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A B S T R A C T

Biplots constructed from principal components of a compositional data set are an established means to explore its
features. Principal Component Analysis (PCA) is also used to transform a set of spatial variables into spatially
decorrelated factors. However, because no spatial structures are accounted for in the transformation the appli-
cation of PCA is limited. In geostatistics and blind source separation a variety of different matrix diagonalization
methods have been developed with the aim to provide spatially or temporally decorrelated factors. Just as PCA,
many of these transformations are linear and so lend themselves to the construction of biplots. In this contribution
we consider such biplots for a number of methods (MAF, UWEDGE and RJD transformations) and discuss how and
if they can contribute to our understanding of relationships between the components of regionalized composi-
tions. A comparison of the biplots with the PCA biplot commonly used in compositional data analysis for the case
of data from the Northern Irish geochemical survey shows that the biplots from MAF and UWEDGE are compa-
rable as are those from PCA and RJD. The biplots emphasize different aspects of the regionalized composition: for
MAF and UWEDGE the focus is the spatial continuity, while for PCA and RJD it is variance explained. The results
indicate that PCA and MAF combined provide adequate and complementary means for exploratory statistical
analysis.

1. Introduction

Biplots constructed from principal components are an established
means for exploring the features of a compositional data set Aitchison
and Greenacre (2002). In several contributions (Mueller and Grunsky,
2016; Grunsky et al., 2017; McKinley et al., 2018) we have seen that the
method of minimum maximum autocorrelation factors (MAF, Switzer
and Green, 1984, Desbarats and Dimitrakopoulos, 2000, Tolosana--
Delgado et al., 2019) enhances classification and improves spatial
decorrelation of factors derived from regionalized compositions. It is
therefore often preferred when the spatial properties of the composition
cannot be ignored. However, to date biplots for MAF derived factors have
not been explored, nor have biplots associated with more general joint
(or simultaneous) diagonalizers based on the covariance or semivario-
gram function of the regionalized composition. These include uniformly
weighted exhaustive diagonalization with Gauss iterations (UWEDGE,
Tichavsky and Yeredor, 2009) and rotational joint diagonalization (RJD,

Cardoso and Souloumiac, 1996). In what follows the inputs for biplots
based on these schemes is considered. First the notion of joint diago-
nalization of a family of matrices is explored, along with approximate
joint diagonalization. We then consider the application to multivariate
spatial data and finally the application to regionalized composition and
the construction of biplots. Following this exposition, an application to a
subcomposition of the Tellus data set is considered.

2. Regionalized compositions and spatial decorrelation

A regionalized composition is a set fzðuÞ ¼ ½z1ðuÞ;…;zDðuÞ� : zkðuÞ> 0;

k ¼ 1;…;D;
PD
k¼1

zkðuÞ ¼ c; u2 A g of compositional data defined on some

study area A , where u 2 A denotes a location in A and c is an arbitrary,
but fixed constant. It is common to transform compositions to log-ratios
to avoid problems arising out of the fact that compositional data are
closed and non-negative. The centered log-ratio (clr) transform is one of
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the commonly used transformations to open up the simplex to real space.
It is defined by ζkðuÞ ¼ lnðzkðuÞ =gðuÞÞ; k ¼ 1;…;D where gðuÞ ¼
ðQD

k¼1zkðuÞÞ1=D denotes the geometric mean of the data at location u: The
corresponding regionalized composition of clr-transformed variables will
be denoted by fζðuÞ¼ ½ζ1ðuÞ;…; ζDðuÞ� : u2 A g and the corresponding
variance covariance matrix by Σclr . The image space of the clr trans-
formation is the ðD � 1Þ–dimensional hyperplane H orthogonal to the
vector 1D in RD all of whose entries are equal to 1. This makes Σclr sin-
gular, so care must be taken to deal with it appropriately.

To describe the spatial continuity of the regionalized composition, it
is customary in geostatistics to use the semivariogram function, which is
a matrix-valued function of the lag separation h defined by

Γ clrðhÞ¼ 1
2
E
�ðζðuÞ � ζðuþ hÞÞT ðζðuÞ� ζðuþ hÞÞ� (1)

in terms of clr transformed variables. The experimental counterparts of
the regionalized composition are fzðuαÞ ¼ ½z1ðuαÞ; …; zDðuαÞ� : uα 2 A ;

α ¼ 1;…; ng and fζðuαÞ¼ ½ζ1ðuαÞ;…; ζDðuαÞ� : uα 2 A ; α¼ 1;…; ng and

the experimental semivariogram Γ clrðhℓÞ ¼ ½γijclrðhℓÞ�i;j¼1;…;D at a lag value
hℓ is defined componentwise as

γijclrðhℓÞ¼
1

2NðhℓÞ
X

uα�uβ�hℓ

ðζiðuαÞ� ζiðuβÞÞ
�
ζjðuαÞ� ζjðuβÞ

�
(2)

Thus associated with the regionalized composition there is a family
fΓ clrðhℓÞ;ℓ¼ 1;…; Lg of experimental semivariogram matrices calcu-
lated at L lag values hℓ chosen as appropriate to the nearest neighbor
separation of the sample data.

To obtain a model of the spatial continuity of the data, a matrix-
valued function is fitted to the experimental semivariograms and then
used in subsequent estimation or simulation work. In the inference of an
allowable model, in the case of the semivariogram function based on clr-
data this model needs to be conditionally negative semidefinite (Paw-
lowsky-Glahn and Burger, 1992), restrictions are imposed, which make
the fitting cumbersome. It is therefore often preferred to transform the
data to spatially decorrelated factors and work with their family of
semivariograms instead. This process of spatial decorrelation is based on
a joint diagonalization of the semivariogram matrices. Since the covari-
ance of the clr data is singular by construction, so are the semivariogram
matrices. However, all spatial decorrelation methods fail under these
circumstances, either because they require the inversion of one of these
singular matrices, or because they end up in an underdetermined opti-
mization problem. Several workaround strategies exist, all analogous to
each other: generalized inversion, constrained optimization, change of
coordinates. In the compositional literature, it is common to choose the
last strategy, which is equivalent to the selection of a different log-ratio
transformation (Pawlowsky-Glahn et al., 2015), arguably an isometric
log-ratio transformation (ilr, Egozcue et al., 2003), which is associated
with coordinates relative to an orthogonal basis of the clr image space.
However, for simplicity of exposition, the choice made here is to base the
mapping on the eigenvectors derived from the covariance matrix Σclr of
the clr-data, Σclr ¼ ½UH ;D�1=21D� Λ½UH ;D�1=21D�T . The matrix U ¼ ½UH ;

D�1=21D� is orthogonal and contains the eigenvectors of Σclr : The matrix
Λ ¼ diagðλ1;…; λD�1;0Þ is the diagonal matrix of eigenvalues arranged in
descending order, with the last eigenvalue equal to 0 corresponding to
the eigenvector uD ¼ D�1=21D. Specifically we put ΓHðhℓÞ ¼
UT

HΓ clrðhℓÞUH ;ℓ ¼ 1;…; L: This transformation results in a reduction of
the dimension by 1, and for each ℓ ¼ 1;…;L, the matrix ΓHðhℓÞ is of size
ðD � 1Þ� ðD � 1Þ, and as it is a variance-covariance matrix of increments
it is a positive definite matrix. This strategy is equivalent to using
Moore-Penrose generalized inversion, to restricting optimization

searches to the subspace orthogonal to uD, or to defining an ilr by means
of UH .

3. Joint (approximate) diagonalization of positive definite real
matrices

The general problem to be addressed is the following: Given a family
of semivariogrammatricesMℓ ¼ ΓHðhℓÞ;ℓ ¼ 1;…; L find amatrix A such
that for all ℓ the equation Mℓ ¼ AΛℓAT is valid where Λℓ is a diagonal
matrix. If such a matrix A exists, then the family fMℓ : ℓ¼ 1;…; Lg is said
to be jointly diagonalizable. For real data such a matrix does not exist and
so the condition of joint diagonalization is weakened to approximate
diagonalization according to some suitably chosen criterion.

Moreover, the matrices are said to be jointly orthogonally diagonal-
izable, if the matrix A is orthogonal. In the latter case, the matrix A is
unique up to permutation and scaling by a diagonal matrix, all of whose
entries are �1 (Afsari 2007). If the matrices are not jointly orthogonally
diagonalizable, one can relax the requirement that the matrix A be
orthogonal and instead require invertibility only. This relaxation comes
at the cost that the matrix, if it exists, is only unique up to scaling and
permutation.

Checking whether a family of symmetric matrices is jointly diago-
nalizable is straightforward: the matrices in the family need to commute
pairwise (Horn and Johnson, 1985), that is the conditionMℓMk ¼ MkMℓ

is satisfied for all k;ℓ ¼ 1;…;L. In that case the matrix A is the matrix of
eigenvectors of one of the matrices in the set and as such can be chosen to
be orthogonal. In most applications however, pairwise commutativity is
not satisfied. For example, consider the case where M1 and M2 are both
real positive definite matrices of the same size, but M1M2 6¼ M2M1. In
that case it can be shown that there exists an invertible matrix C such that
CM1CT and CM2CT are diagonal if and only if M�1

2 M1 is diagonalizable.
The matrices M1 and M2 are then said to be diagonalizable by congru-
ence and this condition can be extended to larger families of matrices
(Jiang and Li, 2015).

It is therefore common to distinguish between orthogonal and non-
orthogonal joint diagonalization problems (OJD and NOJD). In general
“experimental” settings joint diagonalization is not possible, and so
approximate joint diagonalization has received a lot of attention, in
particular in the context of blind source separation (for example, Cardoso
and Souloumiac, 1996; Tichavsky and Yeredor, 2009).

4. PCA and MAF

The solution proposed by the PCA method consists of directly using
the representation through the eigendecomposition of the variance-
covariance matrix Σclr of the clr transformed data, Σclr ¼ ½UH ;

D�1=21D�Λ½UH ;D�1=21D�T proposed on the preceding section. The trans-
formation which diagonalizes Σclr on H is given by ΣH ¼ UT

HΣclrUH ¼
ΛH ¼ diagðλ1;…; λD�1Þ and the eigenvalues reflect the variability repre-
sented by the corresponding factor (arranged in descending order).

For MAF, the variance-covariance matrix ΣH and the semivariogram
matrix ΓHðhÞ at a chosen lag h are diagonalized jointly by congruence.

Since ΣH ¼ ΛH is diagonal, matrix A is given by A ¼ WT
1Λ

�1=2
H where W1

is the orthogonal matrix which diagonalizes Λ�1=2
H ΓHðhÞΛ�1=2

H . The ma-
trix A is non-singular by construction and satisfies AΣHAT ¼ I and
AΓHðhÞAT ¼ Λ1. The eigenvalues in the matrix Λ1 are arranged in
descending order, implying that factors will exhibit diminishing spatial
continuity. In essence, MAF can thus be seen as a combination of two

PCAs, the first being applied to Σclr and the second to Λ�1=2
H ΓHðhÞΛ�1=2

H :
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5. Approximate joint diagonalization

Diagonalization via PCA is an OJD method, while MAF is a NOJD
method. In the context of a family of semivariogram matrices that is
sought to be diagonalized, the transformation derived from PCAwill only
diagonalize all semivariogram matrices if they commute pairwise. This
condition is usually not satisfied, as the data on which calculation of the
semivariogram matrices is based are noisy and there are different spatial
scales that impact on the continuity of the data.

To account for phenomena of this type, the chosen blind source
separation methods attempt to derive the best diagonalizer based on the
entire family of matrices available. Typically some kind of fixed point
iteration is used to determine the matrix A that best jointly diagonalizes
the given family of symmetric matrices according to some cost criterion.
In the case of OJD the cost function is set to be

C1ðAÞ ¼
XL
ℓ¼1

trace
��

MA
ℓ � diag

�
MA

ℓ

��T�MA
ℓ � diag

�
MA

ℓ

���
(3)

where one seeks to minimize the sum of squares of the off-diagonal en-
tries in MA

l ¼ ATMℓA. In the RJD algorithm the matrix A is constructed
iteratively from Jacobi rotation matrices (Cardoso and Souloumiac
1996).

The criterion used for NOJD is not very different from it, in the case of
the UWEDGE method (Tichavsky and Yeredor, 2009) a matrix W is
sought that minimizes

C3ðW;AÞ ¼
XL
ℓ¼1

trace
��

MA
ℓ �WΛℓ;WWT

�T�MA
ℓ �WΛℓ;WWT

��
(4)

where Λℓ;W ¼ diagðMA
ℓ Þ. The matrices W and A are called the mixing

matrix and demixing matrix respectively. The naming of the matrices W
and A reflects the manner in which they act onMℓ and Λℓ;W respectively:
The matrix A approximately diagonalizesMℓ, ie “demixes” Mℓ while the
matrix W transforms the diagonal matrix Λℓ;W to a symmetric matrix,
which is not necessarily diagonal (and in that sense “mixed”), but as close
as possible to MA

ℓ .
Given the regionalized composition the biplot for any one of the

methods is constructed based on the clr-transformed data. Given that the
diagonalization matrix W is determined that approximately jointly di-
agonalizes the semivariogram matrices in the family fΓHðhℓÞ : ℓ ¼ 1;…;

Lg, the result needs to be recast into clr space. Indeed, if Zclr ¼
½zkðuαÞ�α¼1;…n;k¼1;…;D denotes the n� Dmatrix of centered clr-scores, then
the factors are given by

F¼ZclrUHA: (5)

The columns of F represent the scores and the rows of Φ ¼ UHA are
the loadings of the factors, i.e. the contribution of each original (clr-
transformed) component onto the new factors. The original components
can be recovered from the vector of scores by

Zclr ¼FΨ (6)

where Ψ ¼ A�1UT
H is the pseudo-inverse of Φ: The equivalent of a scree

plot can be obtained by calculating the explained variance
s2j ðj¼ 1;…;D�1Þ attributable to the jth factor f j: The expression in Eq. (6)

may be rewritten as a sum of outer products Zclr¼
PD�1

j¼1
f jψ j where f j and ψ j

denote the jth column of F and the jth row of Ψ respectively. Further, the
total variance is given by mvarðZclrÞ¼ trace ðZT

clrZclrÞ, sinceZclr is
centered. Expanding the total variance it therefore follows that

mvarðZclrÞ¼ trace
�
ZT
clrZclr

�
¼ traceðΨ TFTFΨ Þ¼ traceðΨ TvarðFÞΨ Þ
¼
XD

i¼1

XD�1

j;j0 ¼1
ψ ji½varðFÞ�jj0 ψ j0 i ¼

XD

i¼1

XD�1

j¼1
ψ jivar

�
f j
�
ψ ji

¼
XD�1

j¼1
var
�
f j
� XD

i¼1
ψ2

ji

!
¼
XD�1

j¼1
kψk2j var

�
f j
�

since ½varðFÞ�jj0 ¼ covðf j; f j0 Þ ¼ 0 for j 6¼ j0 , and ½varðFÞ�jj ¼ varðf jÞ, so
that each

s2j ¼kψk2j var
�
f j
�

(7)

can be understood as the contribution of the jth factor to the total
explained variability.

To construct a (form) biplot to capture the variability of the original
data from these results, we take Eq. (6) as the guiding tool, and following
Graffelmann and Eeuwijk (2005), identify the analogues of the principal
coordinates (to be represented as dots) as the columns of F whereas the
analogues to the standard coordinates (to be represented as arrows or
axes) are taken as the rows of Ψ . The resulting loading matrices and their
inverses expressed in clr are summarized in Table 1.

6. Data

The Tellus Survey covering the region of Northern Ireland, UK (GSNI,
2007; Young and Donald, 2013) consists of 6862 rural soil samples (X-ray

Table 1
Loading matrices for diagonalization methods and their inverses.

Method clr-loading matrix Φ inverse clr-loading matrix Ψ

PCA UH UT
H

MAF UHΛ
�1=2
H W1 WT

1Λ
1=2
H UT

H

RJD UHA ATUT
H

UWEDGE UHA A�1UT
H

Fig. 1. Map of Northern Ireland covered by broad lithological classes, locations
of peat occurrence shown in green.
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Fig. 2. Experimental semivariograms of the factors (left) and biplots of the first two factors colored by lithology (right) by method (order from top to bottom: PCA,
RJD, MAF, UWEDGE, the axes labels Comp1, Comp2, rjd1, rjd2, maf1, maf 2, uwedge 1 and uwedge2 denote the first and second factor respectively).
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fluorescence (XRF) analyses). Geochemical samples presented in this
study were collected at 20-cm depth, with average spatial coverage of
one sample site every 2 km2. Each soil sample site was assigned one of six
broad lithological classes (acid volcanics, felsic magmatics, basic volca-
nics, mafic magmatics, carbonatic, silicic clastics) and in addition peat
(Fig. 1) as described in Tolosana-Delgado and McKinley (2016).

At each location 50 continuous geochemical variables were available
for analysis and transformed to elemental weight% prior to any work
(Ag, Al, As, Ba, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, I, K, La,
Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Th, Ti,
Tl, U, V, W, Y, Yb, Zn, Zr and Loss on Ignition (LOI)). More information on
Tellus Survey field methods and analytical methodology are available in
Smyth (2007) and Young and Donald (2013). Since the objective of this
paper is to explore differences and similarities in the biplots obtained
from the application of the various joint diagonalization approaches, the
methods were applied to compute factor scores and construct biplots for
the subcomposition Al, Fe, K, Mg, Mn, Na, P, Si, and Ti. We chose this 9
part subcomposition as it represents the bulk of the variability of the
data. The major elements explain the variability of the compositions of
the lithologies across Northern Ireland. The trace elements (omitted)
account for less of the variability but can also be used to map out the
major lithologies. For the sake of clarity and the minimization of
redundancy, we believe the major elements are sufficient. This can be
demonstrated by a simple principal component analysis of the data as

documented in Tolosana-Delgado and McKinley (2016).
Experimental direct and cross variograms of the clr data were

computed for 30 lags at a nominal spacing of 1 km. The MAF transform
was based on an estimate of the covariance matrix and the semivario-
gram matrix for the first lag, for the RJD and UWEDGE methods the
semivariogram matrices for all lags up to distance 20 km were used. All
calculations were done in R (R Core Team, 2018), making use of package
“compositions” for the log-ratio transformations, colored biplots and PCA
analysis (van den Boogaart and Tolosana-Delgado, 2013), package
“JADE” for RJD calculations (Miettinen et al., 2017) and package “join-
tDiag” for UWEDGE calculations (Gouy-Pailler, 2017).

7. Results

The experimental semivariograms of the factors and biplots of the
first two components for the subcomposition of major oxides are shown
in Fig. 2. For all four methods one of the experimental semivariograms
shows a strong trend, for PCA, MAF and UWEDGE this is the one for the
first factor. In contrast, for RJD it is factor 2. Semivariograms for PCA and
RJD show greater short-scale variability than the semivariograms for the
first four MAF and UWEDGE factors. For the remaining semivariograms
the short scale variability of remaining MAF and UWEDGE factors is
greater than that of RJD and PCA factors.

For PCA and RJD no ordering by spatial continuity results as a
consequence of the transformation. In contrast for MAF there is a clear
ordering of the factors by decreasing continuity as shown in the experi-
mental semivariograms. For UWEDGE the semivariograms of the first 3
factors only show negligible differences to those from MAF, but the
ordering by spatial continuity is absent for the remaining factors, how-
ever, the ordering could be restored via a permutation of the factors. The
decrease in continuity is evident through a flattening of the semivario-
grams, with decreasing range and increasing nugget to sill ratio.

Biplots for MAF and UWEDGE are strongly similar, showing a ternary
system of mafics, felsics, and siliciclastic materials. The scores corre-
sponding to peat form a tight cluster. Comp1 for PCA is related to peat
building (Tolosana-Delgado andMcKinley, 2016). All four biplots show a
separation of lithologies. The MAF and UWEDGE biplots are almost
identical and indicate collinearity of Mn, Fe and Ca, a feature not evident
in the PCA or RJD biplot. The Fe–Mn rays in the biplots are shared be-
tween the basalts and the siliciclastic materials in the PCA and RJD
biplots. This association reflects the likelihood that Fe–Mn in the basalts
are stoichiometrically associated with ferromagnesian mineral structures
in both materials and also the likelihood that Fe–Mn oxihydroxide
coatings have formed on silicate minerals in the soils as a result of
groundwater circulation. In the case of MAF and UWEDGE, the Fe–Mn
association is more clearly associated with the basalts, which have a
significant geospatial influence and thus reflect the basalt terrain.

This is also confirmed by the ternary diagram for this subcomposition
shown in Fig. 3, which also shows this one-dimensional pattern.

Scree plots in Fig. 4 suggest that the ordering by decreasing continuity

Fig. 3. Ternary diagram of the subcomposition Mn, Fe, Ca.

Fig. 4. Scree plots for factorization based on PCA, RJD, MAF and UWEDGE.
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apparent in the semivariograms of the factors based on MAF and
UWEDGE comes at the cost of destroying the ordering by decreasing
explained variance which is a feature of both PCA (by construction) and
RJD. For all four methods the first factor still explains the greatest part of
the variance: 50.7% in the case of PCA, 43% for RJD, 36.7% for MAF and
35.1% for RJD.

The destructurization evident in the semivariograms for the MAF and
UWEDGE factors is reflected in their score maps, where decreasing scales
of high and low value regions and increasing noise are evident, this is
exemplified here through the maps of the MAF factors (Fig. 5).

The spatial maps of the MAF factors identify the lithologies reason-
ably well. The scores of the first two factors (maf1 and maf2) show a
similar interpretation as a broad balance between mafic elements and
felsic elements, which is related to the contrast of the Paleocene Antrim
basalts in the north west with the older rocks across the remainder of
Northern Ireland. The intrusive igneous granite and granodiorite are also
highlighted (maf1, maf2 and maf3). Carbonates and clastics of different
ages are differentiated by the fourth and fifth scores (maf4 and maf 5).
The scores of the sixth, seventh and eight factors are less clear but the
impact of superficial peat cover can be observed (maf3, maf6, maf7 and
maf8).

Spatial maps of the scores of the first two factors for all four methods
are shown in Fig. 6. They all highlight the broad balance between mafic
elements and felsic elements, which is related to the contrast of the
Paleocene Antrim basalts in the north west with the older rocks across the
remainder of Northern Ireland. These maps support our earlier obser-
vation of greater continuity of the first two factors from MAF and

UWEDGE: There is less noise evident in these maps compared to those for
RJD and PCA. The greater continuity of the second factor from RJD is also
evident.

8. Conclusion

The consideration of spatial aspects via MAF biplots in combination
with PCA biplots provides a valuable tool for the exploratory analysis of
regionalized compositions. In the case of the Tellus data the use of MAF
has led to stronger grouping of samples by underlying characteristics, in
the case considered here, lithology and peat. The choice of lag value for
computing the covariance matrix of increments seems to have little
impact. Consideration of more general approximate diagonalization
methods, such as UWEDGE and RJD showed that the additional
complexity introduced was not justifiable from a perspective of
enhancing results: the MAF and UWEDGE biplots were typically close,
leading to the conclusion that the use of MAF suffices to add a spatial
perspective to the exploration. Similarly, RJD and PCA biplots were
close, as were their screeplots. A combination of PCA and MAF biplots
enables the exploration of the features of the data set via two different
lenses: one focusing on the ordering in terms of decreasing variance
explained, the other (MAF) in terms of decreasing spatial continuity, thus
allowing a deeper understanding of geo-spatial aspects. The use of PCA
and MAF in combination is particularly attractive, since there are closed
form expressions for the MAF and PCA transformations.

Fig. 5. Maps of MAF Factors top: 1 to 3, center: 4 to 6, bottom:7–9 showing the decrease in spatial continuity, red and blue colours indicate high and low values
respectively.
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Fig. 6. Maps of factor scores for PCA, RJD, MAF and UWEDGE, left: Factor 1, right: Factor 2, red and blue colours indicate high and low values respectively.
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Code availability and data

Calculation routines for the joint diagonalization methods are avail-
able in the R-package "gmGeostats" (https://cran.r-project.org/web/p
ackages/gmGeostats/index.html) and a sample code to show the imple-
mentation is available in an electronic supplement.

The data used in this study are Regional A Soils (XRF and Aqua Regia
Digest) available from http://www.bgs.ac.uk/gsni/tellus/index.html.
They were further treated as described in McKinley et al. (2018). The
classification by lithological class and peat is as described in Tolosana--
Delgado and McKinley (2016).
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