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ABSTRACT
In the recent times, the use of geosynthetic-reinforced soil (GRS) technology has become popular for
constructing safe and sustainable pavement structures. The strength of the subgrade soil is routinely
assessed in terms of its California bearing ratio (CBR). However, in the past, no effort was made to
develop a method for evaluating the CBR of the reinforced subgrade soil. The main aim of this paper
is to explore and appraise the competency of the several intelligent models such as artificial neural
network (ANN), least median of squares regression, Gaussian processes regression, elastic net
regularisation regression, lazy K-star, M-5 model trees, alternating model trees and random forest in
estimating the CBR of reinforced soil. For this, all the models were calibrated and validated using the
reliable pertinent historical data. The prognostic veracity of all the tools mentioned supra were
assessed using the well-established traditional statistical indices, external model evaluation technique,
multi-criteria assessment approach and independent experimental dataset. Due to the overall
excellent performance of ANN, the model was converted into a trackable functional relationship to
estimate the CBR of reinforced soil. Finally, the sensitivity analysis was performed to find the strength
and relationship of the used parameters on the CBR value.
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1. Introduction

The pavement design is highly influenced by the load-carrying
capacity of the subgrade soil. Geosynthetic reinforcement pro-
vides a sustainable and cost-effective way of soil subgrade
improvement. The use of geosynthetic reduces the defor-
mation of the pavement caused by the vehicular load, enhan-
cing its strength and durability (Shukla 2002). Starting in the
late 1900s, many studies can be found in the literature that
investigate the beneficial effects of geosynthetic reinforcement
in road construction projects (e.g. Miura et al. 1990, Perkins
1999, Cuelho et al. 2005, Abu-Farsakh et al. 2016, Chen et al.
2018, Singh et al. 2019). The California bearing ratio (CBR)
is considered as one of the key parameters used to ascertain
the subgrade capacity to withstand the applied traffic loads
(ASTM 2016). To date, many researchers have employed the
CBR testing to investigate the effects of geosynthetic reinforce-
ment on subgrade material (Duncan-Williams and Attoh-
Okine 2008, Naeini and Ziaie-Moayed 2009, Nair and Latha
2011, Choudhary et al. 2012, Rajesh et al. 2016, Mittal and
Shukla 2018, Negi and Singh 2019). The advent of soft com-
puting and data-driven modelling has made many traditional
approaches antiquated. In recent times, the use of artificial
intelligence (AI)/machine learning (ML) techniques has
become very common in solving various complex engineering
problems including those related to pavement engineering
(Nazemi and Heidaripanah 2016, Daneshvar and Behnood

2020, Ghosh Mondal and Kuna 2020, Han et al. 2020, Olowo-
sulu et al. 2020, Ghorbani et al. 2021). The laborious, costly
and time-consuming nature of the CBR, and moreover, due
to the complex non-linear relationships between the soil prop-
erties, many researchers have utilised ML to predict the CBR of
the soil. Taskiran (2010) applied artificial neural network
(ANN) and gene expression programming (GEP) techniques
to learn the non-linear relationships between CBR and various
index properties of the fine-grained soils sourced from South-
east Anatolia, Turkey. The maximum dry unit weight (gd),
plasticity index (PI), liquid limit (LL), optimum moisture con-
tent (OMC) and the content of different soil fractions were
identified as the most effective parameters that influence the
CBR values of the soils. Yildirim and Gunaydin (2011) used
simple multiple regression and ANN to propose correlations
for the preliminary estimation of CBR values of different
soil, by employing the results of sieve analysis, Atterberg limits,
maximum dry density and OMC. Alawi and Rajab (2013) uti-
lised multiple linear regression (MLR) analysis to predict the
CBR of the unreinforced subbase soil layer. Recently, similar
applications of advanced ML techniques for the prediction of
CBR of different unreinforced soils were also conducted by
other researchers (Erzin and Turkoz 2016, González Farias
et al. 2018, de Souza et al. 2020, Nagaraju et al. 2020, Tenpe
and Patel 2020). Similarly, several studies were also carried
out to evaluate permanent deformation and resilient modulus
of recycled demolition wastes in pavements using ML
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algorithms (Arulrajah et al. 2013, Ullah et al. 2020, Ghorbani
et al. 2020a). Ghorbani et al. (2020b, 2021) successfully devel-
oped an ANN model to predict the permanent strain of blends
of two recycled waste materials under different stress and
temperature levels and shakedown analysis of polyethylene
terephthalate (PET) blend with demolition waste material as
the subbase layer of pavement, respectively. However, the
review of the current literature revealed that the efforts to pre-
dict the CBR of geosynthetic-reinforced subgrade soil are
extremely limited. In fact, Singh et al. (2020) is the only
study that has attempted to predict the CBR of geogrid-
reinforced soil using a fuzzy logic-based modelling technqiue.
However, to the best of authors’ knowledge, there is currently
no research in the present literature that provides develop-
ment, implementation and comprehensive comparison of
ML-based solutions to the problem of CBR of geosynthetic-
reinforced subgrade soil.

In this paper, an attempt is made to predict the CBR of geo-
synthetic-reinforced soil (GRS) using the data-driven-based ML
models. The main objectives of this research are fourfold: (1)
assessment of numerous ML models in predicting the CBR of
GRS; (2) comprehensive comparison of all the predictive tools
utilised for the same problem; (3) suggestion of ANN-based
trackable mathematical formula for estimating the CBR of soil
reinforced with geosynthetic layers; and (4) independent vali-
dation by conducting new CBR tests on reinforced soil.

2. Material and methods

In this work, eight ML models namely, ANN, least median of
squares regression (LMSR), Gaussian processes regression
(GPR), elastic net regularisation regression (ENRR), lazy K-
star (LKS), M-5 model trees, alternating model trees (AMT)
and random forest (RF) models, were constructed to predict
the CBR of GRS. All the models were simulated using Waikato
Environment for Knowledge Analysis (WEKA). It may be
noted that in the past, many researchers and scientists have
utilised the WEKA framework for function approximation
and feature classification (Gao et al. 2019, Moayedi et al.
2020, Olowosulu et al. 2020). Moreover, the new CBR tests
were also conducted to ensure the independent validation of
the data-driven models and discussed later in the paper.

2.1. Experimental database development and model
attributes

In order to calibrate and validate all the data-driven models,
the data set of 97 soaked CBR tests is retrieved from the litera-
ture. This includes 4 cases reported by Duncan-Williams and
Attoh-Okine (2008), 30 cases reported by Vinod and Minu
(2010), 16 cases reported by Choudhary et al. (2011), 2 cases
reported by Kuity and Roy (2013), 4 cases each reported by
Carlos et al. (2016) and Rajesh et al. (2016), 9 cases by Mittal
and Shukla (2018, 2019) and 28 cases by Negi and Singh
(2019). The reliability of a model depends upon the compre-
hensiveness of the input data set. In this study, it was ensured
by incorporating a wide variety of soils, ranging between sandy
soil (SP) and fine-grained soils (ML, MH, CL and CH), as per
the Unified Soil Classification System (USCS). These soils
cover a range of engineering properties that affect the stiffness

of a soil, such as soil index properties and particle size distri-
bution (Youd 1973, Zheng and Hryciw 2016). However, the
geotechnical engineering models that are the most effective in
predicting the non-linear soil behaviour are based on the impor-
tant soil parameters that can be obtained via routine tests (Ozto-
prak and Bolton 2013). The detail of the utilised database is
provided in Table 1. For predicting the output, that is, CBR of
GRS, the input parameters include LL (X1), plastic limit (X2),
PI (X3), dry unit weight (maximum) (X4), optimum moisture
content (X5), percentage fines (passing sieve No. 200) (X6), per-
centage sand (X7), tensile strength of geosynthetic reinforce-
ment (X8), number of reinforcement layers (X9), position of
the first reinforcement layer (X10) and position of the sub-
sequent reinforcement layers (X11). All these parameters were
selected based on the fact that the current literature shows
that they have an effect on the CBR of reinforced soil.

The developed models were also tested for the independent
data set obtained by conducting new CBR tests (AS 1289.6.1.1
2014). It is noteworthy that these data are not a part of the actual
database utilised to construct the MLmodels. Non-plastic sandy
soil extracted from the pit site located in the northern region of
Perth, Australia, was used during the experimental tests. The
properties of the soil and geosynthetic (geotextile) are summar-
ised in Table 2. To evaluate the effect of geosynthetic reinforce-
ment on the strength of the subgrade soil, a total of six CBR tests
were performed by varying the depth ratio of the first reinforce-
ment layer (u/H), number of reinforcement layers (N) and
depth ratio of the subsequent layer (h/H), where H represents
the total height of mould. The proposed scheme of the CBR
tests is summarised in Table 3.

The reinforcement layer was cut into a circular disk with the
diameter slightly smaller than the diameter of the mould. In
order to fill the mould, dry weight calculations are done
based on the maximum dry unit weight of soil and volume
of mould. The soil was mixed thoroughly by adding the
water content corresponding to OMC. Thereafter, the mould
is filled with the soil by placing the geotextile layer at a prede-
termined depth as reported in Table 3. The test setup with the
schematic diagram of the specimen in the CBR test and the
placement of geosynthetic at a predetermined depth in the
CBR mould is illustrated in Figure 1. The CBR tests were con-
ducted after soaking the sample in water for 96 h. The sur-
charge load was applied to the specimen to ensure the effect
of the thickness of the overlying layer. Load was applied at
1.25 mm/min (moveable base) and the corresponding pen-
etration was measured through the electronic displacement
transducer. The load readings were taken at penetrations ran-
ging from 0.5 to 12.5 mm. The CBR values were estimated by
taking the load corresponding to 2.5 or 5.0 mm penetration,
whichever is the highest as suggested by the relevant standard.
Figure 2 depicts the load–penetration curves obtained for the
CBR tests of reinforced soil.

2.2. Methodological background of machine
learning models

The first and foremost step before mapping the response of any
data-driven model is the database partitioning. For this, the
data are needed to be randomly divided into training and
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testing subsets. In this study, 60% of the collected data were
randomly chosen for training the ANN, LMSR, GPR, ENRR,
LKS, M-5 model trees, AMT and RF models. Thereafter, the
predictive veracity of each model was appraised against the
remaining 40% of the data set (test data). Moreover, all the
data sets have been normalised [−1,1] before feeding it to
the model networks, so that each variable would get the
same attention during the training process. The brief meth-
odological background of all the data-driven-based modelling
techniques utilised to estimate the CBR of reinforced soil is
explained in this section. For a more comprehensive under-
standing, the research scheme employed in this study is also
illustrated in Figure 3.

2.2.1. Artificial neural network
ANN is the well-established and widely recognised ML model
used for mapping the non-linear response of any system
(Moayedi and Hayati 2018). At its core, the ANNmodel archi-
tecture consists of three parts, namely input layer, one or more
hidden layers and output layer. Each layer consists of set pro-
cessing elements called nodes (neurons) which interact with

each other through weighted connections. The computation
process can be described as follows: (a) data are presented to
the model through input layer nodes; (b) in the hidden–output
layer, the data are multiplied by the weight matrix and added
to the threshold (bias) vector, thereafter the activation function
is applied; (c) output of the hidden layer is mapped as the final
outcome after passing through the output layer. Mathemat-
ically, for n inputs, the output y is computed as follows (Bishop
2006):

y = f
∑n
i=1

Xiwi + uo

( )
(1)

where w is the weight connection and θ is the bias/threshold.
In this study, the sigmoid activation function is used in the

hidden layer and given as follows (Han and Moraga 1995):

sig(X) = 1
1+ e−x

(2)

For training the neural network, the optimisation procedure
suggested by Soleimanbeigi and Hataf (2006) was adopted to
select the optimum number of hidden layer nodes. For this,
the hidden layer nodes were increased until no further
improvement was obtained over the testing data set. Figure 4
illustrates the optimisation process for selecting the number
of hidden nodes. It can be observed that the lowest mean
absolute error (MAE = 1.233) and root mean square error
(RMSE = 1.70) is obtained at nine hidden nodes. However,
the model with six hidden nodes is selected as the optimum
model as it has less weight connections, but its performance
is closer to nine hidden nodes with MAE and RMSE values

Table 3. Experimental scheme of the CBR tests

Experiment
number

Number of
layers (N )

Depth of first
layer (u/H )

Depth of
subsequent layer

(h/H )
CBR
(%)

1 1 0.25 0 23.62
2 1 0.50 0 21.98
3 1 0.75 0 17.37
4 2 0.25 0.25 29.3
5 2 0.25 0.5 28
6 2 0.50 0.25 25.88

Table 1. Statistical properties of the data set.

Descriptive
stats

Liquid
limit

Plastic
limit

Plastic
Index

Dry unit
weight

Optimum
moisture
content

%
Fines

%
Sand

Tensile strength
of geosynthetic

Number
of layers

Position of
1st layer

Position of
subsequent

layers CBR

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
Mean 50.746 28.612 22.135 15.782 20.986 85.025 14.268 16.821 1.392 0.382 0.101 6.453
Median 46.000 25.000 23.000 15.100 18.000 94.000 6.000 13.000 1.000 0.330 0.000 4.870
Mode 46.000 23.000 23.000 15.100 18.000 97.000 3.000 30.000 1.000 0.200 0.000 3.460
SD 15.452 8.670 7.787 2.351 7.709 22.826 22.344 11.901 0.701 0.210 0.176 6.183
Kurtosis 1.751 1.565 0.666 −1.143 −0.808 3.783 3.956 −1.207 3.214 −0.478 2.111 10.454
Skewness −0.837 −0.837 −0.878 0.076 0.805 −2.242 2.285 0.423 1.881 0.780 1.669 3.122
Range 71 39 32 8.25 26.8 83.8 82 39.17 3 0.68 0.66 32.7
Minimum 0 0 0 12.54 8.2 16.2 0 2.81 1 0.15 0 1.3
Maximum 71 39 32 20.79 35 100 82 41.98 4 0.83 0.66 34
Count 97 97 97 97 97 97 97 97 97 97 97 97

SD stands for standard deviation

Table 2. Properties of soil and geosynthetic material

Soil properties Magnitude Geosynthetic propertiesa Magnitude

Maximum dry unit weight (kN/m3) 17.3 Tensile strength, MD (kN/m) 30
Minimum dry unit weight (kN/m3) 15.4 Tensile strength, XMD (kN/m) 30
Median grain size (mm) 0.25 Mass (g/m2) 150
Effective grain size (mm) 0.17 Elongation strain, MD (%) 20
Optimum moisture content (%) 11.8 Elongation strain, XMD (%) 15
Atterberg’s limit NP
Fines (%) 4.5
Sand content (%) 95.5

Note: NP stands for non-plastic; MD stands for machine direction; XMD stands for cross-machine direction.
aProvided by the manufacturer.
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of 1.31 and 1.74, respectively. The architecture of the optimum
ANN model (11–6–1) is given in Figure 5.

2.2.2. Gaussian process regression
In the past, GPR model has been efficiently used in predicting
the response of the system (Gao et al. 2019, Zhang et al. 2019,
Suthar 2020). GPR is a kernel-based ML model that is founded
on Bayesian theory and statistical learning approach. Such
model can be completely defined by the mean and covariance

function (kernel) as follows (Rasmussen 2006):

m(x) = E[g(x)] (3)

K(x, x′) = E[(g(x)− m(x))(g(x′)− m(x′))] (4)

where m(x)is the mean function, and k(x, x′)is the covariance
function of a real process g(x). The Gaussian process is
defined by the set of random parameters, and any finite num-
ber of it has the joint Gaussian allocation. Mathematically

Figure 1. Experimental setup for the CBR tests conducted in this study: (a) schematic diagram of the specimen; (b) layout/placement of reinforcement layer at a pre-
determined depth in CBR mould; (c) test apparatus.

4 M. N. A. RAJA ET AL.



(Gao et al. 2019):

g(x) � GP(m(x), k(x, x′)) (5)

For detailed derivation, readers are directed to excellent
studies available in the literature (Seeger 2004, Rasmussen
2006).

In this study, various kernel functions such as squared
exponential, radial bias and Pearson’s VII universal kernel
functions are used for estimating the CBR of reinforced soil
using GPR. The optimum results are obtained by employing
the Pearson’s VII universal kernel (PUK) function. The math-
ematical form of PUK is given as follows (Üstün et al. 2006):

k(x, x′) = 1/[1+ (2
�����������
‖x− x′‖2

√ ����������������
2(1/v) − 1/s)2

√
]v (6)

where sand vare the Person’s width, and peak tailing factor,
respectively.

2.2.3. Least median of square regression
The LMSRis a semi-parametric quantile regression technique.
In contrary to the classical regression model, the sum of least
squares is replaced by the median of squared errors (Rous-
seeuw 1984). The LMSR overcomes the major drawback in
the ordinary regression, that is, the sensitivity to the outliers.
For a standard univariate linear regression problem, the
residuals take the following form (Massart et al. 1986)

rj = yj − axj − b (7)

where r is the residual, y is the response (output), x is the input,
and a and b are regression coefficients. The principle of least

square governs, minimise
∑n
j=1

r2j , whereas LMS estimators

aims at minimising the median of square errors, that is, mini-

mise med
∑n
j=1

r2j . In this study, the following relationship is

obtained for estimating the CBR of reinforced soil by using
the LMS regression technique:

CBRLMSR = 0.0231X1 − 0.018X2 + 0.1528X3

− 0.015X5 − 0.6108X6 + 0.0032X8+
0.8856X9 − 1.3882X10 − 1.8478X11 + 57.95

(8)

2.2.4. Elastic net regularisation regression
The ENRR is a robust regression model which aims at combin-
ing the penalties of the least absolute shrinkage and selection
operator (LASSO), l1, and ridge regression technique,
l2(Ogutu et al. 2012). LASSO randomly tends to choose only
one attribute and ignore the other, especially when the attri-
butes are highly correlated, whereas the elastic net (EN) over-
comes this problem. For a set of data sample with n
observations and p predictors, let {(xi, yi), i = 1, 2 . . . , n)} ,
where xi, yi belongs to Rp. Moreover, if y = (y1 . . . , yn)

T and
X [ Rn×p represents the output vector and model matrix,
respectively, then the EN can be written as follows (Zou and
Hastie 2005):

b̂ = argmin
b

|y− Xb|2, subjected to j

= (1− l)|b|1 + l|b|2 ≤ s for some s (9)

wherebis the weight vector, j is the EN penalty parameter,
that is a combination of l1 and l2. For the detail derivation,
readers may refer to the research conducted by Zou and Hastie
(2005).

Figure 2: Load–penetration curves of GRS.

INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING 5



It may be noted that, if l = 1, then EN takes the ridge
regression shape, and if l = 0, then it takes the LASSO
form. For l [ [0, 1), the EN encompasses the characteristics

of both the ridge and LASSO. In other words, the penalty par-
ameter l1 enables the automatic selection of variables and l2
leads to stabilisation by making the problem strictly convex

Figure 3. Research scheme employed for estimating the CBR of reinforced soil.

Figure 4. Optimisation process for selecting the number of hidden nodes.

6 M. N. A. RAJA ET AL.



(Gao et al. 2019). For the estimation of CBR, the following
relationship is obtained through ENRR regression:

CBRENRR = 0.229X1 + 0..229X2 − 0.237X4 − 0.421X5

− 0.028X6 + 0.261X7 + 0.027X8+
0.225X9 − 0.069X10 + 0.039X11 − 1.240

(10)

2.2.5. Lazy K-star
Lazy learning is a ML method in which the majority of the
computation time is deferred to the consultation time, that
is, until a query (call) is made to the system (Webb et al.
2011). LKS is a lazy learning algorithm which performs the
generalisation of the training data using instant base learning
classification. This means that unlike the ANN or other ML
methods, the predictions are not inferred from particular
instances in the training data, instead the complete data are
stored in the memory and upon call, the response is produced
by the nearest neighbour approach. The K-star sums all the
possible transitions between the two instances and amalgamate
them into a single class (Cleary and Trigg 1995). This is
achieved by summing the probabilities over all possible trans-
formations between the instances. This entropy-based learning

technique has several advantages in comparison to other rule-
based schemes, such as better handling of missing values and
common attributes. Mathematically, the function K-star is
defined as follows (Cleary and Trigg 1995, Gao et al. 2019):

K∗ = − logP∗(q|p) (11)

where P∗ represents the probability function, that is, the prob-
ability of all the paths from instances p to q.

2.2.6. M-5 model trees
Based on the original research conducted by Quinlan (1992)
on the development of decision trees for the regression pro-
blem, Wang and Witten (1997) proposed the M-5 model.
The M-5 model uses the classical top-down method for grow-
ing and pruning decision trees. The data are presented in the
form of the mean values and regression function to the leaf
nodes; thereafter, the branching/separation is performed at
each node (MLR) until the values of response variables reach-
ing a node shows no or negligible change. In the next step, the
larger subtrees are replaced by a single larger linear model. For
this, the error values inside the inner node of the tree end are
compared with those of the tree leaf underlying that node

Figure 5. Architecture of the optimum ANN model.

INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING 7



(Khorrami et al. 2020). Finally, the smoothing function is
applied to trim the gaps between the neighbouring (adjacent)
leaf nodes. In this way, the final model is obtained by combin-
ing all the available linear models along the path from the root
node of the tree to each leaf node; thus, effectively producing a
linear combination of all the available linear models (Quinlan
1992, Khorrami et al. 2020).

2.2.7. Alternative model trees
AMT is a recently developed algorithm based on the principle
of ensemble learning. Originally, proposed by Frank et al.
(2015), AMT uses the additive regression technique to grow
the trees. Moreover, similar to the decision trees, AMT utilises
stage-wise forward additive regression (statistical boosting var-
iant) and cross-validation technique to minimise the square
errors and to limit the growth of the trees, respectively
(Moayedi et al. 2020). The main difference between the M-5
model trees and AMT model is that the former uses the multi-
variate linear regression on the leaves, while the latter employs
the simple linear regression to obtain the predictive model. For
this, AMT utilises two nodes, namely splitter node and predic-
tor node. The splitter node splits the numeric attributes at the
median value, and the predictor node predicts the response of
the system by using the linear regression technique (Gao et al.
2019, Moayedi et al. 2020). For detailed insight and derivation,
the reader may refer to Frank et al. (2015). AMT model pro-
posed for the present study for estimating the CBR of
reinforced soil is illustrated in Figure 6.

2.2.8. Random forest
RF is an ensemble learning method originally suggested by Ho
(1995) for classification and regression problems. At its core,
the RF works by creating a swarm of decision trees and then
averaging the output of each tree. The bootstrap aggregating
technique helps the RF to obtain a much stable solution, and
reduces the chances of overfitting (Breiman 2001). The user
control parameters are the number of trees, number of
nodes, and number of variables. Generally, the higher number
of trees will lead to higher accuracy but require more compu-
tation time. As each tree works entirely independently and
uses out-of-bag estimates to observe the errors and correlation
strength, the abundance of trees will not lead to overfitting of
the model. The detailed algorithm is described in Breiman
(2001).

2.3. Model assessment criteria

Five statistical matrices were chosen to appraise and com-
pare the predictive strength of all the developed data-driven
models. The matrices are as follows: (i) coefficient of deter-
mination (R2); (ii) root means square error (RMSE); (iii)
scatter index (SI); (iv) index of agreement (Ia) and (v)
mean absolute error (MAE). All these statistical tools
have been extensively used in the previous studies to simu-
late the accuracy of ML-based models (Yaseen et al. 2018,
Khorrami et al. 2020, Raja and Shukla 2020, 2021). The
mathematical form of these statistical standards is given

below

R2 = 1−
∑n
i=1

(CBRoi − CBR pi)
2

∑n
i=1

(CBRoi − CBRo)
2

(12)

RMSE =
��������������������������
1
n

∑n
i=1

(CBRoi − CBR pi)
2

√
(13)

SI =

��������������������������
1
n

∑n
i=1

(CBRoi − CBR pi)
2

√

CBRo
(14)

Ia = 1−
∑n
i=1

(CBRoi − CBRop)
2

∑
(|CBRoi − CBRo| + |CBR pi − CBRo|)2

(15)

MAE = 1
n

∑n
i=1

|CBR pi − CBRoi | (16)

where n is the number of observations, CBRoi is the ith
observed (measured) value, CBR pi is the ith predicted
value, CBRo is mean observed value, and CBRp is the
mean predicted value. The range of R2 is 0–1 and for an
ideal model, the value should be close to 1. The Ia (0 ≤
Ia ≤ 1) shows the ratio of mean square error and the pre-
diction error in the system. The value of 1 represents the
perfect agreement between the observed and predicted
value and 0 represents no agreement (Willmott 1981).
RMSE and MAE are widely adopted for assessing the pre-
dictive accuracy of the ML models. The MAE represents
the average error (equal weightage) over the data set with-
out considering the sign. It means that in MAE, the differ-
ence between the observed and predicted values is averaged
in a linear manner, while in RMSE, the errors are squared
before taking the average (Equation (13)), therefore giving
high weightage to the larger errors (Yaseen et al. 2018).
For an ideal model, both MAE and RMSE value should
be 0. SI represents the ratio of RMSE to the average of
observed values. Lower values of SI depict more accuracy
and vice-versa (Khorrami et al. 2020)

3. Results and discussion

As mentioned abovethat the main aim of this study is the com-
prehensive ML-based analysis for modelling the CBR of GRS.
Main parameters of all the models are summarised in Table 4.
For evaluating the performance of the developed prescient
models, namely ANN, LMSR, GPR, ENRR, K-star, M-5,
AMT, and RF, the calculated values of all the statistical par-
ameters, namely R2, RMSE, SI, Ia and MAE are presented in
Table 5 for testing (validation) data. The colour intensity cod-
ing technique (CICT) has been applied to indicate the strength
of each parameter according to its obtained value. It may be
noted that this technique has been successfully applied in
many previous studies (Nazari et al. 2020, Nguyen et al.
2020). In this way, the parameters which illustrate more
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accuracy (higher R2 and Ia; and lower RMSE, SI and MAE) are
given intense colour and vice-versa. For this study, the shades
of green colour are used for depicting the predictive accuracy
of the developed ML models. The dark green colour cells show
more accuracy, and light pale green colour cells depict the
lower precision level. Accordingly, each model was scored,
and the final ranking for a particular model was obtained by
summation of all the partial scores given based on the statisti-
cal indices’ values.

As Table 5 reports, the LKS and ANN models have
shown superior predictive accuracy in estimating the CBR
value of reinforced soil. This can be established from the
indicated total scores of 40 and 35, respectively, for LKS
and ANN models. The calculated values of the statistical
indices for ANN, LMSR, GPR, ENRR, LKS, M-5, AMT
and RF, such as R2 (0.944, 0.63, 0.939, 0.807, 0.955,
0.847, 0.927 and 0.932), and MAE (1.27, 5.46, 2.02, 2.19,
1.04, 1.8, 1.30 and 1.29), indicate the best correlation and
less absolute error between the actual and simulated values
of the CBR for these two models (i.e. LKS and ANN). Also,
the SI (0.226, 0.91, 0.51, 0.42, 0.213, 0.44, 0.278 and 0.273)
and Ia (0.984, 0.74, 0.907, 0.932, 0.987, 0.948, 0.980 and
0.976) further prove this fact. In concurrence with the
same argument, the reliability of AMT and RF trees models

can also be established. However, the computed values of
MAE (5.46, 2.02, 2.19 and 1.8) and RMSE (10.85, 3.37,
and 3.22 and 2.91) for LMSR, GPR, ENRR and M-5
respectively, indicate that the forecasting ability of these
models are associated with relatively high bias, in compari-
son to their counterpart models.

The scholars have argued that the reliability of the ML
models should also be assessed using the external vali-
dation and/or multi-criteria approach (Gandomi et al.
2013, Naser and Alavi 2020). This gives the realistic evalu-
ation of the model’s predictive performance by eradicating/
minimising the bias associated with the traditional good-
ness of fit indices. Therefore, the external model validation
criteria by Golbraikh et al. (2003), stabilisation criteria for
quantitative structure–activity relationship (QSAR) model
by Roy and Roy (2008), and objection function (OBJ) by
Gandomi et al. (2013) are also applied to further affirm
the accuracy and reliability of the developed data-driven
models.

According to Golbraikh et al. (2003), a model must meet the
following criteria to be considered reliable. One of the slope
regressions lines (k or k′) between the observed values (say
xi) and predicted values (yi) or vice-versa must pass through
the origin, and must be close to unity. In terms of the CBR pre-
diction model, it can be written as follows:

k =
∑n

i=1 (CBRoi × CBR pi)

CBR2
oi

(17)

k′ =
∑n

i=1 (CBRoi × CBR pi)

CBR2
pi

(18)

The value of k or k′must be between 0.85 and 1.15. Addition-
ally, the performance index parameters, that are, m and n

Table 4: Main parameters of the models

Name Parameters

ANN Hidden layers = 1; Hidden nodes = 6; Transfer function = Sigmoid;
Learning rate = 0.3; Momentum term = 0.2

GPR Kernel = PuK; v = 1, σ = 1
LMSR S = 4, G = 0
ENRR Alpha = 0.001, lambda-seq-threshold = 1.0E-7, number of iteration folds

= 10, epsilon = 0.0004
LKS Global blending parameter (B) = 20
M-5 Minimum no. of instances at leaf nodes (M ) = 4.0
AMT No. of iterations (I ) = 100, shrinkage (H ) = 1
RF No. of iterations (I ) = 100, max depth (K ) = 0, V = 0.001

Figure 6. AMT model proposed for estimating the CBR of reinforced soil.
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should be <0.1 and can be calculated as follows:

m = R2 − R2
o

R2
(19)

n = R2 − R′
o2

R2
(20)

whereas R2
o and R′

o2are the regression coefficients and can be
estimated as

R2
o = 1−

∑n
i=1

CBR2
oi(1− k)2

∑n
i=1

(CBR pi − CBRo)
2

(21)

R′
o2 = 1−

∑n
i=1

CBR2
pi(1− k′)2

∑n
i=1

(CBR pi − CBRp)
2

(22)

Ideally, the values of R2
oor R′

o2 should be close to actual R2,
whereas R2 should be > 0.6. In this way, the model is con-
sidered acceptable if it meets all these criteria.

Roy and Roy (2008) established the stabilisation criteria for
ensuring the predictability of the developed model. Accord-
ingly, the value of Rm is estimated as stabilisation criterion
to measure the reliability of the developed model. Mathemat-
ically

Rm = R2 × 1−
�����������
|R2 − R2

o|
√( )

(23)

The value of Rm should be > 0.5.
Based on RMSE, R2 and MAE, the OBJ function contem-

plates the performance of the model is training and testing
data set, simultaneously (Gandomi et al. 2013). The smaller
the function value, the better it is and vice-versa. Mathemat-
ically

OBJ = No.tr-No.ts
No.tr + No.ts

( )
× RMSEtr +MAEtr

R2
tr + 1

+ 2No.ts
No.tr + No.ts

( )
× RMSEts +MAEts

R2
tr + 1

(24)

where subscripts tr and ts represent training and testing data,
respectively.

Table 5. Results of colour intensity ranking criteria for all the proposed models in predicting the CBR of reinforced soil

Proposed

models

Network results in testing dataset Ranking the Predicted Models Total 
ranking 
score

Rank
R2 RMSE SI Ia MAE R2 RMSE SI Ia MAE

ANN 0.944 1.74 0.226 0.984 1.27 7 7 7 7 7 35 2

LMSR 0.63 10.85 0.91 0.74 5.46 1 1 1 1 1 5 8

GPR 0.939 3.37 0.51 0.907 2.02 6 2 2 2 3 15 6

ENRR 0.807 3.22 0.42 0.932 2.19 2 3 4 3 2 14 7

LKS 0.955 1.52 0.213 0.987 1.04 8 8 8 8 8 40 1

M-5 0.847 2.91 0.44 0.948 1.80 3 4 3 4 4 18 5

AMT 0.927 1.94 0.278 0.98 1.30 4 6 5 6 5 26 4

RF 0.932 1.99 0.273 0.976 1.29 5 5 6 5 6 27 3

Table 6. Results of external validation and multi-criteria approach used for accessing the accuracy of all the developed ML models

Parameters for accessing the accuracy
with respect to external model validation criteria

External validation criteria

Stabilisation
criteria for QSAR

model Objective function

Golbraikh et al. (2003)
Roy and Roy

(2008) Gandomi et al. (2013)

ML models R2 k k′ m n Condition 1 Condition 2 Condition 3 Rm Rm >0.5 OBJ

ANN 0.944 0.975 0.997 −0.12 −0.12 ✓ ✓ ✓ 0.60 ✓ 3.40
LMSR 0.630 0.479 1.635 0.24 0.92 ✓ x x 0.27 x 15.43
GPR 0.939 1.262 0.736 0.37 0.17 ✓ ✓ x 0.38 x 5.38
ENRR 0.807 1.022 0.880 −0.53 −0.45 ✓ ✓ ✓ 0.27 x 5.44
LKS 0.955 1.026 0.953 −0.09 −0.09 ✓ ✓ ✓ 0.65 ✓ 2.95
M-5 0.847 1.104 0.839 −0.33 −0.25 ✓ ✓ ✓ 0.37 x 4.79
AMT 0.927 1.007 0.957 −0.16 −0.15 ✓ ✓ ✓ 0.54 ✓ 3.52
RF 0.932 1.039 0.925 −0.14 −0.13 ✓ ✓ ✓ 0.56 ✓ 3.56

Note: Conditions 1, 2 and 3 correspond toR2 ≥ 0.6; 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15; and m, n < 0.1, respectively.
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The results of the above-mentioned external validation and
multi-criteria approach are summarised in Table 6. From the
table, it can be concurred that the ANN, LKS, AMT and RF
models have shown excellent prediction ability in calculating
the CBR of reinforced soil. This is substantiated by the fact
that all these models have met the underlying conditions cor-
responding to the external validation criteria approach. The
ENRR and M-5 models have met all the conditions of Gol-
braikh et al. (2003) model but failed to meet the model stabil-
isation condition with Rm values of 0.27 and 0.37, respectively.
Based on the values of OBJ function values (3.40, 15.43, 5.38,
5.44, 2.95, 4.79, 3.52 and 3.56), respectively, for ANN, LMS,
GPR, ENRR, LKS, M-5 trees, AMT and RF also indicate that
the ANN and LKS can be established as the best models for
predicting the CBR of reinforced soil. Also, the AMT and RF
models performed well by meeting all the criteria, and there-
fore can be introduced as third- and fourth-best models in
the hierarchy. This means that the predictions made by these
models are trustworthy and are not a mere coincidence.
Additionally, the results of LMS, GPR, ENRR and M-5 models
indicate relatively poor performance in comparison to their
counterpart models.

Finally, Taylor’s diagram originally proposed by Taylor
(2001) has been presented in Figure 7. The Taylor diagram
presents the visual summary of the predictive power of the
data-driven models on a single platform, that is, how closely
the actual and simulated responses are related to each other
in terms of their correlation and biasness ratio (Taylor 2001,
Raja and Shukla 2020). Regarding Figure 7, the solid radial
lines (black) represent the standard deviation (SD); thickened

dash lines (grey) represent the correlation coefficient (CC);
and the dotted radial lines (red) show the centred root mean
square deviation (CRMSD) between the simulated (test data)
and reference field. The reference model is indicated by the
solid black dot with the measured SD of 7.09, CC of unity
and zero CRMSD. It can be observed that for LKS and ANN
models, the CC, CRMSD and SD are about (0.977, 1.53 and
6.64) and (0.9716, 1.68 and 6.76), respectively. This highlights
excellent predictive capability for the developed models fol-
lowed by AMT model with values of CC, CRMSD and SD of
0.963, 1.92 and 7.02, respectively. For the same parameters,
the values for M-5 and RF were (0.921, 2.83 and 5.89) and
(0.965, 1.99 and 6.02), respectively. On the contrary, the
GPR model has shown little too spatial variability with the
SD value of ∼4.03, and the LSM model has depicted a large
variation in comparison to the observed CBR values with the
SD of 14.59. The ENRR model has shown a fair overall per-
formance with the SD value of 5.76; however, the correlation
is weak (CC = 0.897), and root mean square error is high
(CRMSD = 3.21). Therefore, consistent with the results of the
statistical indices and external validation criteria, to this
point, it can be established with sufficient trustworthiness,
that among all the applied ML models, ANN and LKS models
have achieved more accuracy in forecasting the CBR of
reinforced soil.

4. Model presentation

For this work, ANN is selected as an appropriate estimator of
the CBR values of the GRS, due to its predictive performance

Figure 7. Taylor diagram presenting the visual summary of predictive strength of developed models.
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and simplicity. The ANN-based equation is given as follows
(Aamir et al. 2020):

y = gn
∑h
j=1

wjkfn uj +
∑n
i

b jiXi

( )
+ uk

( )
(25)

where y is the value of output (CBR), gn is the hidden–output
layer transfer function (pureline), fn is the input-hidden layer
transfer function (sigmoid), wjk is the weight connection
between the jth node in the hidden layer and single node in
the output layer (k = 1), b ji is the weight connection between
the ith node of the input layer and jth node of the hidden
layer, uj is the bias of the jth node at the hidden layer and uk
is the bias at the output layer node. The architecture of the
developed single hidden layer neural network is already
given in Figure 5, that is, 11 input nodes, 6 hidden nodes
and 1 output node. The weights and biases values of the net-
work are reported in Table 7. The values of input parameters
should be normalised [−1,1] before feeding to ANN using

the following relationship

X′ = 2
X − Xmin

Xmax − Xmin
− 1 (26)

where Xmin is the minimum value of the parameter, and Xmax

is the maximum value of the parameter, and already given in
Table 1.

In order to estimate the CBR of reinforced soil with 11
input parameters, the following relationship is established
for the optimum ANN model

CBR′
p =

∑11
j=1

wjksig(a)j + uk (27)

aj = b1jX
′
1 + b2jX

′
2 + b3jX

′
3 + b4jX

′
4 + b5jX

′
5 + b6jX

′
6

+ b7jX
′
7 + b8jX

′
8 + b9jX

′
9 + b10jX

′
10 + b11jX

′
11

+ uj (28)

where CBR′
p is the normalised predicted CBR value [−1,1];

X′
1, X

′
2, X

′
3, X

′
4, X

′
5, X

′
6, X

′
7, X

′
8, X

′
9, X

′
10and X′

11 represents the

Table 7. Weights and biases of the developed neural network

Weights of input layer – hidden layer, bij

Hidden layer bias uj1 2 3 4 5 6 7 8 9 10 11

−0.2536 −0.4607 −0.0521 −0.04 0.2659 −0.2427 −0.4646 1.1754 0.6772 −1.103 0.4061 −0.9167
−0.2914 −0.3918 −0.1618 −0.0108 0.6409 −0.3343 0.0960 0.4698 0.3662 0.3322 0.3849 −0.7143
−0.12738 −0.0038 −0.3035 0.4085 0.6231 −0.3620 0.0739 0.8576 0.4965 0.7954 0.5570 −0.5705
−0.8386 −1.806 0.2339 −0.0798 −1.819 −0.0626 1.2337 1.6369 0.4646 −0.6744 0.4908 −1.1191
−1.4253 −1.7292 −1.0318 1.2547 0.7067 1.8706 −2.8545 −0.7062 −1.0057 0.5092 −0.1882 1.1229
−0.7382 −1.3429 −0.1035 −0.1969 1.1933 −0.9824 0.5970 −0.7195 −0.8305 −0.0584 −0.4887 −0.3609

Weights of hiden-ouput layer, w jk Output layer bias uk
−1.022 −0.322 −0.8921 1.4719 −2.087 −1.234 1.6104

Figure 8. Comparison of the experimental and predicted CBR values for ANN and LKS models.
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normalised values of all the input parameters. The predicted
CBR value should be de-normalised as follows:

CBR = (CBR′
p + 1)× (CBRmax − CBRmin)/2+ CBRmin (29)

For easy comprehension, the design example is given in the
Appendix. It may be noted that the present relation is only
calibrated and validated for predicting the soaked CBR of
GRSs within the training data range, and therefore, shall not
be used for estimating the unsoaked CBR values, and the
CBR of unreinforced soil or soil reinforced with other types
of reinforcements such as fibres, tire chips, metals, etc.

4.2. Independent validation

LKS and ANN models have shown excellent predictive per-
formance for the data set utilised to establish the ML models.
However, in order to establish the supremacy, consistency and
reliability of any ML model, its predictive strength should be
checked against the entirely new data. Therefore, an exper-
imental study was conducted to establish a new data set. For
this, six soaked CBR tests (see Table 3) were conducted and
their experimental values were compared with the simulated
values obtained from ANN and LKS models.

The vis-à-vis comparison of the experimental and predicted
CBR values for ANN and LKS is presented in Figure 8. It can
be observed that the ANN predicted the CBR values much clo-
ser to the actual values in comparison to LKS with the average
absolute error of 10.8% and 36.4%, respectively. Therefore, it is
admissible that the ANNmodel has outperformed its competi-
tive models in predicting the CBR of GRS. Moreover, another
main advantage of the ANN network in comparison to other
efficient models (say LKS or AMT) is that it can be translated
into a trackable functional relationship, and, therefore, can

easily be executed without the need for any expensive compu-
ter-based program. Moreover, the ANN model can be updated
to acquire the better results by presenting more training
examples when the new data becomes available.

5. Sensitivity analysis

A sensitivity analysis has also been carried out to determine the
relative importance of each parameter affecting the CBR of
reinforced soil. It helps in finding the strength of the existing
correlation between the input and output dimensions. For
this study, the cosine amplitude method (CAM) is used to
establish the strength of input parameters with the CBR of
reinforced soil.

For CAM, let n data samples in the same region (say X-
space), then the data array X can be written as follows (Hasan-
zadehshooiili et al. 2012):

X = {x1, x2, x3 . . . , xm} (30)

Each elementxi of data array X is the vector (length m) in
Equation (30), and is defined as:

xi = {xi1, xi2, xi3 . . . , xim} (31)

In this way, the correlation strength rij between the data points
xiandxjcan be estimated by Equation (32) (Ghorbani et al.
2020c)

rij =
∑m
k=1

xikx jk�����������∑m
k=1

x2ik
∑m
k=1

x2jk

√ , 0 ≤ rij ≤ 1 (32)

The result of the CAM sensitivity analysis carried for the ANN
model is illustrated in Figure 9. The relative strengths of all the

Figure 9. CAM sensitivity analysis for the developed ANN model.
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input parameters (X1, X2, X3, X4, X5, X6, X7, X8, X9, X10and-
X11) with CBR of reinforced soil are 0.761, 0.756, 0.759,
0.721, 0.766, 0.731, 0.40, 0.560, 0.676, 0.761 and 0.30, respect-
ively. This imply that all the input parameters except for the
subsequent reinforcement depth (X11) play a significant role
in determining the CBR of reinforced soil with rij approxi-
mately ranging from 0.4 to 0.8. Moreover, X1 (LL), X5

(OMC) and depth of the first reinforcement layer (X10) has
achieved the highest correlation in predicting the CBR of
reinforced soil.

6. Conclusions and future outlook

This work presents the comprehensive and detailed compari-
son of eight data-driven ML-based models, namely ANN,
LMSR, GPR, ENRR, LKS, M-5 model trees, AMT and RF for
predicting the CBR of subgrade soil reinforced with geosyn-
thetic layers. For this, the pertinent data set was retrieved
from previously published scientific studies. Each sample con-
sisted of 11 input variables such as LL, PL, PI, maximum dry
unit weight of soil, moisture content, percentage fines, percen-
tage sand, tensile strength of geosynthetic reinforcement,
number of reinforcement layers, position of the first reinforce-
ment layer and position of the subsequent reinforcement
layers, and one output variable, that is, CBR. The acquired
data set was randomly divided into training (i.e. 60% of total
data) and 40% testing (i.e. 40% of total data) to calibrate and
validate the performance of all the data-driven tools. The per-
formance of all the models was accessed using the five statisti-
cal indices, which are, coefficient of determination (R2), root
means square error (RMSE), scatter index (SI), index of agree-
ment (Ia) and mean absolute error (MAE). Based on the results
of these indices, a colour intensity coded ranking model was
developed. Moreover, the predictive strength of the tools men-
tioned supra was also appraised using the external validation
criteria and multi-criteria approach. The most appropriate
models were also tested against the entirely independent vali-
dation data obtained by conducting the new CBR tests. Finally,
the sensitivity analysis was performed to assess the effect of the
input parameters on the CBR value. Based on the acquired
results, the following conclusions can be drawn.

. In the CBR approximation, the values of R2 (0.944, 0.63, 0.939,
0.807, 0.955, 0.847, 0.927 and 0.932), RMSE (1.74, 10.85, 3.37,
3.22, 1.52, 2.91, 1.94 and 2.03), SI (0.226, 0.91, 0.51, 0.42, 0.213,
0.44, 0.278 and 0.273), Ia (0.984, 0.74, 0.907, 0.932, 0.987,
0.948, 0.98 and 0.976), and MAE (1.27, 5.46, 2.02, 2.19, 1.04,
1.80, 1.30 and 1.29) were, respectively, calculated for ANN,
LMSR, GPR, ENRR, LKS, M-5 trees, AMT and RF models.
Based on the values of these statistical indices, a total ranking
score was obtained for all the modelling techniques. The
results have shown excellent prediction ability of LKS and
ANNwith a total score of 40 and 35, respectively. The ranking
scores of other models such as LMSR, GPR, ENRR, M-5 trees,
AMT and RF were, respectively, 5, 15, 14, 18, 26 and 27.

. Among all the models, the LMSR model has obtained the
poorest approximation of the CBR and its insufficiency
was depicted by the ranking score (total score = 5) obtained
based on the above-mentioned assessment criteria.

. Based on the results of the external validation technique,
and multi-criteria assessment approach, the ANN, LKS,
AMT and RF models have achieved good prediction ability
and model stability in forecasting the CBR of reinforced
soil. However, the LKS and ANN have shown superior per-
formance in comparison to their counterpart models with
the OBJ function value of 2.95 and 3.40, respectively.
Also, among these two models, the latter has predicted
the new experimental data (independent data) with more
accuracy. Additionally, for this work, the developed ANN
model was also converted into trackable mathematical
relationship for easy hand or spreadsheet calculations.

. The strength (rij) of each input variable with respect to the
output (CBR) was evaluated by sensitivity analysis. The
results revealed that all the parameters have played an
important role in determining the CBR of reinforced soil.
However, OMC LL and position of the first reinforcement
layer with rij values of 0.77, 0.762 and 0.761, respectively,
are the most influential parameters.

In this study, to maximise the modelling efficiency and ease
of use, default settings are used in WEKA for most of the indi-
vidual models. Therefore, future studies should focus on how
the parameters in the models can be optimised automatically.
This limitation can be explored in future by combining some
optimisation scheme with the model network. Most recently,
the use of evolutionary algorithm based on metaheuristics
(e.g. shuffled frog algorithm, grey wolf optimiser, ant lion opti-
miser, elephant herd optimisation, etc.) has shown good ability
to improve the prediction ability of neural networks by opti-
mising its weights and biases. The future work with the
focus on such optimisation techniques can prove to be a useful
idea. Moreover, the ensemble learning techniques in which the
learning power of the multiple ML models are combined to
predict the response of the system might also be applied in
the future.
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Appendix. Design numerical example

Find the CBR of a geosynthetic-reinforced subgrade soil with the follow-
ing characteristics:

LL (X1) = 35, plastic limit (X2) = 25, PI (X3) = 10, dry unit weight of
soil (X4) = 18.3 kN/m3, moisture content (X5) = 11.9, percentage fines
(X6) = 67%, percentage sand (X7) = 32%, tensile strength of geosynthetic
reinforcement (X8) = 35.1 kN/m, number of reinforcement layers (X9)
= 2, position of the first reinforcement layer (X10) = 0.4 and position of
subsequent reinforcement layers (X11) = 0.2.

Solution:

Step 1:
Normalise each input using Equation (26):

X′
1, X

′
2, X

′
3, X

′
4, X

′
5, X

′
6, X

′
7, X

′
8, X

′
9, X

′
10, X

′
11

= {− 0.01408, 0.2821, − 0.375, 0.3964, − 0.7238, 0.2124,

− 0.2195, 0.6487, − 0.333, − 0.2647, − 0.3939}

Step 2:
Estimate normalised CBR utilising Equation (27):

CBR′
p =

∑11
j=1

wjksig(a)j + uk
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Compute ajfrom Equation (28). It may be noted that weights and
biases values are given in Table 7.

a1 = (− 0.2536×−0.01408)+ (− 0.4607× 0.2821)

+ (− 0.0521×−0.375)+ (− 0.04× 0.3964)+ (0.2659×−0.7238)

+ (− 0.2427× 0.2124)+ (− 0.4646×−0.2195)+ (1.1754× 0.6487)

+ (0.6772×−0.333)+ (− 1.103×−0.2647)

+ (0.4061×−0.3939)− 0.9167

a1 = −0.5126

Similarly

{a2, a3, a4, a5, a6} = {− 1.377, − 0.8773, 0.1887, 1.868, − 1.953}

CBR′
p =

∑11
j=1

(− 1.022× 1
1+ e−(−0.5126)

+ . . . , − 1.234

× 1
1+ e−(−1.9537)

)+ 1.6104 = −0.2551

Step 3:
De-normalise using Equation (29):

CBR = (− 0.2551+ 1)× (34− 1.3)/2+ 1.3 = 13.47%
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