9 THEN y is G3

 Rule 10 IF x1 is F2 and x2 is F7 and x3 is F10 THEN y is G4

 Rule 11 IF x1 is F2 and x2 is F7 and x3 is F11 THEN y is G5

 Rule 12 IF x1 is F2 and x2 is F8 and x3 is F9 THEN y is G2

 Rule 13 IF x1 is F2 and x2 is F8 and x3 is F10 THEN y is G3

 Rule 14 IF x1 is F2 and x2 is F8 and x3 is F11 THEN y is G4

 Rule 15 IF x1 is F3 and x2 is F6 and x3 is F9 THEN y is G2

 Rule 16 IF x1 is F3 and x2 is F6 and x3 is F10 THEN y is G2

 Rule 17 IF x1 is F3 and x2 is F6 and x3 is F11 THEN y is G3

 Rule 18 IF x1 is F3 and x2 is F8 and x3 is F9 THEN y is G3

 Rule 19 IF x1 is F3 and x2 is F8 and x3 is F11 THEN y is G4

 Rule 20 IF x1 is F3 and x2 is F8 and x3 is F12 THEN y is G5

 Rule 21 IF x1 is F4 and x2 is F6 and x3 is F9 THEN y is G3

 Rule 22 IF x1 is F4 and x2 is F6 and x3 is F10 THEN y is G4

 Rule 23 IF x1 is F4 and x2 is F6 and x3 is F11 THEN y is G5

 Rule 24 IF x1 is F4 and x2 is F7 and x3 is F9 THEN y is G2

 Rule 25 IF x1 is F4 and x2 is F7 and x3 is F10 THEN y is G2

 Rule 26 IF x1 is F4 and x2 is F7 and x3 is F11 THEN y is G3

3.3.3 Fuzzy inference engine

The fuzzy inference engine is used to infer a consequence fuzzy set from the rule base

and facts received from the input process methodology. The product-sum-gravity

method will be used to infer the consequence fuzzy set.

Let the facts of input be as follows:

 /
1x : fact of number of cars behind the green light

 /
2x : fact of number of car behind the red light

 /
3x : fact of the length of the current cycle time

Let /
iG denote the resulting fuzzy set from rule i. The membership function of /

iG is as

follows:

 110

)()()()(
151/

1

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
561/

2

/
2

/
1 yxxy GFFG

µµµµ ⋅=

)()()()(
571/

3

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
581/

4

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()(
15/

5

/
1 yxy GFG

µµµ ⋅=

)()()()(
162/

6

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
173/

7

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
184/

8

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()(
372/

9

/
2

/
1 yxxy GFFG

µµµµ ⋅⋅=

)()()()()(
41072/

10

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
51172/

11

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
2982/

12

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
31082/

13

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
41182/

14

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
2963/

15

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
21063/

16

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
31163/

17

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
3983/

18

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
41183/

19

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
51282/

20

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
3964/

21

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
41064/

22

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
51164/

23

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
2974/

24

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

 111

)()()()()(
21074/

25

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

)()()()()(
31174/

26

/
3

/
2

/
1 yxxxy GFFFG

µµµµµ ⋅⋅⋅=

Let /G be the consequence fuzzy set which is infered from the rule base and the

facts. The membership function of /G is defined by

∑
=

=
26

1
)()(//

i
GG yy

i
µµ

3.3.4 Defuzzifier

The defuzzifier performs a mapping from fuzzy set /G to the crisp point, the center of

gravity of /G .

Let iy denote the center of gravity of the inference result /
iG and let Si denote the area

of /
iG as in Figure 3.3 Then iy is defined as :

∫

∫ ⋅
=

dzz

dyyy
y

i

i

G

G
i

)(

)(

/

/

µ

µ

 =
i

G

S

dyyy
i∫ ⋅)(/µ

The leads to the center of gravity /y of the final consequence /G being given by

∫

∫ ⋅
=

dyy

dyyy
y

G

G

)(

)(

/

//

µ

µ

∫
∫

++

++⋅
=

dyyy

dyyy

GG

GG

)](...)([

]...)([

/
26

/
1

/
26

/
1

µµ

µµ

∑

∑

=

=

⋅
= 26

1

26

1

i
i

i
ii

S

yS

In practice, the identification of the center of gravity of /
iG is based on algebraic

calculation . The center of gravity is the horizontal coordinate of the centroid of the area

under the membership function. If the form of membership function is triangular, the

centroid is the intersection of the straight line from each vertex to the middle points of

 112

the corresponding side. The centers of gravity of /
iG are computed in the following

section

1) Identification of center of gravity of 1G

Consider the membership function form of 1G in Figure 3.18

0 0.1

1

 Figure 3.18 The membership function form of 1G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From Figure 3.18 the center of gravity of 1G is 0.033. And also the center of gravity of
/
iG is 0.033

 033.0=∴ iy for i = 1,5,6,7,9

2) Identification of center of gravity of 2G

Consider the membership function form of 2G in Figure 3.19

 113

0 0.1 0.2 0.3 0.4 0.5

1

Figure 3.19 The membership function form of 2G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From figure 3.19 center of gravity of /
2G is 0.2 . And also the center of gravity of

2.0G /
i =

 ∴ iy = 0.2 ; i = 12,15,16,25

3) Identification of center of gravity of 3G

Consider the membership function form of 3G in Figure 3.20

 Figure 3.20 The membership function form of 3G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From figure 3.20 center gravity of 3G is 0.4. And also the center of gravity of /
iG is 0.4

 ∴ iy = 0.4 ; i = 9,13,17,18,21,26

 114

4) Identification of center of gravity of 4G

Consider the membership function form of 4G in Figure 3.21

 Figure 3.21 The membership function form of 4G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

From figure 3.21 center gravity of 4G is 0.6. And also the center of gravity of /
iG is

0.6

 ∴ iy = 0.6 ; i = 10,14,19,22

5) Identification of center of gravity of 5G

Consider the membership function form of 5G in Figure 3.22.

 Figure 3.22 The membership function form of 5G

 (Adapted from Kelsey & Bisset, 1993, p. 267)

 115

From Figure 4.22 the center of gravity of 5G is 0.85. And also the center of gravity

of /
iG is 0.85.

 ∴ yi = 0.85 ; i = 2,3,4,11,20,23

3.4 The output process methodology

This section presents the method to simulate the current cycle time for each phase.

Fuzzy logic control will be used to find the optimal moment that occurs when the

optimal number of cars are behind the red light and the optimal number of cars that pass

the green light. The optimal length on each phase of the cycle is the current cycle time

at the optimal moment. The algorithm of simulation at each intersection is as follows:

Step 1. Let phase 1 of traffic signal cycle be the start phase.

Step 2. Iteratively generate cars and assign each car to each branch of the intersection

based on proportion of cars from the branch that are computed in the input process.

Step 3. Generate interarrival time of each car in step 2 by exponential distribution with

parameter beta.The value of beta is assigned by traffic intensity in the input process.

Step 4. Compute the important parameters of the simulation process, the input of fuzzy

logic system such as:

 /
1x : number of cars that pass the green light.

 /
1x : is computed by counting the number of cars from the branch that are

allowed to pass the intersection by the green light.

 /
2x : number of cars that stop behind the the red light.

 /
2x : is computed by counting the number of cars from the branch that are

prohibited to pass the intersection by the red light.

 /
3x : the current cycle time.

 /
3x is computed by the summation of interarrival time.

Step 5. Compute degree of change by using information from section 3.3 according to

the following procedure:

 Let iS denote area of /
iG ; i = 1, 2,…,26

 iA denote area of iG ; i = 1, 2, 3, 4, 5

 D denote degree of change

 116

 iy denote the center of gravity of /
iG ; i = 1, 2, …, 26

∑

∑

=

=

⋅
= 26

1

26

1

i
i

i
ii

S

Sy
D

From the figures 3.18-3.22, 1A = 0.05, 2A = 0.2, 3A =0.2, 4A = 0.2 and 5A = 0.15

and

1
/
2

/
11)()(

51
AxxS FF ⋅⋅= µµ

5
/
2

/
12)()(

61
AxxS FF ⋅⋅= µµ

5
/
2

/
13)()(

71
AxxS FF ⋅⋅= µµ

5
/
2

/
14)()(

81
AxxS FF ⋅⋅= µµ

1
/
15)(

5
AxS F ⋅= µ

1
/
2

/
16)()(

62
AxxS FF ⋅⋅= µµ

1
/
2

/
17)()(

73
AxxS FF ⋅⋅= µµ

1
/
2

/
18)()(

84
AxxS FF ⋅⋅= µµ

3
/
2

/
19)()(

72
AxxS FF ⋅⋅= µµ

4
/
3

/
2

/
110)()()(

1072
AxxxS FFF ⋅⋅⋅= µµµ

5
/
3

/
2

/
111)()()(

1172
AxxxS FFF ⋅⋅⋅= µµµ

1
/
3

/
2

/
112)()()(

982
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
113)()()(

1082
AxxxS FFF ⋅⋅⋅= µµµ

4
/
3

/
2

/
114)()()(

1182
AxxxS FFF ⋅⋅⋅= µµµ

2
/
3

/
2

/
115)()()(

963
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
117)()()(

1163
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
118)()()(

983
AxxxS FFF ⋅⋅⋅= µµµ

4
/
3

/
2

/
119)()()(

1183
AxxxS FFF ⋅⋅⋅= µµµ

5
/
3

/
2

/
120)()()(

1282
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
121)()()(

964
AxxxS FFF ⋅⋅⋅= µµµ

2
/
3

/
2

/
116)()()(

1063
AxxxS FFF ⋅⋅⋅= µµµ

 117

4
/
3

/
2

/
122)()()(

1064
AxxxS FFF ⋅⋅⋅= µµµ

5
/
3F

/
2F

/
1F23 A)x()x()x(S

1164
⋅µ⋅µ⋅µ=

2
/
3

/
2

/
124)()()(

974
AxxxS FFF ⋅⋅⋅= µµµ

2
/
3

/
2

/
125)()()(

1074
AxxxS FFF ⋅⋅⋅= µµµ

3
/
3

/
2

/
126)()()(

1174
AxxxS FFF ⋅⋅⋅= µµµ

Step 7 Generate Bernoulli random variable X , with parameter DP = , degree of

change. If value of the random variable is equal to zero retain the phase then go to step

1.

Step 8 If value of the random variable is equal to 1 then change the previous phase to

the next phase and go to step 2.

Step 9 Iterative until length of time equal 1800 second and covers all intersections.

 118

Chapter 4

Input and Analysis

4.1 The data collection
This section presents the method used to collect data for direct links, namely number of

cars that pass through a direct link in the traffic netwrok studied.

The method starts by assigning the collectors to 18 positions, 45 metres from the

intersection as shown in Figure 4.1. Each collector must count the cars that pass them

during 8.00-8.30 AM for 20 days.

 Y13 Y14

 Y16

 Y15 Y3
Y18

Y14

 Y4

 Y1 Y6

 Y5

 Y2 Y7

 Y12

 Y7

 Y10 Y12

 Y9

 Figure 4.1 Diagram of 18 positions to count the cars that pass direct link

The number of cars that pass a direct link during the 20 days are given below.

 119

Table 4.1 Table of the number of cars at 18 positions for 20 days
DAY Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18

1 455 461 145 70 117 413 99 403 144 665 497 359 420 390 419 315 510 406

2 486 535 144 68 142 367 90 358 153 662 562 255 419 435 401 329 508 366

3 418 504 126 79 168 395 137 342 171 749 411 387 414 560 351 276 486 330

4 421 481 146 69 162 371 112 461 174 720 433 344 309 468 327 263 440 402

5 452 514 145 81 149 449 98 423 184 789 581 399 557 480 417 345 464 486

6 423 490 134 82 180 471 100 350 166 757 551 442 451 436 401 275 487 359

7 450 470 140 62 163 414 92 410 150 702 548 338 458 489 396 308 465 316

8 433 525 147 68 123 368 116 445 145 679 408 349 450 441 419 328 478 337

9 415 538 142 85 163 479 143 414 157 804 461 411 509 405 471 317 470 416

10 427 546 129 70 134 463 117 421 162 779 413 339 209 466 204 278 272 411

11 462 528 124 72 194 531 128 415 162 880 494 407 480 531 421 361 436 411

12 438 489 134 83 120 381 134 390 163 822 526 343 350 459 432 317 517 409

13 423 522 131 55 179 446 111 379 164 801 407 357 409 548 401 305 471 320

14 471 522 130 85 175 388 104 435 146 758 555 325 487 481 452 289 483 309

15 410 483 102 69 152 448 122 403 140 698 455 447 435 483 366 328 456 368

16 425 506 153 90 161 423 94 382 131 705 447 373 473 524 353 322 443 333

17 413 512 122 86 159 463 125 478 163 819 459 451 450 510 333 296 477 354

18 452 522 118 91 167 427 96 386 179 684 486 350 433 518 338 373 485 370

19 410 545 130 91 182 405 112 394 168 768 412 356 460 496 354 387 483 403

20 464 512 183 68 178 524 187 420 124 502 488 430 430 498 348 317 477 414

The number of cars from Table 4.1 will be used to estimate traffic counts for all direct

routes.

4.2 The algorithm to simulate random variables

Rubinstein (1981) illustrates the algorithm to simulate random variable

based on its distribution. The important algorithms that are needed for the study are as

follows.

4.2.1 The algorithm to generate random number

There are many methods to generate random numbers, such as the mid-square method,

congruent metnods and so on, but the algorithm used to generate random numbers for

this study is as follows.

1. Set arbitrary number, I

2.
773,127

IK ←

 120

3. KKII ⋅−−⋅← 2836)773,127(807,16

4. If 0<I , deliver 647,483,147,2+= II

5. ()10656612875.4 −= eX

6. II ←

4.2.2 Gamma Distribution

A random variable X has a gamma distribution if its probability

density function (pdf) is defined as








>>∞≤≤=

−
−

,,0

0,0,0,
)()(

1

otherwise

xex
xf

x

βα
αΓβ α

βα

and denoted by),(G βα . One of the most important properties of the gamma

distribution is the reproductive property, which can be successfully used for gamma

generation. Let iX , i = 1, 2, n,K , be a sequence of independent random variables

from),(G i βα . Then ∑
=

=
n

i
iXX

1
 is from),(G βα where ∑

=

=
n

i
i

1
αα . If α is and

integer, say, m=α , a random variable from gamma distribution),(βmG can be

obtained by summing m independent exponential random variables, that is,

 ∏∑
==

−=−=
m

i
i

m

i
i UUX

11
ln)ln(ββ

which is called the Erlang distribution and denoted by Er(m,)β . The algorithm to

generate a random variable from Er(m,β) is as follows:

 1. .0←X

 2. Generate V from exponential distribution with ,1=β exp(1).

 3. VXX +=

 4. IF ,1=α XX β← and deliver X .

 5. .1−← αα

 6. Go to step 2.

 121

4.2.3 Poisson Distribution.

An random variable has a Poisson distribution if its probability distribution function is

equal to

!

)(
x

exf
xλλ−

= , x = 0, 1, 0, >λK

and is denoted by P(λ). It is well known that, if the time intervals between events are

from an exponential distribution with
λ

β
1

= , the number of events occurring in an unit

interval of time is from P(λ).

 Mathematically, it can be written

 ∑ ∑
=

+

=

≤≤
X

i

X

i
ii TT

0

1

0
,1

 where Ti , i = 0, 1, ,1, +XK are from exp(
λ
1). Since Ti = - ,ln1

iU







λ
the

last formula can be written as

 ∑ ∑
=

+

=

−≤≤−
X

i

X

i
ii UU

0

1

0
lnln λ X = 0, 1, K

or ∏ ∏
=

+

=

− ≥≥
X

i

X

i
ii UeU

0

1

0

λ X = 0, 1, K

The following algorithm is written to generate a Poisson distribution:

 1. 1←A

 2. .0←K

 3. Generate random number, UK from interval [0,1]

 4. AUA K←

 5. If λ−< eA , deliver KX = .

 6. .1+← KK

 7. Go to step 3.

4.2.4 Exponential distribution

The exponential distribution is the special case of the Gamma when 1=α , so a random

variable X has an Exponential distribution if its p.d.f. is defined as

 122







>≤⋅=

−

otherwise

xexf

x

,0

0,0,1
)(β

β
β

The algorithm to generate an Exponential random variable with parameter ,β is as

follows:

1. Generate random number, U from interval [0, 1].

2.)ln(UX β−←

4.2.5 Bernoulli distribution

For a random experiment occurring only once and with output success or

failure, let X be equal 1 for success with probability p, and X be 0 for failure with

probability p−1 , X is a Bernoulli random variable if its distribution function is

defined as

 () () 1,0;1 1 =−= − xppxf xx

The algorithm to generate a Bernoulli random variable with parameter p is as follows:

1. Generate random number, U from interval [0, 1].

2. If pU −≤ 1 , deliver 0=X .

3. 1=X .

4.2.6 Uniform distribution

Let X be defined on the interval [a, b], and any value of X occur with

equal probability,
ab −

1 , X is a uniform random variable and its distribution function

is defined by





 ≤≤

−=
otherwise

bxa
abxf

0

,1
)(

The algorithm to generate a Uniform random variable with parameters a and b is as

follows:

1. Generate random number, U

2. ()UabaX −+=

 123

4.3 Data algorithm analysis

To accomplish the research objective, the length of time appropriacy of the traffic

lights, this section presents algorithm analysis steps. This can be done by developing a

computer Fortran language program which is created on the important basis of three

types of algorithms: EM algorithm, Metropolis-Hasting algorithm, in particular, the

Gibbs sampler and Fuzzy logic algorithm. The process is comprised of 23 steps as

follows:

Step 1 Let positive mean population of number of car that travel on direct route on

traffic network

 µ = 721 ,,(µµ L) ; arbitrary.

Step 2 Observe daily data on direct links for 20 days on 08:00 – 08:30 am
() ≡1Y () ()()1

18
1

2
1

1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M

 ()20Y ≡ () () ()()20
18

20
2

20
1 YYY ,,, K

Calculate

()

20

20

1
∑

== k

k
i

i

Y
Y

Step 3 Estimate µ by µ̂ /
7221)ˆ,...,ˆ,ˆ(µµµ= based on applied algorithm

 µ j ← ∑
∑∑ =

==

18

1
72

1

18

1

i

k
kik

iij

i
ij

j

a

Ya

a µ

µ

Step 4 Generate jX from Poisson distribution with parameter 72,,2,1, Kjµ

for 100 day

Step 5 Generate daily data on direct links for 100 days depend on jX in step 4

() ≡1Y () ()()1
18

1
2

1
1 ,,, YYY K

()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

 M M
()100Y ≡ () () ()()100

18
100

2
100

1 ,,, YYY K

 124

Calculate

()

100

20

1
∑

== k

k
i

i

Y
Y

Step 6 Go to step 3 to calculate µ̂ 50 times to get)1(µ̂ ,)2(µ̂ ,…,)50(µ̂

Step 7 Calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ based on 50 estimations. Then µ̂ is the

unbiased estimator of µ , route count.

Step 8 Generate 10 vectors X from 72 independent Poisson distributions with

parameter vector µ (already estimated from step 7)

Step 9 Draw sample value of 10 parameter vectors λ from 72 conditionally

independent posterior distributions,)(jj Xp λ , that is Gamma distribution with shape

parameter 1+jX and scale parameter 1; 72,,2,1 K=j .

Step 10 For each parameter vector λ at iteration t draw a candidate *
jX from Poisson

distribution function as below.

 *
jX ~ Poisson(*

jX)1−
−
t

jX ;

Where 1−
−
t

jX represents all the element of X except jX , at their current values:

 1−
−
t

jX =),,,,,(1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK

 set






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

*)1,min(

 r =
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

 where
!

)(
j

x
j

j x
e

XP
jj λλ−

= , ()jXU =
!j

x
j

x
e jj µµ−

 Step 11 Directly compute the element of Y by AXY =

 Step 12 Let k
tjX be the drawn from 10 parallel sequences of iteration t of the kth

element of X ()10,,2,1;,,2,1 KK == jnt , compute B and W , the between and

within-sequence variances for each kth:

 ∑
=

−=
10

1

2
...)(

9 j
j XXnB , where ∑

=

=
n

i

k
ijj X

n
X

1
.

1 , ∑
=

=
10

1
... 10

1
i

jXX

 ∑
=

=
10

1

2

10
1

j
jSW , where ∑

=

−
−

=
n

i
j

k
ijj XX

n
S

1

2
.

2)(
1

1

 125

 and)1(1ˆ −+= n
W
B

n
R

Step 13 Return to step 8 and iterate until 1ˆ →R for all kth element.

Step 14 Estimate route count for each direct route by

 ∑
=

=
10

110
1ˆ

j

k
njk XX , 72,,2,1 K=k

 where kX̂ is the estimator of route count for direct route thk

 k
njX is the latest draw for parallel j

Step 15. Set the start phase of traffic signal cycle.

Step 16. Create cars and find the probability, which is emerged from the calculation of

route counts in Step 14, for each of the created car in order to randomise its moving

from each branch of the intersection.

 Step 17. Generate interarrival time of each car in step 16 by exponential distribution

with parameter beta that is fixed by traffic intensity in the part of input process.

Step 18. Compute the important parameter of simulation process, input of fuzzy logic

system such as:

 /
1x : number of cars that pass the green light.

 /
1x : number of cars from the branch that are allowed to pass the intersection

 by the green light.

 /
2x : number of car that stop behind the red light.

 /
2x : number of cars from the branch that are prohibited passing

 the intersection by the red light.

 /
3x : the current cycle time.

 /
3x : summation of interarrival time.

Step 19. Caculate the value of the cost function, by using information from section 3.4

Step 20 Generate Bernoulli random variable X , with parameter DP = , degree of

change. If value of the random variable is equal zero then go to step 15.

Step 21 If value of the random variable is equal 1 then change the previous phase to the

next phase and go to step 16.

Step 22 Caculate the value of the cost function.

Step 23 Iterate until length of time is complete and all intersections are covered.

 126

4.4 The computer program in the Fortran language

The computer program is composed of a main program and 7 sub-programs.

4.4.1 Main program to estimate traffic intensity by the mixed model.

The main program is used to estimate traffic intensity using the mixed model. The

optimal length of traffic signal lights is also calculated. The program consist of three

parts.

4.4.1.1 Program to estimate traffic intensity by the EM algorithm.

This program takes the traffic intensity from the daily data observations to estimate the

population mean of traffic counts on 72 direct routes. The program reads the input data

that consists of traffic counts on the 18 direct links from daily data observation. Then it

computes the sample mean of the traffic count for 20 days. The sample mean are used to

estimate the population mean based on EM algorithm iteration. Finally the outputs of

the program are populations mean of traffic counts on 72 direct routes.

4.4.1.2 Program to estimate traffic intensity by Gibbs sampler.

The population means estimated in 4.4.1.1 provides important information for this

program. The function of this program is to estimate traffic intensity for 72 direct

routes, given the population means and the data observations. The algorithm for the

program is based on Gibb sampling. The outputs of this program are traffic intensities

on each of the 72 direct routes.

4.4.1.3 Program to calculate optimal length of traffic signal light.

This program is used to calculate optimal length of signal light. The outputs from the

program in 4.4.1.2 are traffic estimators for each of 72 direct routes. The estimators

provide important information for this program that can be used to generate value of

exponential variable. The value of exponential variable is the interarrival time. The

interarrival time is used to define each car that arrives at the intersection. The current

cycle time is also computed by summation of the interarrival times. The traffic intensity

 127

from the program in 4.4.1.2 and the current cycle time are the input data of the fuzzy

logic system. The inputs are used to infer the degree of change for each phase based on

the fuzzy logic system. Finally the degree of change is use to calculate the optimal

length of the signal light.

4.4.2 Sub-Program

The sub-programs are designed to support the main program when the main program

needs to compute the same object many times. There are 7 sub-program as follows:

4.4.2.1 Sub-Program to define any car belonging to each branch of road.

The function of this sub-program is to define any car belonging to each branch of the

road at the intersection. The sub-program firstly generates random number. The random

number is then separated to each branch based on the proportional traffic intensity in

4.4.1.2. Finally any car can be defined to belong to a particular branch by the random

number. The technique of this program is branch index generation. The branch index is

fixed by random number that are separated based on the proportional traffic intensity .

4.4.2.2 Sub-Program to generate an exponential random variable.

The function of this program is to generate an exponential random variable. The value

of the variable is the interarrival time. This program supports the main program in

4.4.1.3 .

4.4.2.3 Sub-Program to generate a gamma random variable.

The function of this program is to generate a gamma random variable. The value of the

variable is the population mean of traffic intensity. This program support the main

program in 4.4.1.2 .

4.4.2.4 Sub-Program to generate a Poisson random variable.

The function of this program is to generate a Poisson random variable. The value of the

variable is the number of cars. This program support the main program in 4.4.1.1 .

 128

 4.4.2.5 Sub-Program to generate a Bernoulie random variable.

The function of this program is to generate a Bernoulie random variable. The value of

the variable is the decision index to decide whether to choose something or not based on

its probability. So this program supports the main program in 4.4.1.2 and sub-program

4.4.2.1

4.4.2.6 Sub-Program to generate a random number.

The function of this program is to generate a random number. The value of random

number is used to generate a random variable from any distribution. So this program

supports the sub-program in 4.4.2.2-4.4.2.5

4.4.2.7 Sub-Program for fuzzy logic controller

The function of this program is to compute the degree of change in each phase based on

the fuzzy logic system. The input of this program comes from the main program in

4.4.1.2 and 4.4.1.3

 129

 Chapter 5

Results of the Study

5.1 The number of cars on each direct route

There are 72 source-destination pairs (SD). The software estimated the number of cars

on each SD by mixure of maximum likelihood and Baysian estimation. The output are

shown in Table 5.1.

Table 5.1 Rate of cars on each SD (per second) from estimation.

SD. NO. SD. NO. SD. NO. SD. NO. SD. NO. SD. NO.
X1 2.183 X13 0.032 X25 2.476 X37 0.02 X49 2.208 X61 0.038
X2 0.062 X14 0.005 X26 2.551 X38 0.017 X50 2.187 X62 0.055
X3 2.228 X15 0.088 X27 0.163 X39 0.06 X51 1.917 X63 0.022
X4 0.018 X16 0.043 X28 2.168 X40 2.267 X52 0.02 X64 2.047
X5 0.035 X17 0.015 X29 0.040 X41 2.18 X53 2.415 X65 0.02
X6 2.1 X18 0.023 X30 0.023 X42 0.017 X54 0.023 X66 2.248
X7 2.668 X19 0.015 X31 0.278 X43 0.012 X55 0.025 X67 2.072
X8 1.873 X20 0.052 X32 0.067 X44 0.015 X56 0.075 X68 0.328
X9 0.016 X21 0.01 X33 0.032 X45 0.33 X57 0.038 X69 0.02
X10 0.023 X22 0.055 X34 0.08 X46 0.052 X58 0.052 X70 0.045
X11 0.35 X23 0.035 X35 0.133 X47 0.032 X59 0.113 X71 0.052
X12 0.0267 X24 0.035 X36 0.042 X48 0.032 X60 0.097 X72 0.027

Note: SD. denote direct route.
 No. denote rate of cars belong SD.

From Table 5.1 shows the rate of cars on direct links rather than the rate on direct

routes.

5.2 The performance of traffic flow

The computer program generated the important parameters of traffic flow performance

under the fuzzy logic controller and conventional controller.The parameters were the

length of each phase, the number of cars behind the green light and the red light. The

outputs of the parameters are shown in Table 5.2-5.9. To understand the numbers in

each column, the No. green and No. red, are definded as follows:

1) No. Green denotes the number of cars behind the green light.

2) No. Red denotes the number of cars behind the red light.

 130

3) The first number of No.Green is the number of cars stopping behind the red light at

 pre-phase includes the other cars moving past the green light in the first group at

 the current phase. .

4) The second number of No. Green is the order of the last car that moves to pass the

 green light or the number of all cars that pass green light at the current phase.

5) The first number of No. Red is the number of cars that stop behind the red light at

 pre-phase and still stop behind the red light including the other cars behind the red

 light in the first group at the current phase.

6) The second number of No. Red is the order of the last car behind the red light

 or the number of all cars that stop behind the red light at the current phase.

 The criterion of length is defined as follows:

 Less than 35 seconds indicates that the length is short

 Between 35-70 seconds indicates that the length is moderate

 Greater than 70 seconds indicates that the length is long

According to the criterion of length it is assumed that the average car uses 1 second to

pass the intersection behind the green light. The criterion of No. Green and No. Red are

defined in terms of length as follows:

 Less than 35 cars show that No. Green or No. Red are few.

 Between 35-70 cars show that No. Green or No. Red are moderate.

 Greater than 70 cars show as No. Green or No. Red are many.

5.2.1 The performance of traffic flow based on fuzzy logic controller

The computer program generated the parameters of traffic flow performance for the

fuzzy controller. The outputs of the parameters are shown as in Table 5.2-5.5

 131

Table 5.2 Pattern of traffic flow during each phase at Uboncharearnsri intersection

 Based on fuzzy logic controller.

Cycle Phase No. Green No.Red Length(sec)

 1 0 2-2 0.37

1 2 4-5 1-1 1.67

 3 0 3-3 0.36

 1 4-4 1-4 3.53

2 2 5-7 1-1 1.33

 3 2-3 1-1 1.32

 1 1-2 2-5 1.62

3 2 7-8 0-1 2.14

 3 2-2 1-1 1.39

 1 1-1 2-2 2.54

4 2 4-4 1-1 1.52

 3 1-1 2-2 1.79

 1 4-5 0-1 1.92

5 2 2-3 1-1 2.04

 3 0 3-3 1.64

 1 3-6 2-6 3.8

6 2 7-11 1-3 4.38

 3 0 5-5 0.47

 1 4-5 3-9 3.16

7 2 10-11 1-1 1.70

 3 0 3-3 0.69

 1 4-4 1-6 7.17

8 2 6-90 2-63 87.54

 3 21-36 44-73 31.49

 1 61-80 14-64 47.61

9 2 54-130 12-75 73.90

 3 28-53 49-101 45.18

 1 74-93 29-83 52.12

10 2 69-139 16-67 69.262

 3 28-53 49-101 45.18

 132

 1 65-107 25-105 60.55

11 2 94-185 13-81 76.65

 3 32-71 51-114 59.47

 1 82-131 34-135 72.47

12 2 121-168 16-57 62.32

 3 29-45 30-75 38.88

 1 48-69 29-75 39.50

13 2 64-122 13-66 68.77

 3 34-53 34-89 45.16

 1 56-80 35-86 45.23

14 2 79-129 9-46 52.88

 3 16-40 32-67 35.21

 1 47-81 22-75 47.05

15 2 62-122 15-64 67.15

 3 28-49 38-90 42.06

 1 57-88 35-94 49.08

16 2 91-160 5-56 61.53

 3 22-45 36-74 42.03

 1 49-70 27-80 39.81

17 2 72-104 10-23 28.82

 3 11-23 14-37 20.22

 1 24-34 15-39 21.43

18 2 36-58 5-17 21.66

 3 10-18 9-23 22.50

 1 18-23 7-26 14.63

19 2 23-98 5-63 66.82

 3 23-40 42-82 36.18

20 1 62-82 22-80 46.64

 2 72-114 10-40 46.78

Average

Standardeviation

 6441.53=X

S = 51.5316

8814.44=X

S = 38.7495

 022.36=X

 S = 26.4409

Table 5.2 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 54 and 49 cars. The average of the optimal

 133

length on each phase is 36.022 seconds. The optimal length of each phase in early

cycles (cycle 1-cycle 7) is very short. For late cycles (cycle 8 and later) the optimal

length of each phase is moderate. The optimal length of phase 2 seems longer than the

others. There are a few cars behind both the green and the red light in the early cycles.

However, there are moderate numbers of the cars behind both the green and the red

lights at the late cycles. In detail of cycle 1 (see Figure 4.3), each figure shows that there

are no cars behind the green light and there are 2 cars behind the red light on phase 1 so

it should be used only 0.37 seconds on this phase.

On phase 2 of cycle 1, 2 cars from phase 1 including the other 2 cars pass the green

light and the last car that passes the green light on this phase is the 5th ; the number of

all cars that pass the green light on this phase are 5 cars while 1 car stops behind the red

light. This phase uses only 1.67 secconds. On phase 3 of cycle 1, 1 car from phase 2

still stops behind the red light and there are no other cars passing the green light while

there are the other 2 cars behind the red light; the number of all cars behind the red light

on this phase are 3 cars. The phase uses 0.35 seconds. The describtion of the other

cycles are similar to the description of cycle 1 in which the number of cars on the

current phase are impacted by the number of cars on the

pre- phase.

Table 5.3 Pattern of traffic flow during each phase at Clock Hall intersection based on
 fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0 2-2 0.19
1 2 3-5 1-9 6.53
 3 0 11-11 4.15
 1 11-62 2-50 57.24
2 2 44-121 8-109 91.63
 3 16-16 95-102 22.01
 1 99-151 5-65 67.96
3 2 61-85 6-57 62.34
 3 10-10 49-52 11.80
 1 51-60 3-10 12.67
4 2 10-21 2-15 22.29
 3 2-2 15-17 12.49
 1 17-17 2-2 2.93
5 2 1-1 3-3 1.63
 3 2-2 3-4 15.14
 1 4-8 2-2 3.4
6 2 3-3 1-2 2.734
 3 1-1 3-3 11.96

 134

 1 3-5 2-2 2.97
7 2 2-5 2-8 9.29
 3 2-2 8-8 8.69
 1 8-8 2-2 4.32
8 2 1-8 3-16 19.95
 3 2-3 16-19 14.46
 1 16-79 5-62 66.38
9 2 56-128 8-101 85.91
 3 18-18 85-93 22.02
 1 89-95 6-10 13.68

10 2 10-43 2-57 79.68
 3 8-10 51-67 42.51
 1 62-91 7-39 47.97

11 2 35-59 6-35 46.59
 3 10-11 27-32 17.03
 1 31-39 3-15 24.41

12 2 14-72 3-67 79.91
 3 8-8 61-61 9.65
 1 60-78 3-17 22.37

13 2 18-116 1-144 128.44
 3 14-14 132-140 18.05
 1 134-226 8-88 80.05

14 2 82-149 8-89 80.01
 3 13-13 78-93 44.34
 1 85-165 10-92 81.43

15 2 82-130 12-63 73.69
 3 19-19 46-51 22.64
 1 49-128 4-89 81.10

16 2 81-160 10-101 86.23
 3 24-25 79-97 31.11
 1 88-170 11-70 17.15

17 2 - - -
 3 - - -

Average

Standardeviation

 9184.53=X

S = 59.9992

8163.47=X

S = 40.7455

 1454.36=X

 S = 32.6769

Table 5.3 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 54 and 48 cars. The average of the optimal

length on each phase is 36.1454 seconds. There is an instability in the performance of

traffic flow at early cycle (cycle 1-cycle 8). At cycle 1, there are a few cars behind the

green and the red light and very short optimal length. For cycle 2 and cycle 3, the most

number of cars behind the green light are many but the most number of cars behind the

red light and the optimal length are moderate. The performance of traffic flow at cycle

4-cycle 8 is the same as the performance at cycle 1. At late cycles

 135

(cycle 9 and beyond), the most optimal lengths are long. The most number of cars

behind the green and red light are many. In detail of cycle 1 (see Figure 4.4), each figure

shows that there are no cars behind the green light and there are 2 cars behind the red

light on phase 1 so it should be used only 0.19 seconds on this phase.

On phase 2 of cycle 1, 2 cars from phase 1 including another one pass the green light

and the last car passing the green light on this phase is the 5th; the number of all cars that

pass the green light on this phase are 5 cars while 9 cars stop behind the red light. The

phase uses 6.53 secconds. On phase 3 of cycle 1, 9 cars from phase 2 still stop behind

the red light and there are no other cars passing the green light while there are the other

2 cars are behind the red light; the number of all cars that behind the red light on this

phase are 11 cars. The phase uses 4.15 seconds. The description of the other cycles are

similar to the description of cycle 1 in which the numbers of cars on the current phase

are impacted by the number of cars on the pre- phase.

Table 5.4 Pattern of traffic flow during each phase at Chonlaprathan intersection
 based on fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0 2-2 1.48
1 2 3-3 1-1 1.18
 3 1-1 2-2 0.75
 1 0 4-4 2.21
2 2 4-4 2-5 3.61
 3 2-3 5-8 2.41
 1 5-26 5-35 15.78
3 2 22-167 15-196 129.63
 3 107-195 91-273 109.33
 1 178-288 97-357 161.24
4 2 246-449 113-386 213.46
 3 254-409 134-481 229.39
 1 280-456 203-628 255.56
5 2 441-720 189-611 337.61
 3 399-685 214-826 383.23

Average

Standardeviation

 33.120=X

S = 200.7387

2121.131=X

S = 219.3564

 3625.68=X

 S = 104.167

Table 5.4 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 120 and 131 cars. The average of the optimal

length on each phase is 68.3625 seconds. There are only five cycles during a specified

time. There are a few cars and very short optimal lengths on all phases at cycle 1 and

 136

cycle 2. For cycle 3,4 and 5 there are many cars behind the green and the red lights,

while the optimal length is very long on all phases. In detail of cycle 1,

(see Figure 4.5) each figure shows that there are no cars behind the green light and there

are 2 cars behind the red light on phase 1 so it should be used only 1.48 seconds for this

phase. On phase 2 of cycle 1, 2 cars from phase 1 include another one passing the green

linght; the number of all cars that pass the green light on this phase are 3 cars while 1

car stops behind the red light. The phase use 1.18 secconds. On phase 3 of cycle 1, 1 car

from phase 2 passes the green light while there are 2 cars behind the red light; the

number of all cars behind the red light on this phase are 2 cars. The phase uses 0.75

seconds. The describtion of other cycles are similar to the description of cycle 1 in

which the number of cars on the current phase are impacted by the number of cars on

the pre phase.

Table 5.5 Pattern of traffic flow during each phase at Airport intersection from
 fuzzy logic controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0 2-2 0.64
1 2 1-6 3-16 6.05
 3 5-10 13-20 7.52
 4 12-16 10-28 10.27
 1 17-41 13-60 39.69
2 2 26-78 36-166 91.71
 3 51-73 117-183 41.39
 4 94-146 91-215 82.64
 1 119-167 98-259 93.96
3 2 106-198 155-453 166.36
 3 193-274 262-504 153.67
 4 256-381 250-594 213.85
 1 289-412 307-675 230.63
4 2 347-586 330-997 413.64
 3 396-560 603-1164 313.46

 4 - - -
Average

Standardeviation
 6579.92=X

S = 153.865

3421.154=X

S = 281.2448

 1001.60=X

 S = 94.7208

Table 5.5 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 93 and 154 cars. The average of the optimal

length on each phase is 60.1001 seconds. there are only four cycles during the specified

time. There are a few cars and very short optimal length on all phases at cycles 1. For

cycles 2,3 and 4 there are many cars behind the green and the red lights, while the

optimal length is very long on most phases. In detail of cycle 1

 137

(see Figure 4.6), each figure shows that there are no car behind the green light and there

are 2 cars behind the red light on phase 1 so it should be used only 0.64 seconds for this

phase.

On phase 2 of cycle 1, there are 6 cars passing the green light , the number of all cars

that pass the green light on this phase is 6 cars while 2 cars from phase 1 still stop

behind the red light including another one; the number of all cars that stop behind the

red light on this phase are 16 cars. The phase uses 6.05 secconds. On phase 3 of cycle 1,

5 cars from 16 cars on phase 2 pass the green light and the last car that passes the green

light on this phase is the 10th; the number of all cars that pass the green light on this

phase is 10 cars while the 11 cars from 16 cars on phase 2 still stop behind the red light,

including the other 2 cars are also behind the red light; the number of all cars behind

the red light on this phase are 20 cars. The phase uses 7.52 seconds. On phase 4 of cycle

1, 12 cars from the 20 cars on phase 3 pass the green light and the last cars that pass the

green light on this phase is the 16th; the number of all cars behind the green light on this

phase are 16 cars. There are 8 cars from 20 cars on phase 3 still stopping behind the red

light include the other 2 cars; the number of the all cars behind the red light on this

phase are 28 cars. The phase uses 10.27 seconds. The description of the other cycles are

similar to the description of cycle 1 in which the number of cars on the current phase are

impacted by the number of cars on the

pre- phase.

5.2.2 The performance of traffic flow based on conventional
 controller

The computer program generated the parameters of traffic flow performance for the

conventional controller. The outputs of the parameters are shown as Table 5.6-5.9

Table 5.6 Pattern of traffic flow during each phase at Uboncharearnsri intersection
 based on conventional control.

Cycle Phase No. Green No. Red Length(sec)
 1 0-11 2-30 20
1 2 28-56 4-20 25
 3 4-20 18-36 25
 1 26-35 12-29 20
2 2 24-47 4-28 25
 3 12-30 18-55 25
 1 31-41 26-37 20
3 2 36-55 3-16 25
 3 7-19 11-39 25

 138

 1 21-31 20-40 20
4 2 38-63 4-21 25
 3 7-27 16-52 25
 1 37-51 17-44 20
5 2 39-66 7-24 25
 3 14-27 12-28 25
 1 20-31 10-34 20
6 2 30-53 6-27 25
 3 11-25 18-42 25
 1 28-42 16-36 20
7 2 37-56 1-22 25
 3 9-18 15-51 25
 1 30-40 23-55 20
8 2 52-79 5-30 25
 3 9-22 23-47 25
 1 32-43 17-48 20
9 2 46-69 4-34 25
 3 16-34 20-60 25
 1 36-52 26-42 20

10 2 35-59 9-24 25
 3 13-24 13-43 25
 1 25-40 20-49 20

11 2 48-77 3-32 25
 3 12-25 22-47 25
 1 36-46 13-35 20

12 2 35-48 2-15 25
 3 8-20 9-41 25
 1 18-32 25-49 20

13 2 45-63 6-25 25
 3 13-28 14-42 25
 1 22-31 22-40 20

14 2 35-51 7-30 25
 3 15-27 17-58 25
 1 32-41 28-46 20

15 2 43-67 5-24 25
 3 10-23 16-43 25
 1 29-39 16-36 20

16 2 33-59 5-24 25
 3 11-29 15-41 25
 1 27-42 16-43 20

17 2 37-56 8-31 25
 3 13-25 20-48 25
 1 37-42 13-30 20

18 2 24-54 8-25 25
 3 11-22 16-46 25
 1 25-35 23-50 20

19 2 52-82 0-19 25
 3 4-47 17-58 25
 1 37-45 23-46 20

20 2 42-71 6-27 25

 139

20 3 12-24 17-27 25
 1 28-35 21-44 20

21 2 40-70 6-23 25
 3 10-23 15-38 25
 1 27-34 13-39 20

22 2 40-72 1-16 25
 3 4-18 14-41 25
 1 26-31 17-36 20

23 2 32-49 6-24 25
 3 12-26 14-42 25
 1 23-37 21-57 20

24 2 52-75 7-30 25
 3 12-22 20-56 25
 1 36-42 22-46 20

25 2 42-68 6-22 25
 3 10-24 14-36 25
 1 23-33 15-30 20

26 2 - - 25
 3 - - 25

Average

Standardeviation
 7895.41=X

S = 17.554

8553.36=X

S = 11.4108

Table 5.6 shows that the average of the number of cars behind the green light and the

red light on each phase are respectively 42 and 37 cars. The number of cars behind the

green and the red lights on most phases are moderate. In detail of cycle 1 (see Figure

4.3), each figure shows that there are 11 cars behind the green light and there are 30 cars

behind the red light on phase 1, it uses 20 seconds for this phase. On phase 2 of cycle 1,

28 cars from 30 cars on phase 1 pass the green light and the last car that passes the

green light on this phase is the 56th; the number of all cars that pass the green light on

this phase is 56 cars while 2 cars from 30 cars on phase 1 still stop behind the red light

including the other 2 cars; the last car behind the red light on this phase is the 20th so

that the number of all cars stopping behind the red light on this phase is 20 cars.The

phase use 25 secconds. On phase 3 of cycle 1, 4 cars from the 20 cars on phase 2 pass

the green light and the last car that passes the green light is the 20th ; so the number of

all cars passing the green light on this phase is 20. There are 16 cars from the 20 cars on

phase 2 still stopping behind the red light including the other 2 cars are also behind the

red linght on this phase; the number of all cars behind the red light on this phase are 36

cars. The phase uses 25 seconds. The description of other cycles are similar to the

description of cycle 1 in which the number of car on the current phase are impacted by

the number of car on the pre-phase.

 140

Table 5.7 Pattern of traffic flow during each phase at Clock Hall intersection
 based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0-23 2-18 20

1 2 17-40 3-29 25
 3 4-4 27-33 25
 1 32-44 3-17 20

2 2 14-34 5-27 25
 3 8-8 21-34 25
 1 31-49 5-21 20

3 2 20-46 3-39 25
 3 4-4 37-46 25
 1 40-59 8-32 20

4 2 31-50 3-25 25
 3 3-4 24-36 25
 1 29-52 9-26 20

5 2 24-34 4-24 25
 3 5-5 21-28 25
 1 27-46 3-16 20

6 2 16-24 2-16 25
 3 3-3 15-22 25
 1 17-36 7-16 20

7 2 13-18 5-18 25
 3 7-7 13-23 25
 1 17-38 8-23 20

8 2 24-45 1-31 25
 3 2-4 31-44 25
 1 38-52 8-25 20

9 2 22-38 5-32 25
 3 6-6 28-40 25
 1 36-51 6-25 20

10 2 23-42 4-25 25
 3 8-8 19-30 25
 1 24-35 8-17 20

11 2 16-33 3-29 25
 3 4-4 27-32 25
 1 30-35 4-4 20

12 2 12-22 4-34 25
 3 7-8 29-39 25
 1 33-48 8-27 20

13 2 24-41 5-28 25
 3 7-7 23-28 25
 1 26-33 4-14 20

14 2 12-26 5-18 25
 3 4-5 16-33 25
 1 25-45 10-33 20

15 2 33-48 2-17 25
 3 3-5 16-35 25
 1 28-29 9-15 20

16 2 14-29 3-26 25

 141

16 3 2-3 26-39 25
 1 35-52 6-22 20

17 2 22-42 2-38 25
 3 4-6 36-41 25
 1 40-58 3-20 20

18 2 16-42 6-37 25
 3 6-6 33-46 25
 1 37-51 11-33 20

19 2 31-47 4-33 25
 3 7-7 28-35 25
 1 33-62 4-27 20

20 2 28-53 1-29 25
 3 1-2 30-40 25
 1 34-51 8-29 20

21 2 28-46 3-28 25
 3 3-3 27-38 25
 1 33-53 7-27 20

22 2 26-53 3-32 25
 3 4-5 30-41 25
 1 36-47 7-27 20

23 2 26-43 3-29 25
 3 6-6 25-43 25
 1 37-52 8-28 20

24 2 25-39 5-18 25
 3 7-7 13-24 25

Average
Standarderviation

 0417.30=X
S = 19.5358

5278.28=X
 S = 8.617

From Table 5.7 shows that the average of the number of that behind the green light and

the red light on each phase are respectively 30 and 29 cars. the number of cars behind

the green and the red light on most phases are moderate. In detail of cycle 1 (see Figure

4.4), each figure shows that there are 23 cars passing the green light and there are 18

cars stopping behind the red light; it uses 20 seconds on this phase. On phase 2 of cycle

1, 17 cars from 18 cars on phase 1 pass the green linght and the last car that passes the

green light on this phase is the 40th; the number of all cars that pass the green light on

this phase is 40 cars while 1 car from 18 cars on phase 1 still stop behind the red light

including the other 2 cars. The last car that stops behind the red light on this phase is the

29th; so that the number of all cars that stop behind the red light on this phase is 29

cars.The phase uses 25 secconds. On phase 3 of cycle 1, there are only 4 cars from 29

cars on phase 2 passing the green light while there are 25 cars from the 29 cars on phase

2 still stopping behind the red light including the other 2 cars; the number of all cars

stopping behind the red light on this phase are 33 cars. The phase uses 25 seconds. The

description of the other cycles are similar to the description of cycle 1 in which the

 142

number of cars on the current phase are impacted by the number of cars on the pre-

phase.

Table 5.8 Pattern of traffic flow during each phase at Chonlaprathan intersection
 based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0-16 2-32 20

1 2 20-50 14-49 25
 3 29-44 22-58 25
 1 33-55 27-70 20

2 2 52-84 20-57 25
 3 41-57 18-61 25
 1 32-48 31-66 20

3 2 48-66 20-61 25
 3 40-61 23-63 25
 1 42-58 23-52 20

4 2 40-61 14-58 25
 3 34-47 26-75 25
 1 41-53 36-69 20

5 2 53-74 18-51 25
 3 34-52 19-55 25
 1 34-49 23-55 20

6 2 37-64 20-53 25
 3 37-51 18-55 25
 1 35-47 22-47 20

7 2 39-65 10-35 25
 3 18-30 19-63 25
 1 35-53 30-64 20

8 2 47-73 19-51 25
 3 37-56 16-53 25
 1 29-37 26-56 20

9 2 36-56 23-60 25
 3 38-55 24-64 25
 1 33-54 33-70 20

10 2 52-74 20-45 25
 3 34-49 13-43 25
 1 24-35 21-45 20

11 2 34-55 13-40 25
 3 29-42 13-47 25
 1 30-46 19-51 20

12 2 39-70 14-50 25
 3 32-50 20-50 25
 1 33-47 19-58 20

13 2 40-66 20-60 25
 3 45-62 17-50 25
 1 29-40 23-47 20

14 2 36-61 13-54 25
 3 37-54 19-58 25

 143

 1 37-48 23-53 20
15 2 41-65 14-56 25
 3 36-57 22-64 25
 1 42-51 24-59 20

16 2 47-69 14-52 25
 3 24-45 30-68 25
 1 45-58 25-57 20

17 2 44-67 15-49 25
 3 33-45 18-48 25
 1 27-42 23-53 20

18 2 36-67 17-54 25
 3 34-54 22-53 25
 1 35-49 20-37 20

19 2 33-45 6-34 25
 3 23-41 13-42 25
 1 33-39 21-47 20

20 2 27-53 12-45 25
 3 26-41 21-50 25
 1 33-46 19-55 20

21 2 47-69 10-43 25
 3 24-35 21-58 25
 1 44-79 12-56 20

22 2 40-58 18-56 25
 3 40-58 18-56 25
 1 35-46 23-67 20

23 2 45-66 24-55 25
 3 45-62 22-60 25
 1 43-56 19-58 20

24 2 38-57 22-56 25
 3 43-60 15-49 25
 1 30-40 21-52 20

25 2 40-64 14-41 25
 3 28-43 15-55 25
 1 30-43 27-69 20

26 2 - -
 3 - -

Average
Standarderviation

 75.53=X
 S = 11.786

0526.54=X
 S = 8.7115

Table 5.8 shows that the average of the number of cars behind the green light and the

red light on each phase are 54 cars.The number of cars behind the green and the red

light on all phases are moderate. In detail of cycle 1 (see Figure 4.5), each figure shows

that there are 16 cars passing the green light and there are 32 cars stopping behind the

red light, it uses 20 seconds for this phase. On phase 2 of cycle 1, 20 cars from 32 cars

on phase 1 pass the green light , the number of all cars that pass the green light on this

phase are 50 cars. There are 12 cars from the 32 cars on phase 1 still stopping behind

the red light including the other 2 cars.The last cars that stops behind the red light on

 144

this phase is 49th, so that the number of all cars that stop behind the red light on this

phase are 49 cars. The phase uses 25 secconds. On phase 3 of cycle 1, 29 cars from 49

cars on phase 2 passing the green light, the last car that passes the green light on this

pase is 44th , so that the number of all cars that pass the green light on this phase are 44

cars. There are 20 cars from 49 cars on phase 2 still stopping behind the red light

including the other 2 cars, the number of all cars that stop behind the red light on this

phase are 58 cars. The phase uses 25 seconds. The description of other cycles are

similar to the description of cycle 1 in which the number of cars on the current phase are

impacted by the number of cars on the

 pre-phase.

Table 5.9 Pattern of traffic flow during each phase at Airport intersection
 based on conventional controller.

Cycle Phase No. Green No. Red Length(sec)
 1 0-17 2-45 25

1 2 13-18 34-61 20
 3 24-28 39-76 20
 4 35-54 43-81 25
 1 38-52 45-83 25

2 2 52-57 33-62 20
 3 23-33 41-60 20
 4 37-51 25-67 25
 1 31-47 38-79 25

3 2 39-47 42-71 20
 3 36-45 37-78 20
 4 39-55 41-69 25
 1 39-53 32-75 25

4 2 27-39 50-79 20
 3 40-54 41-73 20
 4 47-56 28-72 25
 1 34-47 40-78 25

5 2 37-49 43-87 20
 3 38-51 51-86 20
 4 45-64 43-77 25
 1 44-59 35-84 25

6 2 37-49 49-85 20
 3 41-52 46-74 20
 4 41-57 35-80 25
 1 37-47 45-83 25

7 2 38-48 47-73 20
 3 40-49 35-66 20
 4 42-57 26-69 25
 1 28-39 43-79 25

8 2 40-51 41-74 20
 3 44-48 32-68 20

 145

8 4 42-50 38-76 25
 1 38-54 40-92 25

9 2 43-49 51-88 20
 3 37-42 53-91 20
 4 49-56 44-85 25
 1 34-48 53-89 25

10 2 50-55 41-80 20
 3 34-38 48-72 20
 4 44-59 30-82 25
 1 39-52 45-87 25

11 2 46-54 43-74 20
 3 39-43 37-75 20
 4 37-54 40-76 25
 1 34-51 44-90 25

12 2 43-52 49-74 20
 3 34-38 42-75 20
 4 44-60 33-72 25
 1 30-44 44-72 25

13 2 44-54 33-69 20
 3 28-37 43-72 20
 4 40-54 34-81 25
 1 43-55 40-96 25

14 2 56-71 42-81 25
 3 43-54 40-74 20
 4 43-62 33-64 20
 1 33-46 33-69 25

15 2 35-45 36-66 20
 3 29-36 39-66 20
 4 39-49 29-75 25
 1 31-39 46-82 25

16 2 37-49 47-73 20
 3 41-51 34-69 20
 4 35-46 36-72 25
 1 35-41 39-75 25

17 2 40-54 37-87 20
 3 34-49 55-88 20
 4 46-56 44-84 25
 1 53-65 33-81 25

18 2 39-50 44-79 20
 3 29-41 52-96 20
 4 60-84 38-74 25
 1 34-51 42-86 25

19 2 41-54 47-82 20
 3 44-51 40-78 20
 4 43-57 37-72 25
 1 39-54 35-75 25

20 2 36-45 41-71 20
 3 37-48 36-64 20

Average
Standarderviation

 6203.46=X
 S = 9.7261

519.76=X
 S = 8.7616

 146

From Table 5.9 shows that the average of the number of cars behind the green light and

the red light on each phase are respectively 47 and 77 cars. The number of cars behind

the green and the red light on all phases are moderate. In detail of cycle 1

(see Figure 4.6), each figure shows that there are 17 cars behind the green light and

there are 45 cars behind the red light on phase 1; it uses 25 seconds for this phase. On

phase 2 of cycle 1, there are 13 cars from 45 cars on phase 1 passing the green light ,

the number of all cars passing the green light on this phase is 18 cars while 32 cars from

45 cars on phase 1 still stop behind the red light including the other 2 cars , the number

of all cars stopping behind the red light on this phase is 61 cars. The phase uses 20

secconds. On phase 3 of cycle 1, 24 cars from 61 cars on phase 2 passing the green

light and the last car passing the green light on this phase is the 28th, the number of all

cars passing the green light on this phase is 28 cars. There are 37 cars from 61 cars on

phase 2 still stopping behind the red light including the other 2 cars, the number of all

cars that behind the red light on this phase are 76 cars. The phase uses 20 seconds. On

phase 4 of cycle 1, 35 cars from 76 cars on phase 3 passing the green light and the last

cars passing the green light on this phase is the 54th, the number of all cars behind the

green light on this phase are 54 cars. There are 41 cars from 76 cars on phase 3 still

stopping behind the red light including the another 2 cars; the number all cars that

behind the red light on this phase is 81 cars. The phase uses 25 seconds. The description

of the other cycles are similar to the description of cycle 1 in which the number of cars

on the current phase are impacted by the number of cars on the pre phase.

5.3 The controller performance comparison

The cost function provides a means of comparing the traffic flow performance of the

fuzzy controller against the conventional controller. The lower the cost function is the

better the perfomance. The controller performance comparisons are as illustrated in

Figures 5.1-5.4 .

 147

Figure 5.1 Controller performance comparison at Uboncharearnsri intersection.

Figure 5.1 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0

0.02

0.04

0.06

0.08

 0.10

0.12

Cost

Fuzzy controller Conventional controller

Time (second) 1,800

 148

Figure 5.2 Controller performance comparison at Clock Hall intersection.

Figure 5.2 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Fuzzy controller Conventional controller

Time (second) 1,800

Cost

 149

Figure 5.3 Controller performance comparison at Chonlaprathan intersection.

Figure 5.3 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0

0.02

0.04

0.06

0.08

 0.10

0.12

0.14

Fuzzy controller Conventional controller

Cost

Time (second)
1,800

 150

Figure 5.4 Controller performance comparison at Airport intersection.

Figure 5.4 shows that on average, the cost function based on the fuzzy controller is

lower than the cost function based on the conventional controller.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fuzzy controller Conventional controller

Cost

Time (second)
1,800

 151

Chapter 6

Conclusion and Discussion

 6.1 Conclusion

This study aims at computing the optimal lengths of traffic signal lights on each phase

of four intersections in the inner city of Ubon rachathani Province namely

Uboncharearnsri , Clock Hall , Chonlaprathan and Airport intersections. The expected

outcomes consist of the method to calculate the traffic signal timing at the targeted

intersections during rush hour and the traffic signal timing that is relevant to the number

of vehicles at the intersections.

To estimate the number of cars that arrive at or depart from the intersections, the study

uses a mixed model of maximum likelihood (Vardi, 1996) and Bayesian inference

(Tebaldi & West, 1998). The process started with a survey at the intersections of the

traffic system under study path. Let each intersection be a node and treat the traffic

system as a network. The path that connects any two nodes was called a direct route and

a direct link that refers to the path that have no nodes between the two ends. There are

72 direct routes and 18 direct links in the network. This enables the researcher to

observe the number of cars passing on any direct link but not on the direct route.

A relation between the number of cars passing on a direct link and direct route are

presented by an equation as follows:

 AXY =
 Y : direct link vector

 X : direct route vector

 A : routing matrix

In the process of data collection, the number of cars were observed on 20 days and the

EM iteration was used to solve the equation to estimate the mean ()λ of the number of

cars on all links. Now knowing Y and λ from observation and EM iteration, the next

step was to estimate X . Bayesian inference was used to achieve the goal; the illustrated

distribution is as follows:

 p ()λ,yx

 152

The Gibbs sampler (Casella & George,1992) is used to establish the algorithm of the

software to generate X , and support starting point of the algorithm with the mean ()λ .

As previously mentioned the study mixed the two methods of EM iteration and the

Gibbs sampler to estimate the number of cars on all links.

The statistical inference shows the number of cars behind the green light and behind the

red light. In addition, queuing system theory is used to generate the length of current

cycle time.The length derived from summation of interarrival time. The interarrival time

is generated from an exponential distribution.

The outputs from the estimation, the number of cars behind the green light, the number

of cars behind the red light and the length of current cycle time are used as the fact for a

Fuzzy logic system that consists of four components.

1. Fuzzyfier

2. Fuzzy rule based

3. Fuzzy inference engine, and

 4. Defuzzifier

The Fuzzyfier component defines membership values of Fuzzy sets according to Kelsey

and Bisset (1993), and also the rule based in the Fuzzy rule base component that are

composed of 26 rules, which are different from those of rules based on Pappis and

Mamdani (1977) who use a set of five rules in their fuzzy logic system.

The Fuzzy inference engine component is based on the product-sum-gravity method

presented by Kandel and Langholz (1994). It was used to combine the Fuzzy rules in

the fuzzy rules base into a mapping from fuzzy set to fuzzy set . The Defuzzifier

component, is based on the center average defuzzifier that was presented by Kandel and

Langholz (1994) and is used to perform a mapping from fuzzy set to crisp point.

The crisp point from fuzzy logic is the degree of change. The degree of change has a

value between 0 to 1. If the degree of change converges to 0 then the state of the light

(phase) remain the same, whereas the state will change to next state if the degree

converges to 1.

 153

 From the conclusion, as previously mentioned, we can generate traffic flow in a certain

time. The traffic flow is composed of the number of cars behind the green light and the

number of cars behind the red light at the current moment of time. In addition, the

estimation delivers the length of the current cycle time. Finally the optimal length of

each phase of the cycle is the length of current cycle time.

The traffic flow outputs under fuzzy controller at each intersections are different. At

Uboncharearnsri intersection, it is found that the optimal length of each phase at early

cycles (cycle 1-cycle 7) is very short. At late cycles (cycle 8 and beyond) the optimal

length of each phase is moderate. The optimal length of phase 2 is likely to be longer

than the others. There are few cars behind both the green light and the red light in the

early cycle. There is a moderate number of cars behind both the green light and the red

light in the late cycle.

At Clock Hall intersection, the traffic flow outputs at early cycles (cycle 1-cycle 8) is

found to be not stable. At cycle 1, there are a few cars behind both the green and the red

light. In addition, the optimal length is very short. For cycle 2 and cycle 3, the number

of cars and the optimal length are moderate. The traffic flow outputs at cycle 4-cycle 8

is just the same as the cycle 1. At late cycles (cycle 9 and beyond), the most optimal

lengths are long. The most number of cars behind the green and red light are found

many.

For Chonlaprathan intersection, there are only five cycles during the specified time.

There are a few cars and very short optimal length on all phases at cycle 1 and cycle 2.

For cycle 3,4 and 5 there are many cars behind the green and the red light, and the

optimal length is very long on all phases. The traffic flow at Airport intersection is

similar to that at Chonlaprathan intersection.

For the traffic flow under the conventional controller, the length of traffic lights on each

phase of all cycles are fixed. The results at all intersections are similar; the number of

cars are moderate and there are approximate 22 cycles on specific period of time.

This study employs the cost function to evaluate the traffic flow. The cost function

involves the average of wait time and drive time, the number of cars exiting and

entering the intersection. The efficiency of a traffic controller can be judged from the

 154

value of the cost function. The lower the cost function the better performance of the

controller.

The comparison of controller performances shows that cost function under the

suggested traffic controller is lower than the cost function from conventional controller.

This shows that the output of the comparison illustrating the fuzzy controller is more

efficient than the conventional controller.

6.2 Discussion

From the literature review, there are many ways to attempt to solve traffic problems.

This study concentrates on solving a part of the traffic problem, congestion at

intersection. The study accords with these of many authors such as Kotsopoulos (1999),

Lan (2002) and so on. A major factor that influences traffic congestion is poor timing.

The study improves traffic signal timing at intersections by using mathematical and

statistical methods similar to those of Schutter’s study (2002) and Yi, Xin and Zhao’s

study (2001). Fuzzy logic is applied in a way similar to the work of many authors such

as Zhenyang’s study (2004), Ande’study (1996), Edid’s study (1999),Seongho’s study

(1994), Adeli and Karim’s study (2000) , Lee, Krammes and Yen’s study (1998) and

Cabrera and Ivan’s study (2000). The present study ignored the development for the

software or hardware of traffic signals. The study did not use high technology tools

because of these high cost and the traffic control was unavailable for traffic control in

the area of study. The main contribution of the study is the provision of an alternative

means to improve the suitable signal timing for traffic controller at the intersections

studied by using the optimal length computed by using computer programming by the

Fortran language which the police and authorities can apply to solve the traffic

problems. The algorithm of computer programming is based on EM algorithm and the

Gibbs sample in Markov Chain Monte Carlo, in which demonstrated on many articles

such as Herring and Ibrahim (2002), Karlis (2003), Kim and Taylor (1995), Lee and Shi

(2001), Carlin, Stern, and Rubin (1995) and so on. The objective of the algorithms is to

estimate traffic intensity based on the coordination of the idea of Vardi (1996) and

Tebaldi and West (1998). Moreover the study applied queuing theory to identify

waiting time, length of queue and the length of the current cycle time similar to the

work done by Cheng and Allam (1992), Cruz, Smith and Mediros (2005), Dewees

(1979), Das and Levinson (2004), and Omari,Masaeid and Shawaeid (2004). Queuing

 155

application in such report papers is mainly based on simulation that is different from

this study in that this study only applied queuing to generate interarrival time to

calculate waiting time and queue length and the length of the current cycle time. This

study also applied fuzzy logic system for traffic control similar to the work of many

authors such as Zhenyang’ study (2004), Ande;s study (1996), Enid’s study (1999),

Cabrera and Ivan’ study (2000) and so on. Fuzzy logic system designs the algorithm of

decision process. The algorithm was designed to change traffic intensity estimator and

the length of the current cycle time to degree of change just the same as of the study

done by Kelsey and Bisset (1993). The degree of change decided whether to change the

state of the traffic light or remain in the same state. In addition, the algorithm was

dependent upon an expert traffic control and the membership function that need to be

adapted with the observation data (Wang,1994).

The likelihood of the output of traffic flow performance under fuzzy controller at Ubon

Charernsri intersection and the performance at Clock Hall intersection derived from the

two intersections are close to each other. Additionally, these intersections are in the

same traffic environment. The optimal length of traffic signal light on each phase of the

late cycles are moderate, because the number of cars that exit and enter the intersections

are moderate. This is likely because there are a few cars that exit and enter the

intersections at the early cycles, the optimal length of traffic signal light are very short.

The traffic flow performance at Airport and Chonlaprathan intersection gave a similar

result in both the number of cars and optimal length of traffic signal light due to their

proximity. The optimal length of traffic signal light on all phases is likely to be very

long because the Airport intersection has more traffic congestion than the others

whereas Chonlaprathan intersection has fewer cars than the others.

Theoretically, the fuzzy logic application to control traffic signal light in other research

reports was based on the simulation and the controller installed on the equipment of

traffic signal controller differentiated this study from the previous studied. Such

difference is that the output from this study do not apply to control traffic flow at the

moment. Instead, the process needs data collection and computation by computer

programming and then apply traffic timing to control in the next time.

 156

Interestingly, the evaluation by using cost function generation shows that the procedure

of this study is very helpful to decrease waiting time and queue length as done by other

methods that use high technology equipment.

Summing up, this study presents the mixed method between maximum likelihood

estimation and Bayesian estimation to estimate the number of cars that pass all links in

the studied traffic system. Moreover this study also let the estimator in the fuzzy logic

system to infer the optimal length on each phase at each intersection. The problem and

obstacles of this study is that the observation is probably incorrect in some situations,

and the study does not cover the improvement of the optimum length in the real

situation. Another problem is that this study independently calculated the optimal length

at each intersection which may not correspond to the real situation. The future study

should link data between each intersection to calculate the optimal length.

 157

References

Abdel-Aty, M. A., & Abdelwahab, H. T. (2004). Predicting injury severity levels in
traffic crashes: A modeling comparison. Journal of Transportation Engineering,
130(2), 204.

Abutaled, A. S., & Papaioannou, M. G. (2000). Maximum likelihood estimation of
time-varying parameters: An application to the athens stock exchange index.
Applied, 32(10), 1323.

Adeli, H., & Jiang, X. (2003). Neuro-fuzzy logic model for freeway work zone capacity
estimation. Journal of Transportation Engineering, 129(5), 484.

Adeli, H., & Karim, A. (2000). Fuzzy-wavelet rbfnn model for freeway incident
detection. Journal of Transportation Engineering, 126(6), 464.

Ait-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled
diffusions: A closed-form approximation approach. Econometrica, 70(1), 223.

Ament, J. M. (1980). Change a queue system from passive to active. Industrial
Engineering, 12(4), 40.

Ande, M. M. (1996). Design of fuzzy logic based adaptive traffic signal controller.
University of Nevada, Las Vegas, Las Vegas.

Aquilar-Iqartua, M., Postiqo-Boix, M., & Garcia-Haro, J. (2002). Atm inverse
multiplexing. Fundamentals and markovian single-server queue analysis for
performance evaluation and validation purposes. Telecommunication Systems,
21(1), 103.

Banks, J., Carson, J.S., Nelson, B.L., & Nicol, D. M. (2001). Discrete-event system
simulation. New Jersey: Prentice-hall.

Basu, S., Banerjee, M., & Sen, A. (2000). Bayesian inference for kappa from single and
multiple studies. Bioinformatics, 56(2), 577.

Bera, A. K., & Bilias, Y. (2002). The mm, me, ml el, ef and gmm approaches to
estimation: A synthesis. Journal of Applied Econometrics, 107(1,2), 51.

Beynon, M. J., Pee, M. J., & Tang, Y.-C. (2004). The application of fuzzy decision tree
analysis in an exposition of the antecedents of audit fees. Omega, 32(3), 231.

Blackwell, P. (2001). Bayesian inference for a random tessellation process. Biometrics,
57(2), 502.

Blackwell, P. G. (2003). Bayesian inference for markov processes with diffusion and
discrete components. Biometrika, 90(3), 613.

Brown, L., Gans, N., Mandelbaum, A., & Sakov, A. (2005). Statistical analysis of a
telephone call center: A queueing-science perspective. Journal of American
Statistical Association, 100(469), 36.

Cabrera, G., & Ivan, L. (2000). A methodology to design traffic signal controllers based
on fuzzy logic. A methodology to design traffic signal controllers based on fuzzy
logic, Puerto Rico.

Carey, V., Baker, C., & Platt, R. (2001). Bayesian inference on protective antibody
levels using case-control data. Biometrics, 57(1), 135.

Carlin, B. P., & Louis, T. A. (1996). Bayes and empirical Bayes methods for data
analysis. London: Chapman & Hall.

Casella, G., & George, E.I. (1992) Explaining the Gibbs sampler. The American
Statistician, 46, 167-174.

Chan, F., & McAleer, M. (2002). Maximum likelihood estimation of star and star-garch
models: Theory and monte carlo evidence. Journal of Applied Econometrics,
17(5), 509.

 158

Chen, M., & Ibrahim, J. (2001). Maximum likelihood methods for cure rate models with
missing covariates. Biometrics, 57(1), 43.

Chen, M.-H., G.Ibrahim, J., & R.Lipsitz, S. (2002). Bayesian methods for missing
covariates in cure rate models. Lifetime Data Analysis, 8(2), 117.

Chen, S.-P. (2004). Parametric nonlinear programming for analyzing fuzzy queues with
finite capacity. European Journal of Operational Research, 157(2), 429.

Cheng, T. C. E., & Allam, S. (1992). A review of stochastic modeling of delay and
capacity at unsignalized priority intersections. European Journal of Operational
Research, 60(3), 247.

Cho, H., & Yi, S.-J. (2004). Vehicle trajectory control using the fuzzy logic controller.
Journal of automobile engineering, 218(1), 21.

Chopin, N., & Pelqrin, F. (2004). Bayesian inference and state number determination
for hidden markov models: An application to the information content of the
yield curve about inflation. Journal of Econometrics, 123(2), 327.

Corander, J., & Villani, M. (2004). Bayesian assessment of dimensionality in reduced
rank regression. Statistica Neerlandica, 58(3), 255.

Cruz, F. R. B., MacGreqor, J., & Queiroz, D. C. (2005a). Service and capacity
allocation in m/g/c/c state-dependent queuing networks. Computer & Operations
Research, 32(6), 1545.

Cruz, F. R. B., Smith, J. M., & Medeiros, R. O. (2005b). An m/g/c/c state-dependent
network simulation model. Computer & Operations Research, 32(4), 919.

Das, S., & Levinson, D. (2004). Queuing and statistical analysis of freeway bottleneck
formation. Journal of Transportation Engineering, 130(6), 787.

David, w. (1992). How to design fuzzy logic controllers. Machine Design, 64(23), 92.
Demey, P., Jean-Frederic, Roget, C., & Poncalli, T. (2004). Maximum likelihood

estimate of default correlations. Risk, 17(11), 104.
Deschamps, P. J. (1998). Full maximum likelihood estimation of dynamic demand

models. Journal of Applied Econometrics, 82(2), 335.
Dewees, D. N. (1979). Estimating the time cost of highway congestion. Econometrica,

47(6), 1499.
Drekic, S., & Woolford, D. G. (2005). A preemptive priority queue with balking.

European Journal of Operational Research, 164(2), 387.
Dunson, D., & Herring, A. (2003). Bayesian inferences in the cox model for order-

restricted hypotheses. Biometrics, 59(4), 916.
Durtham, G. B., Gallant, A. R., Ait-Sahalia, Y., & Brandt, M. W. (2002). Numerical

techniques for maximum likelihood estimation of continuous-time diffusion
processes / comment. Journal of Business & Economic, 20(3), 297.

Duson, D., & Neelon, B. (2003). Bayesian inference on order-constrained parameters in
generalized linear models. Bioinformatics, 59(2), 286.

Ellis, R. L., & Durgee, D. H. (1982). Coupling queuing with route-advance (part 1).
Telephony, 202(19), 34.

Ellson, S. R., (1993). Maximum likelihood estimation logic and practice. United state of
America: Sage publication.

Enid, M. M. (1999). Fuzzy logic-based control and coordination of traffic signals along
an arterial street. University of Puerto Rico, Mayaguez (Puerto Rico).

Eqorov, A. V., Li, H., & Xu, Y. (2003). Maximum likelihood estimation of time-
inhomogeneous diffusions. Journal of Econometrics, 114(1), 107.

Erkanli, A., Soyer, R., & Costello, E. (1999). Bayesian inference for prevalence in
longitudinal two-phase studies. Biometrics, 55(4), 1145.

Fakinos, D. (1982). The expected remaining service time in a single server queue.
Operations Research, 30(5), 1014.

Fisher, D. (2004). Teaching machines to think fuzzy. The technology teacher, 64(2), 13.

 159

Fouqere, D., & Kamionka, T. (2003). Bayesian inference for the mover-stayer model in
continuous time with an application to labour market transition data. Journal of
Applied Econometrics, 18(6), 697.

Frehlich, R., & Sharman, R. (2005). Maximum likelihood estimates of vortex
parameters from simulated coherent doppler lidar data. Journal of Atmospheric
and Oceanic Technology, 22(2), 117.

Fridman, M., & Harris, L. (1998). A maximum likelihood approach for non-gaussian
stochastic volatility models. Journal of Business & Economic Statistics, 16(3),
284.

Fu, M. C., Hu, J.-Q., & Naqi, R. (1995). Comparison of gradient estimation techniques
for queues with non-identical servers. Computers & Operations Research, 22(7),
715.

Gelfand, A.E., & Smith, A.F.M. (1990). Sampling-Based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85, (398-
409)

Geweke, J. (1989). Baysian inference in econometric models using monte carlo
integration. Econometrica, 57(6), 1317.

Geweke, J., Gowrisankaran, G., & Town, R. J. (2003). Bayesian inference for hospital
quality in a selection model. Econometrica, 71(4), 1215.

Ghitany, M. E., & Al-Awadhi, S. (2002). Maximum likelihood estimation of burr xii
distribution parameters under random censoring. Journal of Applied Statistics,
29(7), 955.

Gill, R. (2004). Maximum likelihood estimation in generalized broken-line regress. The
Canadian Journal of Statistics, 32(3), 227.

Glenn, A. (1994). Fuzzy logic: What it is; what it does; what it can do. Production,
106(10), 38.

Gorney, L. (1979). Queuing theory, the science of wait control part 2: System types
 gorney, len. Byte. Peterborough: May 1979.Vol.4, iss. 5; pg. 176. Byte, 4(5),

176.
Halachmi, B. (1978). The fokker-planck equation as an approximating formula for the

g/m/k queing system. Computers & Operations Research, 5(3), 179.
Hagger, C., Janss, L., Kadarmideen, H., & Stranzinger, G. (2004). Bayesian inference

on major loci in related multigeneration selection lines of laying hens. Poultry
Science, 83(12), 1932.

Harb, A. M., & Smadi, I. A. (2004). On fuzzy control of chaotic systems. Journal of
vibration and control, 10(7), 979.

Herring, A. H., & Ibrahim, J. G. (2002). Maximum likelihood estimation in random
effects cure rate models with nonignorable missing covariates. Biostatistics,
3(3), 387.

Horton, N., & Laird, N. (2001). Maximum likelihood analysis of logistic regression
models with incomplete covariate data and auxiliary information. Biometrics,
57(1), 34.

Hsiao-Ching, & Denver, C. (1998, Nov 17). Moving, moving, moving traffic-signal
timing plan makes inroads; [rockies edition]. Denver Post, p. F.07.

Hsiao, C., Pesaran, M. H., & Tahmiscioqlu, A. K. (2002). Maximum likelihood
estimation of fixed effects dynamic panel data models covering short time
periods. Journal of Applied Econometrics, 109(1), 107.

Huelsenbeck, J. P., Ronguist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian
inference of phylogeny and its impact on evolutionary biology. Science,
294(5550), 2310.

Hunter, D. R., & lange, K. (2004). A tutorial on mm algorithms. The American
Statistician, 58(1), 30.

 160

Jaiimsin, A. (2004, Nov 29). Overhauled mass transit system for bangkok to include
rapid routes. Knight Ridder Tribune Business New, p. 1.

Jaqannathan, R., & Khan, A. M. (2001). Methodology for the assessment of traffic
adaptive control systems. Institue of Transportation Engineers.ITE Journal,
71(6), 28.

Jensen, M. J. (2004). Semiparametric bayesian inference of long-memory stochastic
volatility models. Journal ot Time Series Analysis, 25(6), 895.

Jewell, N. P. (2004). Maximum likelihood estimation of ordered multinomial
parameters. Biostatistics, 5(2), 291.

Jonker, M. A. (2003). Maximum likelihood estimation of life-span based on censored
and passively registered historical data. Lifetime Data Analysis, 9(1), 35.

Kendel, A., & Langholz, G. (1994). Fuzzy control systems. United State of America:
CRC Press.

Karlis, D. (2001). A general em approach for maximum likelihood estimation in mixed
poisson regression models. Statistica Modelling, 1(4), 305.

Karlis, D. (2003). An em algorithm for multivariate poisson distribution and related
models. Journal of Applied Statistics, 30(1), 63.

Keats, J. B., Lawrence, F. P., & Wang, F. K. (1997). Weibull maximum likelihood
parameter estimates with censored data. Journal of Quality Technology, 29(1),
105.

Kelsey, R. L., & Bisset, K. R. (1993). Simulation of traffic flow and control using fuzzy
and conventional methods. In M. Jamshidi (Ed.), Fuzzy and control

 (pp. 262-278). New Jersey: Prentrice-Hall.
Kerbache, L., & Smith, J. M. (2004). Queueing networks and the topological design of

supply chain systems. Interational journal of Production Economics, 91(3), 251.
Kikuchi, S., & Tanaka, N. U. M. (2003). Impacts of shorter perception-reaction time of

adapted cruise controlled vehicles on traffic flow and safety. Journal of
Transportation Engineering, 129(146), 146.

Kim, D., & Taylor, J. M. G. (1995). The restricted em algorithm for maximum
likelihood estimation under linear restrictions on the parameters. Journal of
American Statistical Association, 90(430), 708-715.

Kirawanich, P., & O'Connell, R. M. (2004). Fuzzy logic control of an active power line
conditioner. IEEE Trasactions on power electronics, 19(6), 1574.

Kleiberqen, F. (2004). Invariant bayesian inference in regression models that is robust
against the jeffreys-lindley's paradox. Journal of Econometrics, 123(2), 227.

Kleinrock, L. (1976). Queuing systems. United State of America: John Wiley & Son.
Kotsopoulos, N. (1999, Jul 2 1999). Signal upgrade at rice square smoothes 4-street

traffic flow; [final edition]. Telegram&Gazette, p. B.1.
Kotz, S., Kozubowski, T. J., & Podqorski, K. (2002). Maximum likelihood estimation

of asymmetric laplace parameters. Annals of the Institute of Statistical
Mathematics, 54(4), 816.

Lan, C.-J. (2004). New optimal cycle length formulation for pretimed signals at isolated
intersections. Journal of Transportation Engineering, 130(5), 637.

Lazar, N. A. (2003). Bayesian empirical likelihood. Biometrika, 90(2), 319.
Ledford, J. (2002). Well-timed signals cut delays, fuel use; [home edition]. The Atlanta

Journal-Constitution, C.2.
Lee, S., Krammes, R. A., & Yen, J. (1998). Fuzzy-logic-based incident detection for

signalized diamond interchanges. Transportation Research Part C.
Lee, S., Messer, C. J., Oh, Y., & lee, C. (2004). Assessment of three simulation models

for diamond interchange analysis. Journal of Transportation Engineering,
130(3), 304.

 161

Lee, S., & Shi, J. (2001). Maximum likelihood estimation of two-level latent variable
models with mixed continuous and polytomous data. Biometrics, 57(3), 787.

Leonard, D, J., Rodegerdts, & A, L. (1998). Comparison of alternate signal timing
policies. Journal of Transportation Engineering, 124(6), 510.

Liu, J., & Sabatti, C. (2000). Generalised gibbs sampler and multigrid monte carlo for
bayesian computation. Biometrika, 87(2), 353.

Liu, J. S., & Lawrence, C. E. (1999). Bayesian inference on biopolymer models.
Bioinformatics, 15(1), 38.

Liu, L., Liu, X., & Yao, D. D. (2004). Analysis and optimization of a multistage
inventory-queue system. Management Science, 50(3), 365.

Lo, H. K., & Chow, A. H. F. (2004). Control strategies for oversaturated traffic. Journal
of Transportation Engineering, 130(4), 466.

Lynch, T. B., Nkouka, J., Huebschmann, M. M., & Guldin, J. M. (2003). Maximum
likelihood estimation for predicting the probability of obtaining variable
shortleaf pine regeneration densities. Forest Science, 49(4), 577.

Mahmoud, M. E.-D., & EL-Araby, K. (1999). A robust dynamic highway traffic
simulation model. Computers & Industrial Engineering, 37(1,2), 189.

Maqlaras, C., & Mieqhem, J. A. V. (2005). Queueing systems with leadtime constraints:
A fluid-model approach for admission and sequencing control. European
Journal of Operation Research, 167(1), 179.

Mamdani, E.H. (1974) Applications of fuzzy algorithms for control of a simple dynamic
Plant. Proc. of IEEE,121, (1585-1588)

Martin, A. D. (2003). Bayesian inference for heterogeneous event counts. Sociological
Methods and Research, 32(1), 30.

Masalonis, A. J., & Parasuraman, R. (2003). Fuzzy signal detection theory: Analysis of
human and machine performance in air traffic control, and analytic
considerations. Ergonomics, 46(11), 1045.

Milescu, L. S., Akk, G., & Sachs, F. (2005). Maximum likelihood estimation of ion
channel kinetics from macroscopic currents. Biophysical Journal, 88(4), 2494.

Milligan, B. G. (2003). Maximum-likelihood estimation of relatedness. Genetics,
163(3), 1153.

Miranda, M. J., & Rui, X. (1997). Maximum likelihood estimation of the nonlinear
rational expectations asset pricing model. Journal of Economic Dynamics &
Control, 21(8,9), 1493.

Moore, D. S. (1997). Bayes for beginners? Some reasons to hesitate. The American
Statistician, 51(3), 254.

Nair, V. N., Tang, B., & Xu, L.-A. (2001). Bayesian inference for some mixture
problems in quality and reliability. Journal of Quality Technology, 33(1), 16.

Nam, D. H., & R., D. D. (1998). Analyzing freeway traffic under congestion: Traffic
dynamics approach. Journal of Transportation Engineering, 124(3), 208.

Ning-Zhong, Zneng, S.-R., & Guo, J. (2005). The restricted em algorithm under
inequality restrictions on the parameters. Journal of Multivariate Analysis,
92(1), 53.

O'Loughlin, C., & Coenders, G. (2004). Estimation of the european customer
satisfaction index: Maximum likelihood versus partial least squares. Application
to postal services. Total Quality Management & Business Excellence, 15(9,10),
1231.

Odejar, M. A. E., & S.McNulty, M. (2001). Bayesian analysis of the stochastic
switching regression model using markov chain monte carlo methods.
Computational Economics, 17(2-3), 265.

 162

Oh, M.-S., Choi, J. W., & Kim, D.-G. (2003). Bayesian inference and model selection
in latent class logit models with parameter constraints: An application to market
segmentation. Journal of Applied Statistics, 30(2), 191.

Paiqe, R. L., & Butler, R. W. (2001). Bayesian inference in neural networks.
Biometrika, 88(3), 623.

Pasquale, F., Barone, P., Sebstiani, G., & Stander, J. (2004). Bayesian analysis of
dynamic magnetic resonance breast images. Applied Statistics, 53(3), 475.

Piles, M., Gianola, D., Varona, L., & Blasco, A. (2003). Bayesian inference about
parameters of a longitudinal trajectory when selection operates on a correlated
trait1. Journal of Animal Science, 81(11), 2714.

Porter, J. (2002). Efficiency of covariance matrix estimators for maximum likelihood
estimation. Journal of Business & Econometrics Statistics, 20(3), 431.

Rakha, H., & Zhang, Y. (2004). Sensitive analysis of transit signal priority impacts on
operation of a signalized intersection. Journal of Transportation Engineering,
130(6), 796.

Ramasamy, N. R., & Selladurai, V. (2004). Fuzzy logic approach to prioritise
engineering characteristics in quality function deployment (fl-qfd). The
international journal of quality & Reliability management, 21(9), 1012.

Roberts, G. O., Papaspiliopoulos, O., & Dellaportas, P. (2004). Bayesian inference for
non-gaussian ornstein-uhlenbeck stochastic volatility processes. Journal of the
Royal Statistical Society. Series B. Statistical Methodology, 66(2), 369.

Rolls, D. A., Michailidis, G., & Hernandez-Campos, F. (2005). Queueing analysis of
network traffic: Methodology and visualization tools. Computer Networks,
48(3), 447.

Ross, A. M., & Shanthikumar, J. G. (2005). Estimating effective capacity in erlang loss
systems under competition. Queueing Systems, 49(1), 23.

Rous, J. J., Jewell, R. T., & Brown, R. W. (2004). The effect of prenatal care on
birthweight: A full-information maximum likelihood approach. Health
Economics, 13(3), 251.

Rovers, M., Vander, W. G., Vander, B. S., Straatman, H., Ingels, K., & Zielhuis, G.
(2005). Bayes' theorem: A negative example of a rct on grommets in children
with glue ear. European Journal of Epidemiology, 20(1), 23.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. United State of
American: John Wiley & Sons.

Sarkar, D., & Zangwill, W. I. (1992). File and work transfers in cyclic queue systems.
Management Science, 38(10), 1510.

Scheike, T. H., & Martinussen, T. (2004). Maximum likelihood estimation for cox's
regression model under case-cohort sampling. Scandinavian Journal of
Statistics, 31(2), 283.

Schutter, B. D. (2002). Optimizing acyclic traffic signal switching sequences through an
extended linear complementarity problem formulation. European Journal of
Operational Research, 139(2), 400.

Seongho, K. (1994). Applications of petri networks and fuzzy logic to advanced traffic
management systems. Polytechnic University, New York.

Soud, D., & Kazemian, H. B. (2004). A fuzzy approach to active usage parameter
control in ieee 802.11b wireless networks. Expert Sytem, 21(5), 269.

Stewart, D., Cheraghi, S., & Malzahn, D. (2004). Fuzzy defect avoidance system (fdas)
for product defect control. Interational journal of production research, 42(16),
3159.

Sunkari, S. (2004). The benefits of retiming traffic signals. 74(4), 26.
Swann, C. A. (2002). Maximum likelihood estimation using parallel computing: An

introduction to mpi. Computational Economics, 19(2), 145.

 163

Takine, T. (2005). Single-server queues with markov-modulated arrivals and service
speed. Queueing Systems, 49(1), 7.

Tebaldi, C., & West, M. (1998). Bayesian inference on network traffic using link count
data. American statistical association journal of American statistical
association, 93, 557-573.

Teodorovic, D., & Vukadinovic, K. (1998). Traffic control and transport plannig.
Massachusetts: Kluwer academic publishers.

Toshinori, M., & Yashvant, J. (1994). Fuzzy systems: An overview. Association for
Computing Machinery. Communications of the ACM, 37(3), 68.

Vardi, Y. (1996). Work tomography: Estimating source-destination traffic intensity
from link data. Journal of American Statistical Association, 91, 365-377.

VerevKa, O. V., & Parasyuk, I. N. (2002). Mathematical fundamentals of constructing
fuzzy bayesian inference techniques. Cybernetics and Systems Analysis, 38(1),
89.

Wang, L.-X. (1994). Fuzzy systems and control. New Jersey: United States of America.
Wang, X., He, C. Z., & Sun, D. (2005). Bayesian inference on the patient population

size given list mismatches. Statistics in Medicine, 24(2), 249.
Waqner, K., & Gill, J. (2005). Bayesian inference in public administration research:

Substantive differences from somewhat different assumptions. Interational
Journal of Public Administration, 28(1,2), 5.

Yang, T., Lee, R.-S., Chen, M.-C., & Chen, P. (2005). Queueing network model for a
single-operator machine interference problem with external operations.
European Journal of Operation Research, 167(1), 163.

Yi, P., Xin, C., & Zhao, Q. (2001). Implementation and field testing of characteristics-
based intersection queue estimation model. Networks and Spatial Economics,
1(1-2), 205.

Yu, Q., & Wong, G. Y. C. (2005). Modified semiparametric maximum likelihood
estimator in linear regression analysis with complete data or right-censored data.
Technometrics, 47(1), 34.

Zhang, H., & Tam, C. (2004). Fuzzy simulation of flexible construction processes.
Interational journal of computer applications in technology, 20(1-3), 15.

Zhenyang, L. (2004). Dynamic left-turn phase optimization using fuzzy logic control.
The University of Tennessee, Tennessee.

Zhu, Y., & Zhang, Z. G. (2004). M/gi/1 queues with services of both positive and
negative customers. Journal of Applied Probability, 41(4), 1157.

 164

Appendix

 165

The flowchart for main program

 166

 167

 168

 169

 170

gys=0

d1=0

d1=d1+1

rv=d1
rk=k1
rn=n1

rmean=y bar(k1)/30

call subroutine poiss

gy(k1)=XP
gys=gys+gy(k1)

d1=100

bar(k1)=gys/100

no

yes

1 4 5

1 4 5

 171

 172

 173

 174

 175

 176

 177

rmeanp(i)<103 rmean=ram(t,i,j)

rmeanp(i)>103 rmean=103

5 4 3 1 2

5 4 3 1

yes

yes

no

end if

no

call sub routine poiss

x3(t,i,j)=xp

t>1
al=int(also(x3(t-1,i,j))+1

be=1
X=0

call subroutine gamma

ram(t,i,j) = x
rmean = ram(t,i,j)

yes

2

no

9

9

 178

5 4 3 2 1

5 4 3

x<103

x>103

end if

call subroutine poiss

x3(t,i,j) = xp

end if

rmean = ram(t,i,j)

mean =103

run = 1

mf = int(x3(t,i,j))

m = 0

1

yes

no

yes

no

9

9

 179

 180

5 4 3 1 2

run=run*ram(t,i,j)/m

m = mf
no

yes

uml(t,i,j)=run/2.718**ram(t,i,j)

p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)*uml(t,i,j))

p<1

5 4 3 1

1p ≥

end if

un = 1

un = 0

un = 1

call subroutine ber

un = x

yes

yes

no

no

x3(t,i,j)=x3(t,i,j)

x3(t,i,j)=x3(t-1,i,j)

6 7

no

no

yes

yes

9

9

 181

5 4 3 1 6 7

end if

i = 72
no

yes

x3(t,1,j) = x3(t,1,j)+x3(t,6,j)+...+x3(t,26,j)
x3(t,9,j) = x3(t,9,j)+x3(t,10,j)+...+x3(t,15,j)

x3(t,60,j) = x3(t,14,j)+x3(t,28,j)+…+x3(t,64,j)

j = 10

t = 1

t = s

time = t

i = 0

M

no

yes

yes

no

1 9

9

 182

 183

 184

t = s

i = 0

i = i+1

sum1 = 0

j = 0

j = j+1

sum1=sum1+x3(t,i,j)

j = 10
no

1
2

1

ir=0

ir=ir+1

1.001)(r(ir)0.999)(r(ir) >∨<

no

yes

9

 185

 186

in = in+1

p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))
p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))
p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que = q

que = 1 beta = 1/rink(11)

call subroutine expo

a(in)=bx

gn = gn+1

13

1 2

yes

no

3

 187

1 23

sumg = sumg+1

j = 0

j = j+1

sumg = sumg+a(j)

j = in

driv(in)=sumg

cut(in)=0

beta=1/rlink(9)que = 2

1 23

no

yes

no

4

yes

 188

1 23

call subroutine expo

a(in)=bx

rc2 = rc2+1

scut = 0

j = 0

j = j+1

scut = scut+a(j)

4

41 23

j = in
no

yes

 189

41 23

driv(in) = 0

cut(in) = scut

beta=1/(0.38*rlink(13))que = 3

call subroutine expo

a(in)=bx

rc3 = rc3+1

scut = 0

j = 0

213 4

yes

no

 190

 191

213 4

rc4=rc4+1

scut = 0

j = 0

j = j+1

scut=scut+a(j)

i = in

driv(in)=0

cut(in)=scut

213 4

no

yes

 192

213 4

5 13 6

end if

rang1=rang1+a(in)

rang=rang+a(in)

i1-o1 = 1

delay=0
drive=0

k1 = 0

k1 = k1+1

cut(k1) = 0 sumwa(k1) = 0

yes

no

yes

no

 193

5 13 6

cut(k1)>0 sumwa(k1)=rang1-cut(k1)

end if

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1 = in

drive=drive+add*a(o1+1)

redn=rc2+rc3+rc4

g=2*gn/rang1

red=6*redn/rang1

13

yes

no

yes

no

 194

13

wait=rang1

drive1=cdrive+drive

delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

13

degree=mu

 195

 196

13 24

rj1=j1

3 4 1 5

p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

call subroutine allocate

que=q

que=2 beta=1/rlink(9)

call subroutine expo

a(in)=bx

2

yes

no

 197

3 4 1 5 2

gn=gn+1

sumg=0

j=0

j=j+1

sumg=sumg+a(j)

j=in

driv(in)=sumg

cut(in)=0

3 4 1 5 2

no

yes

6

 198

 199

3 4 1 5 267

j=in

driv(in)=sumg

cut(in)=0

rc1=rc1+1que=1

beta=1/rlink(11)

call subroutine expo

a(in)=bx

scut=0

3 4 1 8 26

no

yes

yes

no

 200

3 4 1 8 26

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

cut(in)=scut

rc3=rc3+1que=3

beta=1/(0.38*rlink(13))

3 4 1 8 26

no

yes

yes

no

 201

3 4 1 8 26

call subroutine expo

a(in)=bx

scut=0

j=0

j=j+1

scut=scut+a(j)

j=in

driv(in)=0

3 4 1 8 26

yes

no

 202

3 4 1 8 26

end if

rang=rang+a(in)

rang2=rang2+a(in)

j1-i1=1

k1=0
delay=0
drive=0

k1=0

k1=k1+1

cut(in)=scut

3 4 1 2

yes

no

5

 203

 204

3 4 1 2

g=3*gn/rang2

red=6*redn/rang2

wait=rang2

drive1=cdrive+drive

delay1=cdelay+delay

redn1=credn+redn

gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

3 4 1 2

 205

 206

 207

 232

 233

3 1 45 6 7

3 1 45 6 7

que=2 rc2=rc2+1
yes

no

beta=rlink(31)

a(in)=bx

j=0

j=j+1

scut=scut+a(j)

call subroutine expo

scut=0

8

 234

 235

 236

1800wait ≥

 237

1

h1=1
y1=1
ai=1
i1=0
o1=0
rc1=0
rc3=0

rang=0
rang1=0

gn=0
in=0

i1=i1+1
ri1=i1

in=in+1

p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

p4=0

call subroutine allocate

que=q

que=2 gn=gn+1
yes

no

beta=1/rlink(17)

1 23

 238

 239

 240

 241

 242

1

1

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

degree=mu

call subroutine fuzzy

degree=1
no

yes

cp1(h1)=wait

h1=h1+1

rang>1800

7

yes

no

10

10

 243

 244

 245

1 723

1 725

j=in
no

driv(in)=sumg
cut(in)=0

yes

que=1 rc1=rc1+1
yes

no

4

beta=1/rlink(42)

call subroutine expo

a(in)=bx
scut=0

j=0

j=j+1

10

10

 246

 247

 248

 249

1 7

1

rang>1800

3

yes

no

gn=rc1
add=rc1

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc3=0

rang3=0
in=0
o1=j1

o1=o1+1

in=in+1

p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))
p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))
p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

p4=0

call subroutine allocate

que=q

10

10

 250

1 3

1 3

que=1 gn=gn+1

beta=1/rlink(42)

call subroutine expo

yes

no

a(in)=bx

sumg=0

j=j+1

sumg=sumg+a(j)

j=0

2410

10

 251

 252

 253

driv(in)=0
cut(in)=scut

end if

j=in

yes

no

rang=rang+a(in)
rang3=rang3+a(in)

1 327 5

scut=scut+a(j)

1 32

o1-j1=1

delay=0
drive=0

k1=0

yes

no

10

10

 254

 255

 256

 257

 258

 259

15 2

driv(in)=0
cut(in)=scut

j=in

yes

no

j=j+1

scut=scut+a(j)

4

15 2 4

que=3 rc3=rc3+1

beta=1/rlink(24)

call subroutine expo

yes

no

a(in)=bx

 260

15 2 4

15 2 4

driv(in)=0
cut(in)=scut

j=in

yes

no

j=j+1

scut=scut+a(j)

scut=scut+a(j)

j=0

que=1 rc1=rc1+1

beta=1/rlink(28)

yes

no

 261

15 2 4

j=0

call subroutine expo

a(in)=bx
scut=0

15

driv(in)=0
cut(in)=scut

j=in

yes

no

end if

scut=scut+a(j)

j=j+1

 262

15

15

rang=rang+a(in)
rang1=rang1+a(in)

i1-s1=1

delay=0
drive=0

k1=0

yes

no

cut(k1)=0

cut(k1)>0

end if

sumwa(k1)=rang1-cut(k1)

sumwa(k1)=0

yes

yes

no

no

k1=k1+1

2

 263

15 2

15

delay=delay+sumwa(k1)
drive=drive+driv(k1)

k1=in

drive=drive+add*a(s1+1)

redn=rc1+rc2+rc3

yes

no

delay1=delay/redn
g=2*gn/rang1

red=3*redn/rang1
wait=rang1

drive1=cdrive+drive
delay1=cdelay+delay

redn1=credn+redn
gn1=cgn+gn

cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

call subroutine fuzzy

 264

 265

 266

 267

13 2 4 5

13 2 4 5

call subroutine expo

j=0

a(in)=bx
scut=0

driv(in)=0
cut(in)=scut

j=in

yes

no

scut=scut+a(j)

j=j+1

que=3 rc3=rc3+1
yes

no

 268

 269

 270

 271

 272

13 2

call subroutine fuzzy

degree=1

yes

no

degree=mu

ap2(c1)=wait

c1=c1+1

13

yes

no

v1=1
gn=rc3
add=rc3

cdrive=drive1
cdelay=delay1
credn=redn1

cgn=gn1
rc1=0
o1=j1

rang3=0
in=0

1800rang ≥

4

 273

 274

 275

 276

 277

13 45 7 6

13 45 7 6

beta=1/rlink(1)

call subroutine expo

a(in)=bx

j=0

j=in

yes

no

scut=scut+a(j)

j=j+1

scut=0

 278

 279

 280

1800rang ≥

 281

13

13

s1=s1+1

in=in+1

p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))
p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

call subroutine allocate

que=q

4

que=2 gn=gn+1
yes

no

beta=1/rlink(29)

call subroutine expo

2

 282

13 4 2

13 4 2

j=0

a(in)=bx
sumg=0

j=in

yes

no

sumg=sumg+a(j)

j=j+1

driv(in)=sumg

cut(in)=0

que=3 rc3=rc3+1
yes

no

5

 283

 284

13 4 2 5

13 4 2 5

que=1 rc1=rc1+1
yes

no

beta=1/rlink(28)

call subroutine expo

j=0

a(in)=bx
scut=0

j=in

yes

no

scut=scut+a(j)

j=j+1

 285

 286

13 4 2 56

13 4

j=in

yes

no

driv(in)=0

cut(in)=scut

end if

rang4=rang4+a(in)

s1-o1=1

delay=0

yes

no

rang=rang+a(in)

 287

 288

 289

1800rang ≥

 290

The flowchart for subprogram
1) Subroutine for allocate car to each branch

start

subroutine allocate(p1,p2,p3,p4,q,ix)

rn=unif(ix)

rn<P1 q=1

q=2

yes

yes

no

P2)P1(rnP1)(rn +<∧≥

q=3
yes

no

P3)P2P1(rnP2)P1(rn ++<∧+≥

q=4
yes

no

P3P2P1rn ++≥

end if

return

end

 291

2) Subroutine for generate exponential random variable

 292

3) Subroutine for generate gamma random variable
start

Subroutine gamma

common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

rn=unif(ix)

v=-be*alog(rn)

x=x+v

al=1al=al-1

x=x

return

end

yes

no

 293

4) Subroutine for generate poisson random variable
start

subroutine poiss

common ix,ial,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

xp=0

a=2.718**(-rmean)

s=1

rn=unif(ix)

s=s*rn

s-a<0 return end

xp=xp+1

 294

5) Subroutine for generate bernoulie random variable

rrrn ≤

 295

6) Function for generate random number

 296

7) Subroutine for fuzzy logic system

0g1g ≥∧≤

1g2g ≥∧≤

0g1g ≥∧≤

2g3g ≥∧≤

 297

2g3g >∧≤

2g ≤

3g4g >∧≤

 298

3g4g ≥∧<

4g ≥

0red1red ≥∧<

1red ≥

0red1red ≥∧<

1red3red ≥∧<

 299

3red6red ≥∧<

6red ≥

3red <

3red6red ≥∧<

6red9red ≥∧<

9red ≥

 300

6red <

6red9red ≥∧<

9red ≥

30wait0 <≤

60wait ≥

60wait30 <≤

 301

30wait <

60wait30 <≤

90wait ≥

90wait60 <≤

60wait <

90wait60 <≤

90wait ≥

 302

 303

 304

C**

C 1. Main Program

C**

 common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,rl1,p1,p2,p3,p4

 &beta,bx,p,q

 dimension ybar(18),ram(5000,72,10),isum(72),ia(18,72),

 &rmu(72),rmar(18),x2(100,72),iy(100,18),ramda(50,72),da(72),

 &X3(5000,72,10),max(18),z(30),w(72),b(72),r(72),rl(4,4),x1(72),

 ¨(5000,72,10),umu(5000,72,10),rlo(5000,72,10),rinten(72),

 &u(5000,72,10),jy(20,18),count(72),rlink(72),ib(18,72),dan(72)

 &,ymin(72),ymax(72),ax(72),an(72),gy(72),w1(1000),ub1(100),

 &a(1000),para(50,72),rmeanp(72),ub2(100),ub3(100),ch1(100),

 &ch2(100),ch3(100),cp1(100),cp2(100),cp3(100),ap1(100),

 &ap2(100),ap3(100),ap4(100),bar(72),ymean(72),ramd(72),

 &wase(1000),driv(500),cut(500),sumwa(500)

c**

c 1.1 Program for estimate traffic intensity by EM algorithm

c**

c The program read the observe daily data on direct link

c for 20 day

 open(5,file='input.dat',status='old')

 open(6,file='output.out',status='new')

 do 10 i=1,18

10 read(5,15)(ia(i,j),j=1,72)

15 format(72i1)

 do 20 m=1,20

20 read(5,25)(iy(m,n),n=1,18)

25 format(18i3)

 do 21 i=1,20

 do 21 j=1,18

21 jy(i,j)=iy(i,j)/30

 ix=45673874

5 do 35 j=1,18

 sumy=0

 305

 do 40 i=1,20

 sumy=sumy+iy(i,j)

40 continue

 c The program calculate

()

20

20

1
∑

== k

k
i

i

Y
Y

 ybar(j)=sumy/20

 ymean(j)=ybar(j)/30

35 continue

 ix=45673874

 do 30 i=1,72

 x=0.0

 al=80.0

 be=2.0

 zi=i

 ri=i

 c The program let positive mean population of number of cars

 c that travel on direct route on traffic network

 c µ = 721 ,,(µµ L) ; arbitrary.

 call gamma

 rmu(i)=x

30 continue

 rmu(1)=ybar(1)/30

 rmu(3)=ybar(7)/30

 rmu(5)=ybar(9)/30

 rmu(9)=ybar(2)/30

 rmu(11)=ybar(8)/30

 rmu(13)=ybar(10)/30

 rmu(17)=ybar(3)/30

 rmu(21)=ybar(17)/30

 rmu(22)=ybar(15)/30

 rmu(24)=ybar(4)/30

 rmu(28)=ybar(18)/30

 rmu(29)=ybar(16)/30

 rmu(31)=ybar(5)/30

 306

 rmu(36)=ybar(13)/30

 rmu(37)=ybar(6)/30

 rmu(42)=ybar(14)/30

 rmu(43)=ybar(11)/30

 rmu(48)=ybar(12)/30

 c The program generate daily data on direct links for 100 days

c () ≡1Y () ()()1
18

1
2

1
1 ,,, YYY K

c ()2Y ≡ () () ()()2
18

2
2

2
1 YYY ,,, K

c M M

c ()100Y ≡ () () ()()100
18

100
2

100
1 ,,, YYY K

 c Calculate

()

100

20

1
∑

== k

k
i

i

Y
Y

 do 600 n1=1,50

 do 605 k1=1,18

 gys=0

 c The program generate jX from Poisson distribution

 c with parameter 72,,2,1, Kjµ for 100 day

 do 610 l1=1,100

 rv=l1

 rk=k1

 rn=n1

 rmean=ybar(k1)/30

 call poiss

 gy(k1)=xp

 gys=gys+gy(k1)

610 continue

 bar(k1)=gys/100

605 continue

 307

 c The program calculate µ by µ̂ /
7221)ˆ,...,ˆ,ˆ(µµµ= based on

 c applied algorithm

 µ j ← ∑
∑∑ =

==

18

1
72

1

18

1

i

k
kik

iij

i
ij

j

a

Ya

a µ

µ

 do 45 j=1,72

 isuma=0

 do 50 i=1,18

50 isuma=isuma+ia(i,j)

 isum(j)=isuma

45 continue

 do 615 t1=1,1000

 do 55 i=1,18

 sumar=0

 do 60 j=1,72

 ri=i

 rj=j

 rt=t1

60 sumar=sumar+ia(i,j)*rmu(j)

 rmar(i)=sumar

55 continue

 do 65 j=1,72

 sumd=0

 sumtest=0

 do 70 i=1,18

 rj=j

 ri=i

 ratio=bar(i)/rmar(i)

 rmuti=ia(i,j)*ratio

 sumtest=sumtest+rmuti

70 devide=sumtest/isum(j)

 ramda(t1,j)=rmu(j)*devide

 308

c The program calculate µ̂ 50 times to get)1(µ̂ ,)2(µ̂ ,…,)50(µ̂

 para(n1,j)=ramda(t1,j)

 rmu(j)=ramda(t1,j)

65 continue

615 continue

600 continue

 do 620 j1=1,72

 sump=0

 rj=j1

 do 625 n1=1,50

 sump=sump+para(n1,j1)

625 continue

 c The program calculate mean vector ; ∑
=

=
50

1

)(ˆ
50
1ˆ

k

kµµ based

 c on 50 estimations. Then µ̂ is the unbiased estimator of µ ,

 c route count.

 rmeanp(j1)=sump/50

c**

c 1.2 Program for estimate traffic intensity by Gibb sampling

c**

 t=0.0

 s=0.0

105 t=t+1.0

 s=s+1.0

 c The program generate 10 vectors X from 72 independent

 c Poisson distributions with parameter vector µ

 do 111 j=1,10

 do 110 i=1,72

 rj=j

 ri=i

 if(t.eq.1.0)then

 ram(t,i,j)=rmeanp(i)

 x3(t-1,i,j)=rmeanp(i)

 if(rmeanp(i).le.103)then

 309

 rmean=ram(t,i,j)

 else if(rmeanp(i).gt.103)then

 rmean=103

 end if

 call poiss

 x3(t,i,j)=xp

 else if(t.gt.1)then

 c The program draw sample value of 10 parameter vectors λ

 c from 72 conditionally independent posterior distributions,

 c)(jj Xp λ , that is Gamma distribution with shape parameter

 c 1+jX and scale parameter 1; 72,,2,1 K=j .

 al=int(abs(x3(t-1,i,j))+1)

 be=1.0

 x=0.0

 call gamma

 ram(t,i,j)=x

 rmean=ram(t,i,j)

 if(x.le.103)then

 rmean=ram(t,i,j)

 else if(x.gt.103)then

 rmean=103

 end if

 call poiss

 x3(t,i,j)=xp

 end if

 c The program draw a candidate *
jX from Poisson distribution

 c function For each parameter vector λ at iterationt as below.

 c *
jX ~ Poisson(*

jX)1−
−
t

jX ;

 c Where 1−
−
t

jX represents all the element of X except jX , at their

 c current values:

 c 1−
−
t

jX =),,,,,(1
72

1
111

−−
+−

tt
j

t
j

t XXXX KK

 c set






= − otherwiseX
ryprobabilitwithX

X t
j

jt
j 1

*)1,min(

 310

 c r =
)()(
)()(

*1

1*

j
t
j

t
jj

XUXP
XUXP

−

−

 c where
!

)(
j

x
j

j x
e

XP
jj λλ−

= , ()jXU =
!j

x
j

x
e jj µµ−

 run=1.0

 mf=int(x3(t,i,j))

 do 175 m=1,mf

175 run=run*rmeanp(i)/m

 u(t,i,j)=run/2.718**rmeanp(i)

 if(t.gt.1)go to 172

 n=0

 k=0

 umu(t,i,j)=1.0

 rlo(t,i,j)=1

 go to 173

172 rlo(t,i,j)=u(t-1,i,j)

 umu(t,i,j)=uml(t-1,i,j)

173 n=0

 ifact=1

 run=1.0

 mf=int(x3(t,i,j))

 do 176 m=1,mf

176 run=run*ram(t,i,j)/m

 uml(t,i,j)=run/2.718**ram(t,i,j)

 p=(u(t,i,j)*umu(t,i,j))/(rlo(t,i,j)*uml(t,i,j))

 if(p.ge.1)then

 un=1

 else if(p.lt.1)then

 call ber(p,x,ix)

 un=x

 end if

 if(un.eq.1)then

 x3(t,i,j)=x3(t,i,j)

 else if(un.eq.0) then

 311

 x3(t,i,j)=x3(t-1,i,j)

 end if

110 continue

 c The program directly compute the element of Y by AXY =

 x3(t,1,j)=x3(t,1,j)+x3(t,6,j)+x3(t,25,j)+x3(t,26,j)

 &+x3(t,27,j)+x3(t,57,j)+x3(t,58,j)+x3(t,69,j)+x3(t,70,j)

 x3(t,9,j)=x3(t,9,j)+x3(t,10,j)+x3(t,14,j)+x3(t,15,j)+

 &x3(t,20,j)+x3(t,33,j)+x3(t,51,j)+x3(t,60,j)+x3(t,61,j)

 x3(t,17,j)=x3(t,17,j)+x3(t,18,j)+x3(t,19,j)+x3(t,23,j)+

 &x3(t,40,j)+x3(t,41,j)+x3(t,54,j)-x3(t,55,j)+x3(t,64,j)+

 &x3(t,67,j)

 x3(t,24,j)=x3(t,10,j)+x3(t,24,j)+x3(t,30,j)+x3(t,33,j)+

 &x3(t,34,j)+x3(t,35,j)+x3(t,46,j)+x3(t,66,j)+x3(t,68,j)

 x3(t,31,j)=x3(t,16,j)+x3(t,18,j)+x3(t,19,j)+x3(t,31,j)+

 &x3(t,32,j)+x3(t,50,j)+x3(t,52,j)+x3(t,54,j)+x3(t,55,j)+

 &x3(t,56,j)+x3(t,62,j)

 x3(t,37,j)=x3(t,2,j)+x3(t,8,j)+x3(t,37,j)+x3(t,38,j)+

 &x3(t,39,j)+x3(t,45,j)+x3(t,46,j)+x3(t,47,j)+x3(t,59,j)+

 &x3(t,71,j)

 x3(t,3,j)=x3(t,2,j)+x3(t,3,j)+x3(t,4,j)+x3(t,8,j)+

 &x3(t,39,j)+x3(t,49,j)+x3(t,51,j)+x3(t,59,j)+x3(t,72,j)

 x3(t,11,j)=x3(t,11,j)+x3(t,12,j)+x3(t,16,j)+x3(t,26,j)+

 &x3(t,44,j)+x3(t,53,j)+x3(t,62,j)+x3(t,69,j)+x3(t,70,j)

 x3(t,5,j)=x3(t,5,j)+x3(t,20,j)+x3(t,33,j)+x3(t,44,j)+

 &x3(t,53,j)+x3(t,66,j)+x3(t,61,j)+x3(t,62,j)

 x3(t,13,j)=x3(t,13,j)+x3(t,27,j)+x3(t,39,j)+x3(t,49,j)+

 &x3(t,57,j)+x3(t,58,j)+x3(t,72,j)

 x3(t,43,j)=x3(t,4,j)+x3(t,19,j)+x3(t,32,j)+x3(t,43,j)+

 &x3(t,55,j)+x3(t,56,j)+x3(t,72,j)

 x3(t,48,j)=x3(t,12,j)+x3(t,26,j)+x3(t,38,j)+x3(t,53,j)+

 &x3(t,68,j)+x3(t,69,j)+x3(t,70,j)+x3(t,71,j)

 x3(t,36,j)=x3(t,8,j)+x3(t,23,j)+x3(t,36,j)+x3(t,47,j)+

 &x3(t,59,j)+x3(t,64,j)+x3(t,67,j)+x3(t,71,j)

 x3(t,42,j)=x3(t,16,j)+x3(t,30,j)+x3(t,42,j)+x3(t,52,j)+

 &x3(t,56,j)+x3(t,62,j)+x3(t,66,j)+x3(t,68,j)

 312

 x3(t,22,j)=x3(t,7,j)+x3(t,22,j)+x3(t,35,j)+x3(t,46,j)+

 &x3(t,58,j)+x3(t,63,j)+x3(t,68,j)+x3(t,70,j)

 x3(t,29,j)=x3(t,15,j)+x3(t,29,j)+x3(t,41,j)+x3(t,51,j)+

 &x3(t,55,j)+x3(t,61,j)+x3(t,65,j)+x3(t,65,j)+x3(t,67,j)

 x3(t,21,j)=x3(t,6,j)+x3(t,21,j)+x3(t,34,j)+x3(t,57,j)+

 &x3(t,65,j)+x3(t,66,j)+x3(t,69,j)

 x3(t,28,j)=x3(t,14,j)+x3(t,28,j)+x3(t,40,j)+x3(t,54,j)+

 &x3(t,60,j)+x3(t,63,j)+x3(t,64,j)

111 continue

 if(t.eq.1.0) go to 105

 c The program let k
tjX be the drawn from 10 parallel sequences

 c of iteration t of the kth element of X

 c ()10,,2,1;,,2,1 KK == jnt , compute B and W , the between

 c and within-sequence variances for each kth:

 c ∑
=

−=
10

1

2
...)(

9 j
j XXnB , where ∑

=

=
n

i

k
ijj X

n
X

1
.

1 , ∑
=

=
10

1
... 10

1
i

jXX

 c ∑
=

=
10

1

2

10
1

j
jSW , where ∑

=

−
−

=
n

i
j

k
ijj XX

n
S

1

2
.

2)(
1

1

 c and)1(1ˆ −+= n
W
B

n
R

 t=s

 time=t

 do 215 i=1,72

 sb=0

 ssb=0

 ss=0

 do 220 j=1,10

 sw=0

 ssw=0

 do 225 t=1,time

 sw=sw+x3(t,i,j)

225 ssw=ssw+x3(t,i,j)**2

 w(j)=(t*ssw-sw**2)/t*(t-1)

 sb=sb+sw/t

 313

 ssb=ssb+(sw/t)**2

220 ss=ss+w(j)

 w(i)=ss/10

 b(i)=(t/9)*(ssb-sb**2/10)

215 r(i)=sqrt((b(i)/w(i)+t-1)/t)

 t=s

c The program iterate until 1ˆ →R for all kth element.

 do 221 ir=1,72

 if((r(ir).le.0.999.or.r(ir).ge.1.001) goto 105

221 continue

 c The program calculate route count for each direct route by

 c ∑
=

=
10

110
1ˆ

j

k
njk XX , 72,,2,1 K=k

 c where kX̂ is the estimator of route count for direct route thk

 c k
njX is the latest draw for parallel j

222 do 226 i=1,72

 sum1=0

 do 231 j=1,10

231 sum1=sum1+x3(t,i,j)

 rlink(i)=sum1/600

 rinten(i)=1800*rlink(i)

226 continue

 write(6,311)rlink(1),rlink(2),rlink(3),rlink(4),rlink(5),rlink(6)

 write(6,3122)rlink(7),rlink(8),rlink(9),rlink(10),rlink(11),

 &rlink(12)

 write(6,314)rlink(13),rlink(14),rlink(15),rlink(16),rlink(17),

 &rlink(18)

 write(6,316)rlink(19),rlink(20),rlink(21),rlink(22),rlink(23),

 &rlink(24)

 write(6,3137)rlink(25),rlink(26),rlink(27),rlink(28),rlink(29),

 &rlink(30)

 write(6,3118)rlink(31),rlink(32),rlink(33),rlink(34),rlink(35),

 &rlink(36)

 314

 write(6,3119)rlink(37),rlink(38),rlink(39),rlink(40),rlink(41),

 &rlink(42)

 write(6,3111)rlink(43),rlink(44),rlink(45),rlink(46),rlink(47),

 &rlink(48)

 write(6,3112)rlink(49),rlink(50),rlink(51),rlink(52),rlink(53),

 &rlink(54)

 write(6,3114)rlink(55),rlink(56),rlink(57),rlink(58),rlink(59),

 &rlink(60)

 write(6,3116)rlink(61),rlink(62),rlink(63),rlink(64),rlink(65),

 &rlink(66)

 write(6,3127)rlink(67),rlink(68),rlink(69),rlink(70),rlink(71),

 &rlink(72)

311 format(6f10.4)

3122 format(6f10.4)

314 format(6f10.4)

316 format(6f10.4)

3137 format(6f10.4)

3118 format(6f10.4)

3119 format(6f10.4)

3111 format(6f10.4)

3112 format(6f10.4)

3114 format(6f10.4)

3116 format(6f10.4)

3127 format(6f10.4)

c**

c 1.3 Program for calculate optimal length

c**

c The program set the start phase of traffic signal cycle at the

c intersection.

 t1=1

 c1=1

 d1=1

 i1=0

 gn=0

 o1=0

 315

 rc2=0

 rc3=0

 rc4=0

 in=0

 rang=0

 rang1=0

650 i1=i1+1

 ri1=i1

 in=in+1

c The program create cars and find the probability, which is

c emerged from the calculation of route counts , for each

c of the created car in order to randomise its moving from each

c branch of the intersection.

 p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

 p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

 p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1)then

 beta=1/rlink(11)

 c The program generate interarrival time of each car by

 c exponential distribution with parameter beta that is fixed by

 c traffic intensity in the part of input process.

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 c The program compute the important parameter of simulation

 c process, input of fuzzy logic system such as:

 c /
1x : number of cars that pass the green light.

 c /
1x : number of cars from the branch that are allowed to pass the

 c intersection by the green light.

 c /
2x : number of car that stop behind the red light.

 316

 c /
2x : number of cars from the branch that are prohibited passing

 c the intersection by the red light.

 c /
3x : the current cycle time.

 c /
3x : summation of interarrival time.

 do 4 j=1,in

 sumg=sumg+a(j)

4 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2)then

 beta=1/rlink(9)

 call expo(beta,bx,ix)

 a(in)=bx

 rc2=rc2+1

 scut=0

 do 1 j=1,in

 scut=scut+a(j)

1 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 beta=1/(0.38*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 rc3=rc3+1

 scut=0

 do 2 j=1,in

 scut=scut+a(j)

2 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.4)then

 beta=1/(0.62*rlink(13))

 call expo(beta,bx,ix)

 317

 a(in)=bx

 rc4=rc4+1

 scut=0

 do 3 j=1,in

 scut=scut+a(j)

3 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang1=rang1+a(in)

 rang=rang+a(in)

 if(i1-o1.eq.1)go to 650

 delay=0

 drive=0

 do 6 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

6 continue

 drive=drive+add*a(o1+1)

645 redn=rc2+rc3+rc4

 g=2*gn/rang1

 red=6*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 c The program caculate the value of the cost function.

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 c The program calculate degree of change by using

 318

 c fuzzy logic system.

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 655

 go to 650

c The program iterate until length of time is complete and all

c intersections are covered.

655 ub1(t1)=wait

 t1=t1+1

 if(rang.gt.1800) go to 730

 gn=rc2+rc4

 add=rc2+rc4

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 in=0

 rang2=0

 j1=i1

660 j1=j1+1

 in=in+1

 rj1=j1

 p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

 p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

 p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2)then

 beta=1/rlink(9)

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 319

 do 8 j=1,in

 sumg=sumg+a(j)

8 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.4) then

 beta=1/(0.62*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 do 9 j=1,in

 sumg=sumg+a(j)

9 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1)then

 rc1=rc1+1

 beta=1/rlink(11)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 11 j=1,in

 scut=scut+a(j)

11 continue

 driv(in)=0

 cut(in)=scut

 else if (que.eq.3)then

 rc3=rc3+1

 beta=1/(0.38*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 31 j=1,in

 scut=scut+a(j)

 320

31 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 660

 k1=0

 delay=0

 drive=0

 do 12 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang2-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

12 continue

 drive=drive+add*a(i1+1)

680 redn=rc1+rc3

 g=3*gn/rang2

 red=6*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 664

 go to 660

664 ub2(c1)=wait

 c1=c1+1

 321

 if(rang.gt.1800) go to 730

 gn=rc3

 add=rc3

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 in=0

 rang3=0

 o1=j1

685 o1=o1+1

 in=in+1

 p1=rinten(11)/(rinten(11)+rinten(9)+rinten(13))

 p2=rinten(9)/(rinten(11)+rinten(9)+rinten(13))

 p3=(0.38*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 p4=(0.62*rinten(13))/(rinten(11)+rinten(9)+rinten(13))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 beta=1/(0.38*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 sumg=0

 do 14 j=1,in

 sumg=sumg+a(j)

14 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.4) then

 beta=1/(0.62*rlink(13))

 call expo(beta,bx,ix)

 a(in)=bx

 gn=gn+1

 322

 sumg=0

 do 17 j=1,in

 sumg=sumg+a(j)

17 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(9)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 18 j=1,in

 scut=scut+a(j)

18 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.1)then

 rc1=rc1+1

 beta=1/rlink(11)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 19 j=1,in

 scut=scut+a(j)

19 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang3=rang3+a(in)

 rang=rang+a(in)

 if(o1-j1.eq.1)go to 685

 k1=0

 delay=0

 drive=0

 323

 do 32 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang3-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

32 continue

 drive=drive+add*a(j1+1)

710 redn=rc1+rc2

 g=3*gn/rang3

 red=6*redn/rang3

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 720

 go to 685

720 ub3(d1)=wait

 d1=d1+1

 if(rang.gt.1800) go to 730

 i1=o1

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc=0

 in=0

 324

 rc3=0

 rc4=0

 rang1=0

 go to 650

730 e1=1

 i1=0

 g=0

 gn=0

 o1=0

 rc2=0

 rc3=0

 rang1=0

 rang=0

 in=0

735 i1=i1+1

 ri1=i1

 in=in+1

 rin=in

 p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

 p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

 p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1) then

 gn=gn+1

 beta=1/rlink(3)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 121 j=1,in

 sumg=sumg+a(j)

121 continue

 driv(in)=sumg

 cut(in)=0

 325

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(31)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 24 j=1,in

 scut=scut+a(j)

24 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(48)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 26 j=1,in

 scut=scut+a(j)

26 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang1=rang1+a(in)

 rang=rang+a(in)

 if(i1-o1.eq.1)go to 735

 drive=0

 delay=0

750 w1(k1)=sumw

 do 36 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 326

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

36 continue

 drive=drive+add*a(o1+1)

755 redn=rc2+rc3

 delay1=delay/redn

 g=4*gn/rang1

 red=6*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 if(wait.gt.20)go to 760

 go to 735

760 ch1(e1)=wait

 e1=e1+1

 if(rang.ge.1800) go to 789

 f1=1

 z1=1

 gn=rc2

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 rang2=0

 j1=i1

 in=0

764 j1=j1+1

 rj1=j1

 in=in+1

 p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

 327

 p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

 p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2) then

 gn=gn+1

 beta=1/rlink(31)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 22 j=1,in

 sumg=sumg+a(j)

22 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=1/rlink(3)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 27 j=1,in

 scut=scut+a(j)

27 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(48)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 127 j=1,in

 scut=scut+a(j)

 328

127 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 764

 drive=0

 delay=0

 do 46 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

46 continue

 drive=drive+add*a(i1+1)

780 redn=rc1+rc3

 delay2=delay/redn

 g=4*gn/rang2

 red=6*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 if(wait.gt.25) go to 785

 go to 764

785 ch2(f1)=wait

 f1=f1+1

 if(rang.gt.1800) go to 789

 gn=rc3

 329

 add=rc3

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 rang3=0

 o1=j1

 in=0

790 o1=o1+1

 in=in+1

 p1=rinten(3)/(rinten(3)+rinten(31)+rinten(48))

 p2=rinten(31)/(rinten(3)+rinten(31)+rinten(48))

 p3=rinten(48)/(rinten(3)+rinten(31)+rinten(48))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 gn=gn+1

 beta=rlink(48)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 123 j=1,in

 sumg=sumg+a(j)

123 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=rlink(3)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 28 j=1,in

 330

 scut=scut+a(j)

28 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.2)then

 rc2=rc2+1

 beta=rlink(31)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 29 j=1,in

 scut=scut+a(j)

29 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang3=rang3+a(in)

 if(o1-j1.eq.1)go to 790

 drive=0

 delay=0

 do 56 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

56 continue

 drive=drive+add*a(j1+1)

809 redn=rc1+rc2

 delay3=delay/redn

 g=4*gn/rang3

 red=6*redn/rang3

 331

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 if(wait.gt.25)go to 784

 go to 790

784 ch3(z1)=wait

 z1=z1+1

 if(rang.ge.1800)go to 789

 i1=o1

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc3=0

 in=0

 rang1=0

 go to 735

789 h1=1

 y1=1

 ai=1

 i1=0

 o1=0

 rc1=0

 rc3=0

 rang=0

 rang1=0

 gn=0

 in=0

794 i1=i1+1

 ri1=i1

 332

 in=in+1

 p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

 p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

 p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2) then

 gn=gn+1

 beta=1/rlink(17)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 61 j=1,in

 sumg=sumg+a(j)

61 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=1/rlink(42)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 64 j=1,in

 scut=scut+a(j)

64 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(37)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 333

 do 66 j=1,in

 scut=scut+a(j)

66 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang1=rang1+a(in)

 if(i1-o1.eq.1)go to 794

 drive=0

 delay=0

 do 73 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

73 continue

 drive=drive+add*a(o1+1)

815 redn=rc3+rc1

 delay1=delay/redn

 g=2*gn/rang1

 red=4*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 820

 go to 794

 334

820 cp1(h1)=wait

 h1=h1+1

 if(rang.gt.1800)go to 925

 y1=1

 gn=rc3

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 rang2=0

 j1=i1

 in=0

825 j1=j1+1

 rj1=j1

 in=in+1

 p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

 p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

 p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 gn=gn+1

 beta=1/rlink(37)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 62 j=1,in

 sumg=sumg+a(j)

62 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.1) then

 335

 rc1=rc1+1

 beta=1/rlink(42)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 67 j=1,in

 scut=scut+a(j)

67 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.2)then

 rc2=rc2+1

 beta=1/rlink(17)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 68 j=1,in

 scut=scut+a(j)

68 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 825

 delay=0

 drive=0

 do 74 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

 336

74 continue

 drive=drive+add*a(i1+1)

845 redn=rc1+rc2

 delay2=delay/redn

 g=2*gn/rang2

 red=4*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

c write(6,23)rj1,rang,rang2,gn,redn,cost,degree

c23 format(7f10.3)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 850

 go to 825

850 cp2(y1)=wait

 y1=y1+1

 if(rang.gt.1800)go to 925

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc3=0

 rang3=0

 in=0

 o1=j1

860 o1=o1+1

 in=in+1

 p1=rinten(42)/(rinten(42)+rinten(17)+rinten(37))

 p2=rinten(17)/(rinten(42)+rinten(17)+rinten(37))

 337

 p3=rinten(37)/(rinten(42)+rinten(17)+rinten(37))

 p4=0

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1) then

 gn=gn+1

 beta=1/rlink(42)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 63 j=1,in

 sumg=sumg+a(j)

63 continue

 driv(in)=sumg

 cut(in)=0

 wase(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(17)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 69 j=1,in

 scut=scut+a(j)

69 continue

 driv(in)=0

 cut(in)=scut

 else if (que.eq.3)then

 rc3=rc3+1

 beta=1/rlink(37)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 171 j=1,in

 scut=scut+a(j)

 338

171 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang3=rang3+a(in)

 if(o1-j1.eq.1)go to 860

 delay=0

 drive=0

 do 276 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

276 continue

 drive=drive+add*a(j1+1)

880 redn=rc2+rc3

 delay3=delay/redn

 g=2*gn/rang3

 red=4*redn/rang3

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 885

 go to 860

885 cp3(ai)=wait

 ai=ai+1

 339

 if(rang.gt.1800)go to 925

 gn=rc2

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 in=0

 rang1=0

 i1=o1

 go to 794

925 b1=1

 c1=1

 v1=1

 xo=1

 gn=0

 s1=0

 i1=0

 s1=0

 in=0

 rc1=0

 rc2=0

 rc3=0

 rang=0

 rang1=0

890 i1=i1+1

 ri1=i1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 340

 if(que.eq.4) then

 gn=gn+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 71 j=1,in

 sumg=sumg+a(j)

71 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 76 j=1,in

 scut=scut+a(j)

76 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3) then

 rc3=rc3+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 77 j=1,in

 scut=scut+a(j)

77 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.1)then

 rc1=rc1+1

 341

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 78 j=1,in

 scut=scut+a(j)

78 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang1=rang1+a(in)

 if(i1-s1.eq.1)go to 890

 delay=0

 drive=0

 do 91 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

91 continue

 drive=drive+add*a(s1+1)

915 redn=rc1+rc2+rc3

 delay1=delay/redn

 g=2*gn/rang1

 red=3*redn/rang1

 wait=rang1

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 342

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 920

 go to 890

920 ap1(b1)=wait

 b1=b1+1

 if(rang.gt.1800)go to 1020

 gn=rc1

 add=rc1

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc4=0

 rang2=0

 j1=i1

 in=0

924 j1=j1+1

 rj1=j1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.1) then

 gn=gn+1

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 72 j=1,in

 sumg=sumg+a(j)

72 continue

 343

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 79 j=1,in

 scut=scut+a(j)

79 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.3) then

 rc3=rc3+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 81 j=1,in

 scut=scut+a(j)

81 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.4)then

 rc4=rc4+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 82 j=1,in

 scut=scut+a(j)

82 continue

 driv(in)=0

 cut(in)=scut

 344

 wase(in)=bx

 end if

 rang=rang+a(in)

 rang2=rang2+a(in)

 if(j1-i1.eq.1)go to 924

 delay=0

 drive=0

 do 92 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

92 continue

 drive=drive+add*a(i1+1)

945 redn=rc2+rc3+rc4

 delay2=delay/redn

 g=3*gn/rang2

 red=3*redn/rang2

 wait=rang2

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 950

 go to 924

950 ap2(c1)=wait

 c1=c1+1

 if(rang2.ge.1800)go to 1020

 v1=1

 345

 gn=rc3

 add=rc3

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc1=0

 o1=j1

 rang3=0

 in=0

955 o1=o1+1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.3) then

 gn=gn+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 273 j=1,in

 sumg=sumg+a(j)

273 continue

 driv(in)=sumg

 cut(in)=0

 wase(in)=0

 else if(que.eq.1) then

 rc1=rc1+1

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 a(in)=bx

 346

 scut=0

 do 83 j=1,in

 scut=scut+a(j)

83 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.2) then

 rc2=rc2+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 84 j=1,in

 scut=scut+a(j)

84 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.4)then

 rc4=rc4+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 86 j=1,in

 scut=scut+a(j)

86 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang3=rang3+a(in)

 if(o1-j1.eq.1)go to 955

 delay=0

 drive=0

 do 93 k1=1,in

 347

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

93 continue

 drive=drive+add*a(j1+1)

975 redn=rc1+rc2+rc4

 delay3=delay/redn

 g=2*gn/rang3

 red=3*redn/rang3

 wait=rang3

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 980

 go to 955

980 ap3(v1)=wait

 v1=v1+1

 if(rang.ge.1800)go to 1020

 gn=rc2

 add=rc2

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc3=0

 rang4=0

 s1=o1

 348

 in=0

985 s1=s1+1

 in=in+1

 p1=rinten(28)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p2=rinten(29)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p3=rinten(24)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 p4=rinten(1)/(rinten(28)+rinten(29)+rinten(24)+rinten(1))

 call allocate(p1,p2,p3,p4,q,ix)

 que=q

 if(que.eq.2) then

 gn=gn+1

 beta=1/rlink(29)

 call expo(beta,bx,ix)

 a(in)=bx

 sumg=0

 do 174 j=1,in

 sumg=sumg+a(j)

174 continue

 driv(in)=sumg

 cut(in)=0

 else if(que.eq.3) then

 rc3=rc3+1

 beta=1/rlink(24)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 87 j=1,in

 scut=scut+a(j)

87 continue

 driv(in)=0

 cut(in)=scut

 else if(que.eq.1)then

 rc1=rc1+1

 beta=1/rlink(28)

 call expo(beta,bx,ix)

 349

 a(in)=bx

 scut=0

 do 88 j=1,in

 scut=scut+a(j)

88 continue

 driv(in)=0

 cut(in)=scut

 wase(in)=bx

 else if(que.eq.4)then

 rc4=rc4+1

 beta=1/rlink(1)

 call expo(beta,bx,ix)

 a(in)=bx

 scut=0

 do 89 j=1,in

 scut=scut+a(j)

89 continue

 driv(in)=0

 cut(in)=scut

 end if

 rang=rang+a(in)

 rang4=rang4+a(in)

 if(s1-o1.eq.1)go to 985

 delay=0

 drive=0

 do 94 k1=1,in

 if(cut(k1).eq.0)then

 sumwa(k1)=0

 else if(cut(k1).gt.0)then

 sumwa(k1)=rang1-cut(k1)

 end if

 delay=delay+sumwa(k1)

 drive=drive+driv(k1)

94 continue

 drive=drive+add*a(o1+1)

 350

1005 redn=rc1+rc3+rc4

 delay4=delay/redn

 g=2*gn/rang4

 red=3*redn/rang4

 wait=rang4

 drive1=cdrive+drive

 delay1=cdelay+delay

 redn1=credn+redn

 gn1=cgn+gn

 cost=(delay1*gn1*(redn+gn))/(100*redn1*gn*drive1)

c write(6,43)s1,rang,rang4,gn,redn,cost,degree

c43 format(7f10.5)

 call fuzzy(g,red,wait,mu)

 degree=mu

 if(degree.eq.1) go to 1010

 go to 985

1010 ap4(xo)=wait

 xo=xo+1

 if(rang.ge.1800)go to 1020

 i1=s1

 gn=rc4

 add=rc4

 cdrive=drive1

 cdelay=delay1

 credn=redn1

 cgn=gn1

 rc2=0

 in=0

 rang1=0

 go to 890

1020 STOP

 end

 351

c**

c 2. Sub-Program

c**

c**

c 2.1 Subroutine for allocate car to each branch

c**

 subroutine allocate(p1,p2,p3,p4,q,ix)

 rn=unif(ix)

 if(rn.lt.p1) then

 q=1

 else if(rn.ge.p1.and.rn.lt.p1+p2) then

 q=2

 else if(rn.ge.p1+p2.and.rn.lt.p1+p2+p3) then

 q=3

 else if(rn.ge.p1+p2+p3) then

 q=4

 end if

 return

 end

c***

c 2.2 Subroutine for generate exponential random variable

c***

 subroutine expo(beta,bx,ix)

 rn=unif(ix)

 bx=-beta*alog(rn)

 return

 end

C**

C 2.3 Subroutine for generate gamma random variable

C**

 Subroutine gamma

 common ix,al,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

555 rn=unif(ix)

 v=-be*alog(rn)

 x=x+v

 352

 if(al.eq.1)go to 520

 al=al-1

 go to 555

520 x=x

 return

 end

C**

C 2.4 Subroutine for generate poisson random variable

C**

 subroutine poiss

 common ix,ial,be,x,xp,rmean,min,xmax,xu,g,re,w1,l1,p

 xp=0.0

 a=2.718**(-rmean)

 s=1.0

4 rn=unif(ix)

 s=s*rn

 if(s-a)9,7,7

7 xp=xp+1.0

 go to 4

9 return

 end

c**

c 2.5 Subroutine for generate bernoulie random variable

c**

 subroutine ber(p,x,ix)

 rn=unif(ix)

 rr=1-p

 if(rn.le.rr)go to 525

 X=1.0

 go to 530

525 x=0.0

530 return

 end

 353

c**

c 2.6 Function for generate random number

c**

 FUNCTION UNIF(IX)

 K1=IX/127773

 IX=16807*(IX-K1*127773)-K1*2836

 IF(IX.LT.0)IX=IX+2147483647

 UNIF=IX*4.656612875E-10

 IX=IX

 RETURN

c**

c 2.8 Subroutine for fuzzy logic system

c**

 SUBROUTINE FUZZY(G,RED,WAIT,MU)

 IX=1234567

 IF(G.GT.1) THEN

 GZ=0

 ELSE IF(G.LE.1.AND.G.GE.0) THEN

 GZ=1-G

 END IF

 IF(G.LE.1.AND.G.GE.0) THEN

 GL=G

 ELSE IF(G.LE.2.AND.G.GT.1) THEN

 GL=1

 ELSE IF(G.LE.3.AND.G.GT.2) THEN

 GL=3-G

 ELSE IF(G.GT.3) THEN

 GL=0

 END IF

 IF(G.LE.2) THEN

 GM=0

 ELSE IF(G.LE.3.AND.G.GT.2) THEN

 GM=G-2

 ELSE IF(G.LE.4.AND.G.GT.3) THEN

 GM=4-G

 354

 ELSE IF(G.GT.4) THEN

 GM=0

 END IF

 IF(G.LT.3) THEN

 GH=0

 ELSE IF(G.LT.4.AND.G.GE.3) THEN

 GH=G-3

 ELSE IF(G.GE.4) THEN

 GH=1

 END IF

 IF(RED.LT.1.AND.RED.GE.0) THEN

 RZ=1-RED

 ELSE IF(RED.GE.1)THEN

 RZ=0

 END IF

 IF(RED.LT.1.AND.RED.GE.0) THEN

 RL=RED

 ELSE IF(RED.LT.3.AND.RED.GE.1) THEN

 RL=1

 ELSE IF(RED.LT.6.AND.RED.GE.3) THEN

 RL=2-RED/3

 ELSE IF(RED.GE.6) THEN

 RL=0

 END IF

 IF(RED.LT.3) THEN

 RM=0

 ELSE IF(RED.LT.6.AND.RED.GE.3) THEN

 RM=RED/3-1

 ELSE IF(RED.LT.9.AND.RED.GE.6) THEN

 RM=3-RED/3

 ELSE IF(RED.GE.9) THEN

 RM=0

 END IF

 IF(RED.LT.6) THEN

 RH=0

 355

 ELSE IF(RED.LT.9.AND.RED.GE.6) THEN

 RH=RED/3-2

 ELSE IF(RED.GE.9) THEN

 RH=1

 END IF

 IF(WAIT.LT.30.AND.WAIT.GE.0) THEN

 WS=1

 ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN

 WS=2-WAIT/30

 ELSE IF(WAIT.GE.60) THEN

 WS=0

 END IF

 IF(WAIT.LT.30) THEN

 WM=0

 ELSE IF(WAIT.LT.60.AND.WAIT.GE.30) THEN

 WM=WAIT/30-1

 ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN

 WM=3-WAIT/30

 ELSE IF(WAIT.GE.90) THEN

 WM=0

 END IF

 IF(WAIT.LT.60) THEN

 WL=0

 ELSE IF(WAIT.LT.90.AND.WAIT.GE.60) THEN

 WL=WAIT/30-2

 ELSE IF(WAIT.GE.90) THEN

 WL=1

 END IF

 A1=0.05

 A2=0.2

 A3=0.2

 A4=0.2

 A5=0.15

 C1=0.033

 C2=0.3

 356

 C3=0.5

 C4=0.7

 C5=0.85

 S1=GZ*RZ*A1

 S2=GZ*RL*A5

 S3=GZ*RM*A5

 S4=GZ*RH*A5

 S5=RZ*A1

 S6=GL*RL*A1

 S7=GM*RM*A1

 S8=GH*RH*A1

 S9=GL*RM*WS*A3

 S10=GL*RM*WM*A4

 S11=GL*RM*WL*A5

 S12=GL*RH*WS*A2

 S13=GL*RH*WM*A3

 S14=GL*RH*WL*A4

 S15=GM*RL*WS*A2

 S16=GM*RL*WM*A2

 S17=GM*RL*WL*A3

 S18=GM*RH*WS*A3

 S19=GM*RH*WM*A4

 S20=GM*RH*WL*A5

 S21=GH*RL*WS*A3

 S22=GH*RL*WM*A4

 S23=GH*RL*WL*A5

 S24=GH*RM*WS*A2

 S25=GH*RM*WM*A2

 S26=GH*RM*WL*A3

UPER=S1*C1+S2*C5+S3*C5+S4*C5+S5*C1+S6*C1+S7*C1+S8*C1&

+S9*C3+S10*C4+S11*C5+S12*C2+S13*C3+S14*C4+S15*C2

&+S16*C2+S17*C3+S18*C3+S19*C4+S20*C5+S21*C3+S22*C4

&+S23*C5+S24*C2+S25*C2+S26*C3

ROWER=S1+S2+S3+S4+S5+S6+S7+S8+S9+S10+S11+S12+S13+S14

&+S15+S16+S17+S18+S19+S20+S21+S22+S23+S24+S25+S26

 357

 RUL=UPER/ROWER

 P=RUL

 CALL BER(P,X,ix)

 MU=X

 RETURN

 END

