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Figure 20. A colour coded version of f1's base level layout. 

This base level layout was also used to design the three sub-fitness functions.  When selecting 

which attributes to evaluate in the sub-fitness functions, the number of traversable areas was 

considered the most important.  The reason for this is because even if a layout met every 

other criterion, it would not be useful as a maze-like game level if all of the passageways and 

rooms were disconnected.  Rooms were considered the second most important attribute.  This 

was because if all of the areas were connected and the rooms met their criteria, then the 

passageways should be implicitly created.  Passageways were considered the next most 

important aspect of the layouts since they had a greater effect on the layouts than the number 

of dead-ends or culs-de-sac.  Using these as guidelines, it was decided that subf1 would only 

evaluate the accessible area count and the room count, while subf2 additionally evaluated 

largest area size and average room size.  The third sub-fitness function, subf3, evaluated the 

four attributes from subf2 as well as passage count and average passage length. 

The second fitness function, f2, aimed to produce level layouts of a single traversable area 

with more rooms than f1’s goal layout and four more passageways.  The base layout for f2 

contains two culs-de-sac and only three dead-ends.  A colour coded version of the base layout 

for f2 can be seen in Figure 21. 
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Figure 21. A colour coded version of f2's base level layout. 

Figure 22 illustrates a colour-coded version of f3’s base layout.  From this layout it can be 

seen that f3 aimed to produce layouts of a single traversable area with several small rooms 

and many long passageways.  This fitness function also aimed to produce six dead-ends and a 

single cul-de-sac. 

 

Figure 22. A colour coded version of f3's base level layout. 

The base layout for the fourth fitness function, f4, was quite visually distinct in comparison to 

the others and is displayed in Figure 23.  It contains four traversable areas made up of large 

rooms and only a few passageways.  The use of additional traversable areas in this layout was 

to allow for special connections to be made between traversable areas as a post processing 

step in level design.  Such special connections may include ladders in games of the 

platformer genre, and teleportation pads in games of the first person shooter (FPS) genre.  

This base layout also contained the most dead-ends but only a single cul-de-sac. 
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Figure 23. A colour coded version of f4's base level layout. 

The fifth fitness function, f5, aimed to produce level layouts of two traversable areas with 

three passageways of length one, represented by the red sections.  The base layout of f5 

(Figure 24) also had five moderate sized rooms, four dead-ends, and two culs-de-sac. 

 

Figure 24. A colour coded version of f5's base level layout. 

4.2 The Experiments 

Understanding the fitness functions used and their differences, the experiments will now be 

described.  Four sets of experiments were carried out during this research and were labelled 

as set 1A, 1B, 2, and 3.  Each set consisted of 12 experiments and differed from one another 

by three factors that are listed below. 

 The chromosome representation that was used. 

 The neighbourhood radius.  This determined the size of the Moore neighbourhood 

that was used with the CAs. 

 The mutation rate.  This referred to the GA’s mutation probability which affected the 

chance of each gene in a chromosome being mutated. 
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Set 1A and 1B both used the direct representation with a neighbourhood radius of 1 but used 

different mutation rates.  Set 1A used a standard mutation rate of one over the chromosome 

length (Bäck, 1993), while set 1B used a larger mutation rate of 0.01 for exploratory 

purposes.  Set 2 differed from sets 1A and 1B by its chromosome representation.  Set 2 used 

the indirect representation and shared set 1A’s mutation rate of one over the chromosome 

length.  Set 3 is identical to set 2 except that it uses a larger neighbourhood radius of 2.  Table 

8 lists the values of these factors that were used for each set. 

As mentioned earlier, each set consisted of twelve experiments.  These experiments were 

defined by a unique combination of two factors listed below. 

 The number of cell states.  Experiments were carried out with 2, 3, and 4 cell states. 

 The number of CA iterations.  This was the number of times a CA rule set was 

applied to each pre-generated maze in the GA’s fitness function.  The numbers of CA 

iterations that were used in this research were 1, 5, 10, and 25. 

The experiments within each set inherit all of that set’s factor settings and test all twelve 

combinations of different numbers of cell states with different numbers of CA iterations.  

Table 9 lists the cell state and CA iteration factor values used for each experiment within any 

given set. 

 Experiment Sets 

Factors Set 1A Set 1B Set 2 Set 3 

Mutation Rate 1/chromosome 

length 
0.01 

1/chromosome 

length 

1/chromosome 

length 

Chromosome 

Representation 
Direct Direct Indirect Indirect 

Neighbourhood Radius 1 1 1 2 

Table 8. Table of the factor values used in each set of experiments. 

 

 Experiments within a Set 

Factors #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Cell State Count 2 2 2 2 3 3 3 3 4 4 4 4 

CA Iterations 1 5 10 25 1 5 10 25 1 5 10 25 

Table 9. Table of the factor values used in each experiment for any given set. 
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As can be seen in Table 9, each experiment has been given an index in the form of a number 

in the range of [1, 12].  Experiments are referred to by this index in the following manner, 

expab, where a is the set that the experiment belongs to and b is the experiment’s index into 

that set.  For example, the fifth experiment in set 1B is expressed as exp1B5. 

Each of the four sets of experiments was run using each of the five fitness functions described 

in section 4.1.  In addition, sets 1B, 2, and 3 were run using each of the three sub-fitness 

functions.  The next section discusses the results from running these experiments. 

4.3 Results and Findings 

This section is divided into two sub-sections that cover visual analysis of layouts that were 

generated using the proposed approach, and an analysis to determine the impact of different 

factors on the fitness values.  Section 4.3.1 details the visual analysis which looks at 

generated layouts that were produced by using each fitness function, in comparison to their 

fitness functions goal layout.  Section 4.3.2 details the analysis of the factors that were varied 

across all of the experiments.  Analysis of variance (ANOVA) was used to determine if the 

factors had a significant effect on the fitness values that were achieved.  For factors that were 

found to have a significant effect on fitness, the least significant difference (LSD) post-hoc 

test was performed to find which levels of these factors had the greatest effect on the fitness 

values. 

4.3.1 Visual Analysis 

The purpose of the visual analysis is to examine whether each fitness function succeeded in 

finding CA rules that were capable of generating layouts with a similar appearance to its goal 

layout.  The comparison is to find layouts that look similar in style to the goal layout as 

though they could be from the same video game.  Finding layouts that are identical to the 

goal layout is not the aim of the visual comparison as level layouts need to differ from one 

another.  Figure 25 displays two levels from the video game “Sonic the Hedgehog” to 

demonstrate this point. 
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Figure 25. An example of how two level layouts from the same game are similar to one another, but not 

identical (Images Retrieved from the Sonic Retro Website). 

To perform these comparisons, CA rule tables generated by the GA process, that were given 

high fitness values, were chosen and applied to ten mazes that were generated by the 

modified recursive back tracker algorithm which was described in section 3.1.  The layouts 

that the CA produced were assigned an ASM, which was calculated by extracting the layout 

attributes and comparing them to the attributes of their goal layout.  This is the same process 

that evaluates level layouts in the fitness function which was described in section 3.2.2.  

However, the ASM is not to be confused with the chromosomes’ fitness.  A chromosome’s 

fitness is the average of all ASMs that are assigned to level layouts that are produced by 

applying the chromosome to a collection of 100 maze configurations.  Layouts with a high 

ASM were chosen to be included in this section to demonstrate the relationship between the 

similarity in visual appearance and the similarity of attribute values.  Determining visual 

similarity is a subjective process.  What may appear visually similar to some may not be 

visually similar to others.  Therefore the criteria that are used to evaluate visual similarity in 

this research are listed below. 

 Size of the traversable areas.  If two layouts are of similar size they are considered 

more visually similar than two layouts of different sizes. 

 The proportion of negative space to positive space.  In the visual comparisons, 

traversable areas are considered positive space while non-traversable areas are 

considered negative space.  If the goal layout’s positive space contains sections of 

negative space within it, then it is ideal that the generated layouts contain a similar 

amount of negative space within its positive space. 
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 Structure of the traversable areas.  During the comparison of the layouts, certain 

structural elements are considered.  These elements include the shape of the layouts 

rooms and whether the layouts passageways run diagonal, orthogonal, or both. 

The rest of this section details the visual analysis for each fitness function.  The analysis 

evaluates whether the generated layouts met their fitness functions criteria, and whether they 

were visually similar to their fitness functions goal layout. 

Fitness Function 1 

The primary goal of f1, as shown in Table 6, was to give good evaluations to CA rule tables 

that produce layouts of a single traversable area (weighting of 0.27), made up of 

approximately 89 cells (weighting of 0.18), similar to its goal layout which is displayed in 

Figure 26.  The other attributes were given less importance, with a weighting of 0.09, and are 

listed in section 4.1. 

 

Figure 26. Goal layout of f1. 

The rest of this section will discuss the results from using f1 with each of the four experiment 

sets.  Sets 1B, 2, and 3 will also include the results from using the three sub-fitness functions 

as they used the same goal layout as f1. 

Set 1A 

Figure 27 displays two level layouts that were generated by chromosomes that were given a 

high fitness by f1.  These layouts were generated by chromosomes using experiments exp1A6 

and exp1A10.  Both of these experiments used five CA iterations, with one using three cell 

states, and the other using four cell states.  These chromosomes were selected as they were 

assigned the highest fitness value by f1.  Also displayed in Figure 27 is the goal layout of f1 

for comparison with the generated layouts.  Each layout is colour coded and has its attributes 

listed underneath it.  The colour code is listed below. 
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 Red areas: Passageways 

 Green areas: Rooms 

 Blue areas: Junctions 

 White areas: Dead-Ends 

 Black areas: Not Traversable 

Underneath each list of attributes is a post processed version of the level layout.  The post 

processed layouts are rendered in black and white and only displays the largest traversable 

area.  These are displayed for a clearer visual comparison to the goal layout. 

 

Figure 27. Two generated layouts evaluated by f1 in comparison with f1’s goal layout based on experiments 

from set 1A.  Each layout is colour coded to visually identify its attributes which are listed beneath each 

layout along with its post processed version. 

As can be seen in Figure 27, the generated layouts (a1) and (b1) have high ASM values.  

However, neither layout shares a particularly close visual resemblance to the goal layout.  

Both of the layouts contain too many traversable areas, which is a contributor to the lack of 

correlation between high ASM and the layouts not being very similar to the goal.  This is 

because disconnected areas can contain some of the rooms, passageways, culs-de-sac, and 
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dead-ends that were desired as part of the main traversable area.  For example, layout (b1) 

produced the correct number of rooms, which contributed to the high ASM, but two of those 

rooms are not connected to the main traversable area.  This means that the main traversable 

area, presented in (b2), does not contain the desired number of rooms which may have 

subtracted from its visual similarity with the goal layout. 

The size of both layouts (a1) and (b1)’s largest traversable area is close to the desired value 

with (a1)’s being two cells larger (91 vs. 89) and (b1)’s being five cells larger (94 vs. 89).  

Comparing the number of passageways contained in the layouts and their average length, (a1) 

was the closest, as it contained the exact number of desired passageways but with a smaller 

average length of 3.85 vs. 5.71.  Layout (b1) produced one less than the desired number of 

passageways and an even shorter average length of 3.66 vs 5.71.  Both layouts (a1) and (b1) 

contained the correct number of rooms but with an average room size over thrice the desired 

value.  Both layouts contained over twice the desired number of dead-ends and the correct 

number of culs-de-sac. 

Comparing the post processed layouts, (a2) and (b2), to the criteria listed in section 4.3.1, 

both layouts have only a slight resemblance the goal layout.  Both layouts are almost the 

same size as the goal layout with some of the rooms consisting of box like shapes and some 

containing short diagonal walls similar to the goal layout.  The passageways in the generated 

layouts are mostly orthogonal, like the goal layouts, but neither layout contains enough 

negative space within the traversable area.  Their negative space, particularly in (a2), is 

sparse and un-concentrated, with small pockets of negative space spread out over the layout. 

Set 1B 

Set 1B used the same parameters as set 1A except it used a higher mutation rate of 0.01.  The 

generated layouts from set 1B are quite visually similar to the goal layout and were both 

generated from a chromosome that was evolved using a single CA iteration with two cell 

states.  Figure 28 displays two colour coded layouts generated from rule tables that were 

produced by the GA process with the parameters of set 1B and using f1 as the objective 

function. 



 
60 

 

Figure 28. Two generated layouts evaluated by f1 in comparison with f1’s goal layout.  Each layout is colour 

coded to visually identify its attributes which are listed beneath each layout along with its post processed 

version. 

Both the layouts (a1) and (b1) contain similar attributes to those of the goal layout.  Looking 

at Figure 28, it can be seen that neither layout contained only a single traversable area.  

Layout (a1)’s largest traversable area was very similar to the goal layouts, being only two 

cells smaller, while layout (b)’s largest traversable area was not as close, being twelve cells 

larger than the goal layout.  When comparing the number of passageways contained in the 

layouts and their average length, (a1) was the closest, as it contained only one less than the 

desired number of passageways and with an average length of 3.66 vs 5.71.  Layout (b1) 

produced two too many passageways and a shorter average length of 2.44 vs 5.71.  Both 

layouts (a1) and (b2) contained the correct number of rooms but with an average room size 

over twice the desired value.  Both layouts contained three too many dead-ends and close to 

the correct number of culs-de-sac, with layout (a1) containing zero and layout (b1) containing 

one. 

Comparing the post processed layouts, (a2) and (b2), to the criteria listed in section 4.3.1, 

both layouts are similar to the goal layout.  Both layouts are almost the same size as the goal 
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Chapter 5. Conclusion and Future Work 

Content creation is an important process in the development of video games, but also one of 

the most time consuming, which is causing game development companies to spend a large 

portion of their annual revenue on developers who manually create the content.  PCG is the 

process of algorithmically generating media content which can be used in video games.  This 

is a useful tool to game developers as the process of PCG is much faster than the manual 

creation of content, reducing development time, and decreasing development costs. 

A new approach to the procedural generation of maze-like game level layouts through the use 

of evolved cellular automata has been introduced in this thesis.  The approach uses a genetic 

algorithm to evolve CA rules which, when applied to a perfect maze configuration, produce 

level layouts with desired maze-like properties.  Most other PCG methods that use evolution 

employ the evolution to generate the level layout directly.  Such approaches are limited as the 

evolutionary process can be slow.  In contrast CAs are fast and simple, so that once rules for 

generating a desired level style are evolved, many instances of that style can be produced in a 

short space of time, as was demonstrated in section 4.3.1 where rule tables with high fitness 

were selected to produce a number of similar layouts.  This makes CA ideal for run time 

content generation, as was used in Johnson et al.’s (2010) approach.  However, unlike 

Johnson’s approach which generated cave-like levels using simple, manually designed CA 

rules, the approach presented in this study uses a GA to automatically find CA rules that are 

capable of generating level layouts with a number of different styles. 

The results achieved from this research demonstrated that CA are capable of generating game 

level layouts with desired maze-like properties.  These results were attained by running a 

series of experiments, which varied the chromosome representation, GA mutation rate, and 

various CA properties, with eight different objective functions.  The CA properties that were 

varied include the number of cell states, the number of CA iterations, and the radius of the 

CA’s neighbourhood.  During this research it was discovered that the chromosome 

representation had the largest affect on the visual appearance of the generated level layouts, 

while all of the varied factors had a significant effect on the fitness values achieved by the 

GA process. 

The approach developed during this study answered the primary research question, “How can 

rule sets for cellular automata be evolved so as to produce maze-like game level layouts?” 

with the contributions that are summarized below. 
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1) Two chromosome representations for cellular automata rule sets were explored to 

experiment with different CA parameters including number of CA iterations, number 

of cell states, and size of the neighbourhood radius.  This exploration was performed 

to examine how these parameters affected the generated level layouts.  It was 

discovered that all of these parameters had an effect on the visual appearance of the 

generated layouts, although the chromosome representation had the greatest impact.

  

 

2) The level layouts used in this approach were made up of cells that could be in one of 

two states, traversable or non-traversable.  This meant that the number of CA cell 

states could only be two.  To explore using more than two cell states the idea of 

“flavours” was used.  The principle of this idea divides a single cell state into a set of 

sub states for the purpose of rule set application.  This allowed the use of additional 

cell states where each additional state mapped to one of the two original states, 

traversable or non-traversable.  

 

3) In order to evolve the CA rule sets towards producing layouts with desired attributes, 

attributes from generated layouts had to be extracted for the purpose of evaluation.  

Due to a lack of literature in this area, a unique approach was developed to extract 

particular attributes from generated 2D level layouts, using a collection of image 

analysis techniques.  

 

4) Another important aspect of CA that can greatly impact the results that it produces is 

its initial configuration.  This research used a modified graph traversal algorithm to 

generate a collection of perfect mazes, which were used as initial configurations, and 

fed as input into the CA process.  This effectively combined cellular automata, a 

genetic algorithm, and maze generation into a method capable of developing CA rules 

with the ability to produce maze-like game level layouts with desired properties. 

Due to the time constraints that were imposed on this project, its scope was limited to using a 

weighted aggregation of level attributes in the fitness functions and two chromosome 

representations.  There are some key avenues open for future work that build on the concepts 

introduced in this study.  These are given below. 
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1) The fitness functions used in this research evaluated chromosomes by applying them 

to initial configurations to generate a collection of level layouts.  Each layout 

contributed to the chromosomes fitness based on a weighted aggregation of the 

layouts attributes and their similarity to the desired values, which were determined by 

the fitness function.  However, the level attributes that were evaluated can interact 

with one another, and therefore there may be other options to evaluating these 

attributes than a weighted aggregation, such as a multi-objective evaluation using 

Pareto fronts.  

 

2) During this research it was discovered that the chromosome representation had the 

largest effect on visual appearance of the generated level layouts, as the indirect 

representation produced neater and more structured layouts than the direct 

representation.  Therefore experimentation with other chromosome representations 

that use different encoding schemes, or allow exploration of other CA parameters, 

could be performed to further research in this area. 

To conclude, this research aimed to contribute to the increasing need of PCG techniques by 

developing an approach to generating game level layouts with maze-like properties through 

combining GA, CA, and maze generation techniques.  This research proved that it is possible 

to use genetic algorithms to evolve cellular automata rules that are capable of generating 

maze-like game level layouts when applied to an initial configuration in the form of a perfect 

maze.  
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