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Low‑coverage whole‑genome 
sequencing of extracellular 
vesicle‑associated DNA in patients 
with metastatic cancer
Bella Nguyen1,2, Nicholas C. Wong3, Tim Semple4,5, Michael Clark6, Stephen Q. Wong4,5, 
Connull Leslie7,8, Bob Mirzai2,8, Michael Millward1,10, Katie Meehan9 & Annette M. Lim4,6*

Low‑coverage whole‑genome sequencing (LC‑WGS) can provide insight into oncogenic molecular 
changes. Serum extracellular vesicles (EV) represent a novel liquid biopsy source of tumoral DNA. 
This study compared copy number alteration (CNA) profiles generated from LC‑WGS of formalin‑
fixed paraffin‑embedded (FFPE) tumoral DNA and EV‑DNA obtained from cancer patients. Patients 
with squamous cell carcinoma of the base of tongue (n = 3) and cutaneous squamous cell carcinoma 
(n = 2) were included. LC‑WGS (0.5‑1X coverage) was performed on FFPE‑DNA and serum EV‑DNA. 
Similarity between CNA profiles was analysed using QDNAseq. FFPE samples had a mean CNA of 31 
(range 17–50) over 1.9 × 109 (range 1.0–2.6 × 109) bp in length, and EV samples had a mean CNA value 
of 17 (range 7–19) over 7.6 × 108 (range 2.9–15 × 108) bp in length. A mean of 8 (range 0–21) CNA over 
5.9 × 108 (range 1.6–14 × 108) bp in length was found to overlap between EV and FFPE‑derived samples 
per patient. Although the mean correlation efficient between samples was r = 0.34 (range − .08 to 
0.99), this was not statistically significant (p > 0.05). Regions of highest deletion and duplication in 
FFPE samples were not well reflected in the EV‑DNA. Selected CNA regions in EV‑associated DNA 
were reflective of the primary tumor, however appreciation of global CNA and areas of most significant 
change was lost. The utility of LC‑WGS of EV‑derived DNA is likely limited to molecular alterations of 
known interest.

Liquid biopsies facilitate the non-invasive characterization of tumor-derived molecular contents from biofluids. 
They represent a new frontier for personalized medicine approaches and can provide real-time tumor assessments 
that can guide treatment. Beyond cell-free DNA (cf-DNA), extracellular vesicles (EV) are emerging as a novel 
and complementary source of tumor-derived DNA. EV are a heterogenous group of particles with a phospho-
lipid bilayer membrane, found abundantly in various biofluids such as blood, urine, saliva and cerebrospinal 
 fluid1. They are recognized to be carriers of biologically active molecules, and participate in important biologi-
cal functions including endocrine, paracrine, and autocrine  signalling1,2. They are known to be associated with 
biofunctional proteins, RNA (including microRNAs), DNA, lipids, and other metabolic  molecules3. Physiologi-
cally, EVs have also been implicated in specific biological processes such as neural plasticity, tissue repair, stem 
cell maintenance and blood  coagulation4. EVs have been suggested to be involved in the pathogenesis of a wide 
range of disorders such as infections, cardiovascular disease and metabolic  disorders5–8. In recent years, EVs have 
garnered significant interest as potential cancer biomarkers, as EV have been found to contain tumoral molecular 
content and are hypothesized to contain more intact elements that are actively secreted by dividing tumor cells 
compared to the more fragmented, apoptotic cellular materials derived from cell-free circulating nucleic  acid9–12.
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Copy number alteration (CNA) defined as a variable copy number of a segment of deoxyribonucleotides > 1 kb 
in size is a commonly observed major genetic alteration identified in most  cancers13–16, that has been postulated 
to be both a predictive and prognostic  biomarker14,15. As cancer genomes are known to evolve over time CNA 
can also be observed to fluctuate, and CNA can also arise due to treatment response or  resistance14. Therefore, 
DNA extracted from circulating EV from cancer patients’ biofluids can facilitate a convenient and non-invasive 
continual assessment of CNA changes in a tumor during treatment, and can provide insight into the mechanisms 
behind disease progression. There are a number of approaches currently available to assess CNA in formalin-
fixed paraffin-embedded (FFPE) tumoral tissues including microarray-based comparative genomic hybridi-
zation (array-CGH), single nucleotide polymorphism (SNP) arrays, molecular inversion probe (MIP) assays, 
and low coverage whole genome sequencing (LC-WGS)16,17. Traditionally CNA is assessed using high yields of 
DNA obtained from traditional tumoral biopsies, whilst EV-associated DNA is isolated in significantly smaller 
quantities. Kader et al. described a LC-WGS method which successfully characterized CNA using ultra-low 
input of tumoral FFPE-derived  DNA18 and similarly, CNA has been demonstrated to be successfully profiled 
in smaller quantities of circulating-tumor DNA (ct-DNA) using LC-WGS19. Thus, LC-WGS could be used to 
assess EV-associated DNA.

This study aimed to assess whether LC-WGS of EV-associated DNA is reflective of tumoral DNA based on 
their respective CNA profiles, to define the potential clinical utility of this liquid biopsy approach. We compared 
CNA profiles generated from LC-WGS of DNA extracted from formalin-fixed paraffin-embedded (FFPE) samples 
and matched EV isolated from the serum of cancer patients.

Results
Demographic data. Demographic data of patients enrolled in the study are summarized in Table 1 (n = 5). 
Three patients had metastatic base of tongue squamous cell carcinoma (BOT), with two patients having Human 
Papilloma Virus (HPV)-related disease. Two patients had metastatic cutaneous squamous cell carcinoma 
(cSCC). Patients had a median age of 64 (range 59–77) years, and were predominantly male. Median follow 
up was 32 (range 22–41) months and at data cut-off, two patients had died of disease and three patients were 
alive and responding to treatment. Four patients had their EV samples collected for analysis within one month 
of their FFPE-tumor samples being obtained, and one patient (Study ID: C008) had their EV samples collected 
12 months after their FFPE-tumor sample. All BOT patients have received radiation, chemotherapy and immu-
notherapy as treatment for their disease. All cSCC patients have received surgery and immunotherapy as treat-
ment for their disease.

Validation of isolated EV & EV‑DNA characteristics. Validation of EV isolation from differential 
ultracentrifugation (UC) was carried out using Transmission Electron Microscopy (TEM), Nanoparticle Track-
ing Analysis (NTA), and Western blotting with collective results presented in Fig. 1. Isolated EV analyzed in trip-
licate (Fig. 1A) by NTA show a mean particle size of 215 nm and mean concentration of 2.03 × 1010 particles/mL. 
Figure 1B shows a ds-DNA antibody labelled TEM image of a representative isolated EV, which demonstrates a 
round particle with a diameter of approximately 200 nm. Ds-DNA antibody positive particles are evident within 
the outline of the vesicular membrane. Figure 1C demonstrates the Western blot results using common exoso-
mal markers (positive for CD9 and negative marker Calnexin) in melanoma cell lysate (SKMel28) as positive 
control (lane 10) and isolated EV (lane 7).

A minimum of 10 ng of extracted EV-associated DNA was used for each LC-WGS run. One representative 
patient (#B-010) sample is shown in Fig. 2, which was analyzed using High Sensitivity DNA bioanalyzer (Agilent) 
to assess sample preparation, quality and fragment size of the EV-associated DNA extracted. The percentage 
of reads mapped from all patients’ EV-associated DNA ranged between 55.6 and 97.1% (mean = 71.6). Median 
fragment length (bp) ranged between 169 and 178 bp (mean = 176 bp). LC-WGS was performed aiming for 
0.5–1 × coverage, and was considered adequate to generate CNA profiles.

Comparison of CNA profiles of FFPE and EV samples. FFPE samples had a mean CNA of 31 (range 
17–50) covering over 1.9 Gbp (range 1.0–2.6 Gbp) in length. EV samples had a mean CNA of 17 (range 7–19) 

Table 1.  Clinicopathological characteristics of the cohort. mBOT SCC metastatic base of tongue squamous cell 
carcinoma, mcSCC metastatic cutaneous squamous cell carcinoma.

Study ID Age (years) Sex Tobacco use Tumor Clinical status Follow up time (months)

B005 64 Male Ex-smoker
mBOT SCC

Died from disease progression 35
HPV + 

B010 62 Male Never
mBOT SCC

Alive, responding to treatment 32
HPV + 

B014 77 Female Smoker
mBOT SCC

Alive, responding to treatment 41
HPV −

C004 70 Male Ex-smoker mcSCC Alive, responding to treatment 24

C008 59 Female Smoker mcSCC Died from disease progression 22
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covering 0.76 Gbp (range 0.29–1.5 Gbp) in length. The mean number of CNA and length of abnormal DNA 
that overlapped between both the FFPE samples and EV samples for the same patient for the whole cohort was 
8 (range 0–21) CNA regions and 0.59 Gbp (range 0.16–1.4 Gbp) in length. Table 2 and Fig. 3 summarises the 
global CNA count (total number of deletions and duplications) for EV and FFPE samples of each patient, as well 
as areas with significant duplications and deletions. The majority of CNA in FFPE samples were deletions rather 
than duplications, and this was reflected in EV samples. However, the number of CNA identified in EV-DNA 
were considerably less than found in FFPE.

Summarised in Table 2 are the regions of deletion/duplication in both number of CNA, and number of base-
pairs, the areas of overlapped CNA region, Pearsons correlation value (r) calculated of CNA in the overlapped 
regions, associated p values using paired sample t-test, and regions with significant (defined as high frequency) 
deletion/duplication between FFPE and EV samples of all patients included in the study. As noted in Fig. 3, EV 
samples reflected some specific CNA in FFPE but in general were less in number and some CNA were unique 
to EV samples suggesting the limitation of tumor sampling from both FFPE and EV. Despite the overlap, none 
of the correlation values were statistically significant with p values all greater than 0.05.

The concordance of CNA profiles between matching FFPE tumors and EV samples are shown in Fig. 4. 
Overall, although common CNA and regions were identified between sample types, there were many areas 
under-represented by the EV-DNA based analyses. Again, some CNA were unique to each sample type demon-
strating sampling limitations. In the HPV-driven metastatic BOT group (n = 2), patient #B-005 FFPE tumoral 
DNA demonstrated significant regions of deletion detected in Chr 3p and 8p, and duplication in Chr 3q, 5p and 
8q, 20p and 20q. These observations are consistent with findings from The Cancer Genome Atlas (TCGA) head 
and neck cancer cohort and a large HPV-positive and HPV-negative oral squamous cell carcinomas data set 
published by Gillison et al.21,22. This patient’s profile also contained recurrent focal amplification for 3q26/28, a 

Figure 1.  Validation and characterization of isolated EV: Size and concentration distribution of nanoparticles 
from NTA in triplicate (yellow, red and orange graphs) (A); ds-DNA antibody labelled TEM image at 
magnification × 40,000 (B); and Western blots using common exosome markers (positive for CD9 and negative 
marker Calnexin) in melanoma cell lysate (SKMel28) as positive control (lane 10) and isolated EV (lane 7) (C). 
Lanes 2, 3, 4, 5, 6, 8, 9 were of other samples that were included in the same Western Blot analysis, but were not 
patients included in the study.

Figure 2.  Sample extraction High Sensitivity DNA bioanalyzer trace for EV-associated DNA from patient 
#B-010.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4016  | https://doi.org/10.1038/s41598-021-83436-1

www.nature.com/scientificreports/

region involving squamous lineage transcription factors TP63 and SOX2 and the oncogene PIK3CA, which was 
also a group of mutations found in the TCGA  dataset21. In contrast, patient #B-010 had a significant deletion 
observed in Chr 1q while regions with duplication were observed in Chr 8q, 11q and 20q. These findings are not 
observed in prior published  datasets21,22. In the non HPV-driven metastatic base of tongue patient (#B-014), 
the only finding that is consistent with prior published dataset is in the duplication observed in Chr 3q. In the 
metastatic cutaneous squamous cell cancer samples, consistent with published literature were regions of duplica-
tion found in Chr 7p, 8q, and 20q seen in both FFPE and EV  samples23.

Table 2.  CNA region summaries of FFPE/EV samples for each patient, with overlapped CNA regions (in both 
number of regions and number of basepairs), with correlation value (r) and p values. mBOT SCC metastatic 
base of tongue squamous cell carcinoma, mcSCC metastatic cutaneous squamous cell carcinoma.

Study ID Tumor

CNA regions 
(number of region/
basepair) Overlapped CNA region 

(number of region/basepair) Correlation value (r =)

Regions with significant deletion/duplication

FFPE EV FFPE EV

B005 mBOT SCC HPV + 50
2.6 × 109

16
6.2 × 108 7 6 × 108 − 0.49 (p = 0.31)

Deletion: 3p and 8p
Duplication: 3q, 5p and 8q, 
20p, 20q

Deletion: 15p
Duplication: 7q, 14q and 15q

B010 mBOT SCC
HPV + 

17
1.1 × 109

11
4.2 × 108

2
1.6 × 108 0.98 (p = 0.41) Deletion: 1q

Duplication: 8q, 11q, 20q
Deletion: 1q, 4p, 6q
Duplication: 1q, 8q, 14q, 17q

B014 mBOT SCC
HPV −

27
2.5 × 109

7
2.9 × 108

0
2.2 × 108 − 0.08 (p = 0.48) Deletion: 11q, 14q

Duplication: 3q
Deletion: 15q
Duplication: 5q14p

C004 mcSCC 30
1.7 × 109

19
9.5 × 108

11
5.1 × 108 0.88 (p = 0.19) Deletion: 8p

Duplication: 7p, 8q, 20p
Deletion: 8p
Duplication: 1p, 3p, 15q, 
17q, 20q

C008 mcSCC 28
1.6 × 109

31
1.5 × 109

21
1.4 × 109 0.42 (p = 0.86)

Deletion: 4q, 9p, 11q
Duplication: 7p, 8q, 9q, 14q, 
20p

Deletion: 2q, 4q, 6q, 8p, 11q
Duplication: 5p, 14q, 15q

Figure 3.  Comparison of CNA counts (deletion (DEL), or duplication (DUP)) of EV and FFPE samples, with 
patient ID labelled on the right of the figure. CNA counts are plotted on Y-axis. Segmentation analysis was 
performed using QDNASeq and the resultant output files were summarised using R, version 1.6.220.
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Figure 4.  CNA profiles of all patients (#B-005, #B010, #B-014, #C-004, #C-008) included in the study FFPE 
tumors (1–5 A) and EV samples (1–5 B), with UpSet plots demonstrating overlapping regions between the 
sample sets for regions of CNA (1–5 C) and the length (million basepairs—1–5 D) of the altered regions 
identified. CNA profiles were determined using QDNAseq and the resultant output files were summarised 
using R, version 1.6.220, with copy number loss (blue) and copy number gain (red) regions highlighted for all 
chromosomes. Frequency of CNA in log2 ratio are plotted on Y-axis, and chromosome coordinates from 1 
to 22 are ploted on X-axis. UpSet plots demonstrate the number of events between samples as a column, with 
the sample type indicated beneath the plot and the total number of events annotated on top of the column. 
Concordance between samples is represented by the presence of a vertical connecting line between sample type 
beneath the X-axis.
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Discussion
LC-WGS is a rapid and practical approach to characterize large-scale chromosomal alterations across the genome, 
which can be used to monitor tumoral molecular  evolution14. Non-invasive liquid biopsy approaches such 
as cf-DNA, ct-DNA or EV-associated DNA have emerged as viable alternatives to using traditional tumoral 
tissue which require an invasive biopsy. Studies applying LC-WGS using cf-DNA and ct-DNA analysis have 
demonstrated the ability to detect tumour-associated CNA changes in cancer patients with various cancer types 
including prostate cancer, colorectal cancer, lung cancer, urothelial cancer and  neuroblastoma24–31. Changes in 
CNA profiles of cf/ct-DNA have also been to be associated clinical disease progress such as cancer proliferation, 
and treatment  response32,33. However, LC-WGS is restricted by the use of samples in which the tumor fraction 
is relatively high (> 10%), thus the search for alternative sources of circulating DNA is  critical33. A recent study 
found that EV-DNA contained a higher mitochondrial DNA copy number than that found in cf-DNA of patients 
with hepatocellular carcinoma using whole genome and capture-based sequencing, suggesting EV-DNA may 
be an advantageous source of alternative liquid  biopsy34. Our study is one of the few published studies that has 
investigated the utility of LC-WGS as a method of CNA profiling using low-input EV-associated DNA from 
cancer patients’ plasma with comparison to matched FFPE samples.

EV have been reported to contain tumoral DNA elements such as highly expressed oncogenic gene muta-
tions in several cancer models including melanoma, lung, pancreatic and colorectal  cancer9–11,35,36. However, few 
studies have directly compared whole genome sequencing concordance between EV-associated DNA and the 
primary tumor. One study identified tumoral-related copy number variations (CNV) in 3 metastatic pancreatic 
patients’ EV-DNA37. Another study which has compared CNA profiles analysis using LC-WGS at 0.6X depth 
between EV-DNA and FFPE tumoral DNA was published by  Lee38. This demonstrated that in nine urothelial 
bladder carcinoma patients, CNA analyses in EV-DNA and cf-DNA reported concordance with tumoral DNA 
(r = 0.412 and 0.481 respectively, p values not provided)38. Further, the authors were able to confirm that areas of 
CNA corresponded to regions with known mutations of interest including loci involving CDKN2A and RB138.

Our study found that while overlapping regions of CNA in the EV samples and FFPE samples are observed, 
the correlation coefficients were highly variable (range: − 0.49 to 0.99) with no correlation being found to be 
statistically significant (p values > 0.05 from paired sample t-test). Regions in FFPE samples with significant 
duplication or deletion were not reflective of the regions found in EV samples, suggesting that EV-derived DNA 
probably represents a portion of tumoral DNA and non-tumoral DNA. Changes unique to EV-DNA could arise 
from non-tumoral DNA, mitochondrial DNA, or due to FFPE and EV sampling limitations. Overall there were 
significantly more regions of CNA detected in FFPE-DNA than in EV-DNA, likely due to its reported fragmented 
nature, which renders it difficult to detect larger CNA regions. These observations have identified some limita-
tions of using CNA profiles generated from EV-associated DNA in the clinical setting.

It is difficult to make comparisons between studies, given the different cancer types, different methodologies 
used for EV isolation, and that global numbers of CNA and length were not reported in the discussed stud-
ies above. Our study also demonstrated that EV-DNA could identify CNA regions containing known cancer-
relevant genes concordant with FFPE. However, we also showed that the global architecture of the molecular 
changes observed in FFPE and the regions of greatest change were lost with the limited view provided by the 
liquid biopsy approach. Specifically, we demonstrated that FFPE had a larger number of CNA spanning over 
a number of base pairs compared to EV-DNA and highest regions of loss or gains were observed in different 
regions between samples. EV-DNA can still potentially be used to identify specific mutations of known interest 
which was not pursued in depth within our study given the low coverage of the whole genome sequence. We 
recently reported that EV-DNA was able to detect circulating tumoral HPV-DNA in HPV-driven oropharyngeal 
carcinomas, however the detection sensitivity was significantly lower than cf-DNA analyses (p =  <0.001)39. One 
study using LC-WGS CNA profiles of cf-DNA reported good concordance with FFPE in 22 metastatic prostate 
cancer patients (r = 0.87, p < 0.001)40. It is however recognised that cf-DNA contains different DNA elements to 
EV-DNA and this may explain the difference reflected in the  results41. Our findings calls for further research in 
comparing the clinical utility of EV-DNA to cf-DNA which is an already established, well validated source of 
liquid biopsy. One direction to improve similar studies in the future could be to use immunocapturing of specific 
EV subpopulations that are postulated to be involved in carcinogesis, thus increasing sensitivity of the EV-DNA 
analysis for the detection of tumour-derived  DNA42. However, the ability to isolate circulating DNA that is 
tumour-specific remains a challenge unless a tumour is defined by the presence of known oncogene-addiction 
which is not the case for most malignancies.

There are limitations to this study. The study lacked the ability to standardize of amount of input EV-associated 
DNA used in LC-WGS due to limited yield which may have contributed to the variations in different CNA 
profiles. Due to the paucity of similar studies published in literature, an optimal amount of EV-DNA input has 
not yet been determined. We did not specifically select a specific EV subpopulation, which may alter EV-DNA 
yield and quality, with a recent study showing that large EVs (those > 1000 nm) contain more tumour-derived 
DNA than small EVs (< 200 nm)43. We also note that at our sequencing depth 0.5-1X and an average of 50 mil-
lion reads (see “Methods and materials” section below), we may not have achieved the most optimal sequencing 
sensitivity of smaller tumour specific fragments. There are also limitations to using QDNASeq to perform CNA 
profiling, firstly the bioinformatic package cannot completely correct for technical bias in read coverage, and 
secondly, the copy number calling can still be impacted by DNA  quality44. Additionally, our cohort of patients 
was small in number, included different tumor types and varied treatments. It has been demonstrated that dif-
ferent types of tumors with varying levels of genomic instability may result in different amounts of EV as well as 
diverse molecular packaging, and thus result in different types of DNA  isolated43. EV samples were not collected 
at the same time as FFPE samples in our study as which utilised available archival FFPE samples similar to real 
life clinical practice or trial participation. Thus, the discordance of the two types of DNA CNA profiles may be 
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impacted by the varied sample collection times. Finally, concordance of mutations would be more comprehen-
sively assessed using orthogonal methods with deeper sequencing resolution or targeted sequencing which were 
not included in our study.

Conclusion
Based on our results, we suggest that although EV-associated DNA CNA profiles were reflective of FFPE, the 
overlapping regions were limited in number, highly variable between patients, and did not globally reflect regions 
with significant alterations found in FFPE. Whilst EV-associated DNA may be useful as a liquid biopsy source to 
identify tumoral DNA, overall, they do not globally reflect primary tumor DNA CNA profiles. In a clinical setting, 
EV-associated DNA alone may not be suitable as a source to be used to monitor global tumoral DNA changes.

Methods and materials
Participants, ethics, consent and regulations. Five patients with metastatic cancer were recruited 
prospectively for the study between April 2016 and May 2018. All experimental protocols in the study received 
institutional approval from Sir Charles Gairdner Group Human Research Ethics Committee (HREC 2015-062). 
All experimental methods were carried out in accordance to the principles set out by the National Statement on 
Ethical Conduct in Human Research and Good Clinical Practice Guidelines. Study participants provided writ-
ten informed consent prior to enrolment.

Isolation and validation of EV. Isolation and validation of EV was carried out as per method previ-
ously published by our  group39. Plasma collected in 4 × 10 mL EDTA tubes were processed within one hour. 
Cellular components were removed by centrifugation at 1600g for 20 min at room temperature. Samples were 
then centrifuged further at 14,000g for 10 min at room temperature to remove large particles such as platelets. 
Subsequently, clarified plasma (4000 µL) was diluted in PBS and centrifuged at 12,000g for 45 min, 110,000g for 
90 min, and finally at 110,000g for 90 min at 4 °C using the Type 70 Ti rotor in the Optima L-90K Ultracentrifuge 
(Beckman Coulter, Australia). Validation of EV isolation was carried out according to guidelines recommended 
by the International Society of Extracellular Vesicles (ISEV) using Transmission Electron Microscopy (TEM), 
Nanoparticle Tracking Analysis (NTA), and Western  blotting45. For TEM, EV were incubated with primary anti-
body (5 μL of mouse anti-human CD9, 10 μg/mL, Merck, Australia) and then with secondary antibody (5 μL of 
mouse anti-human IgG conjugate, LSBio, USA) on 200 mesh Formvar-carbon coated copper grids (ProSciTech, 
Australia). Grids were visualized on a JEM-2100 electron microscope (JEOL, Japan) and images were captured 
using an 11-megapixel Orius digital camera (Gatan, USA). For NTA, EV were analyzed using a NS500 Nanopar-
ticle tracking instrument (NanoSight NTA 3.0 Nanoparticle Tracking and Analysis Release Version Build 0064). 
The instrument’s camera was set at level 15 and a threshold of three pixels.

For Western blotting, EV were diluted in Lamelli Buffer (Bio-Rad, Australia), separated on a mini TGX 8–16% 
gel (Bio-Rad, Australia). The Trans-Blot Turbo Transfer System (Bio-Rad, Australia) was used to transfer the 
proteins from the gel to the membrane which was then probed with the following primary antibodies: TSG-101 
(1:1000, clone EPR7130B, Abcam), CD9 (1:500, clone MM2/57, Life-Technologies), Calnexin (1:300, clone 1563, 
Novus Biologicals, USA) and: secondary antibodies (sheep anti-mouse IgG-HRP conjugate, polyclonal, 1:2000, 
GE Healthcare, donkey anti-rabbit IgG-HRP conjugate, polyclonal, 1:2000, GE Healthcare).

DNA extraction. DNA extraction was carried out as per method previously published by our  group39. DNA 
was extracted using the QIAamp DNA Microkit (Qiagen, Australia) according to the manufacturers’ instruc-
tions. DNA concentration was quantified using the Qubit high-sensitivity dsDNA kit (Thermo Fisher Scientific, 
Australia). DNA quality of one patient (study ID #B-010) was also characterized using High Sensitivity DNA 
bioanalyzers (Agilent Technologies, Australia).

Low‑pass whole genome sequencing. Low-pass whole genome sequencing was performed at the Peter 
MacCallum Cancer Centre using a previously published  method18. DNA was eluted in 50 μL of low TE buffer/
nuclease-free water and quantified with QuBit high sensitivity (Thermo Fisher Scientific, Australia), and subse-
quently normalized to a volume of 50 μL in low TE buffer before sonication. DNA was sheared with sonication 
(Covaris S2 system) for 1 × 40 s, with the following parameters: duty cycles of 10, an intensity of five, and 200 
cycles/burst.

Library preparation was performed with the NEBNext Ultra II DNA Library Preparation Kit (New England 
Biolabs, USA) as per manufacturer’s instructions, with minor modifications. To each 50 μL sample of DNA 3 μL 
of NEBNext Ultra II End Prep Enzyme Mix and 7 μL of NEBNext Ultra II End Prep Reaction Buffer was added, 
followed by a short thermal cycling run to carry out end repair, 5′ phosphorylation and 3′ dA-tailing (deoxy-
adenosine monophosphate-tailing). The thermocycling conditions used were; 30 min at 20 °C for one cycle (end 
repair stage), and 30 min at 65 °C for one cycle (adenylation or a-tailing stage), with a final hold of 4 °C. 1.5 μM 
of NEBNext Adaptors were then ligated to DNA with 60 μL of NEBNext Ultra II Ligation Master Mix and 1 μL 
of NEBNext Ligation Enhancer (1 μL) in a 30minute incubation at 20 °C. Adaptor loops were severed by treat-
ment with USER Enzyme which removed the uracil binding the two halves of the loop together. For this step, 
DNA was incubated with 3 μL of enzyme for 15 min at 37 °C.

Clean-up of the adaptor-ligated DNA was performed using Agencourt AMPure XP Reagent (Beckman Coul-
ter, Australia) as per section 3.8.1 of the manufacturer’s instructions (‘Library preparation’). The purified adaptor-
ligated DNA was then enriched with 11 cycles of PCR. The cycling conditions were; 30 s at 98 °C for one cycle 
(initial DNA denaturation), 10 s at 88 °C (DNA denaturation) and 75 s at 65 °C (primer annealing and DNA 
extension) for 11 cycles, and five minutes at 65 °C for one cycle (final extension phase) prior to a final hold at 
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4 °C. For PCR, 25 μL of NEBNext Ultra II Q5 Master Mix was added to adaptor-ligated DNA, along with 5 μL 
each of forward (Universal Primer i5) and reverse (Index Primer i7) primers. PCR products were then purified 
using Agencourt AMPure XP Reagent, increasing the incubation times to 20 min and 10 min for beads and 
elution low TE buffer, respectively. Library fragment size distribution was determined with the Agilent 4200 
TapeStation System (Agilent Technologies, Australia).

Libraries were normalized, pooled and diluted to a final concentration of 1.8 pM as per the NextSeq 500 High 
Output v2 Reagents Kit guide (Illumina, Australia). 1.3 mL of the diluted library pool was loaded onto a reagent 
cartridge and inserted into the Illumina NextSeq 500 System for low coverage sequencing, along with a flow 
cell and buffer cartridge. The 75 bp paired-end sequencing reaction was performed, resulting in an average of 
50 million reads for each sample. Sequencing of those samples led to a genome coverage of 0.5–1 × per sample.

CNA analysis. Raw reads were trimmed for sequencing adaptors using Trimgalore v0.4.5, a wrapper for 
Cutadapt v1.12 using default parameters. Trimmed reads were then aligned to the hg19 reference genome using 
BWA v0.7.15 with default  parameters46. Alignment statistics and genome coverage metrics were extracted using 
GATK v3.7 and Picard v2.9.0. Segmentation analysis was performed using qDNASeq and the resultant output 
files were summarised using R, version 1.6.220. Overlap analysis was performed using bedtools v2.17.0 and plot-
ted with UpSetR v1.4.0 within R v3.6.0 and RStudio v1.2.1335-1.
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