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A B S T R A C T   

Acute large volume spills from storage tanks of petroleum hydrocarbons as light non aqueous phase liquids 
(LNAPLs) can contaminate soil and groundwater and may have the potential to pose explosive and other risks. In 
consideration of an acute LNAPL release scenario, we explore the value of a rapid remediation response, and the 
value of installing remediation infrastructure in close proximity to the spill location, in effecting greater recovery 
of LNAPL mass from the subsurface. For the first time, a verified three-dimensional multi-phase numerical 
framework and supercomputing resources was applied to explore the significance of in-time and in-place 
remediation actions. A sand aquifer, two release volumes and a low viscosity LNAPL were considered in key 
scenarios. The time of commencement of LNAPL remediation activities and the location of recovery wells were 
assessed requiring asymmetric computational considerations. The volume of LNAPL released considerably 
affected the depth of LNAPL penetration below the groundwater table, the radius of the plume over time and the 
recoverable LNAPL mass. The remediation efficiency was almost linearly correlated with the commencement 
time, but was a non-linear function of the distance of an extraction well from the spill release point. The ratio of 
the recovered LNAPL in a well located at the centre of the spill/release compared to a well located 5 m away was 
more than 3.5, for recovery starting only 7 days after the release. Early commencement of remediation with a 
recovery well located at the centre of the plume was estimated to recover 190 times more LNAPL mass than a 
one-month delayed commencement through a well 15 m away from the centre of the LNAPL plume. Optimally, 
nearly 40% of the initially released LNAPL could be recovered within two months of commencing LNAPL re-
covery actions.   

1. Introduction 

Structural damage to aboveground and underground storage tanks is 
routinely surveilled (Ching Sheng et al., 2019; Liying and Yibo 2010). 
However, leakage from storage tanks, including the release of petroleum 
hydrocarbons (Chang and Lin 2006; Etkin 2009; Fewtrell and Hirst 
1998) and other chemicals (e.g., hydrochloric acid, sulfuric acid, molten 
sulfur, and sodium cyanide solution), still occur due to tank cracks and 
ruptures (Chang and Lin 2006; Fewtrell and Hirst 1998). Storage tank 
releases may be related to age, corrosion and cyclic and dynamic loading 
(causing fatigue in the materials). Material integrity failures may occur 
where welding experiences cyclic stress (Chang and Lin 2006), or due to 
microbiological processes (Mclennan, 2002), and during cleaning and 

maintenance of tank structures. 
Structural damage can lead to acute releases of light hydrophobic 

liquids, such as LNAPLs (light non-aqueous phase liquids – mainly pe-
troleum hydrocarbons), into the subsurface (Ng et al., 2014; Sookhak 
Lari et al., 2016b). LNAPLs comprise thousands of chemicals with 
various partitioning attributes, some extremely volatile and some solu-
ble (Davis et al., 2005; Lekmine et al. 2014, 2017; Vasudevan et al., 
2016). The health-related risks of some of the chemical components in 
LNAPLs are of concern, for example benzene (in gasoline) is carcino-
genic (Huntley and Beckett 2002). Short-chain alkanes, are extremely 
volatile and may augment the risk of explosion and vapour inhalation 
risks (Chang and Lin 2006; Davis et al. 2005, 2021; Knight and Davis 
2013; Patterson and Davis 2009; Sookhak Lari et al., 2017). 
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Following release, LNAPLs can move under gravity through the 
vadose zone towards groundwater. Depending on the magnitude, 
duration and size of a release and also features of the subsurface, a 
portion of the released volume can reach the capillary fringe and spread 
laterally across the groundwater table (depending on the capillary 
pressure) (Gatsios et al., 2018; Sookhak Lari et al., 2016a, 2016b). A 
portion of the LNAPL remains in the vadose zone as an immobile re-
sidual phase or is entrapped below the groundwater table (Lenhard et al. 
2017, 2018). The proportions of mobile, immobile or entrapped LNAPL 
vary over time and with water table fluctuations (Davis et al., 1993; 
Steffy et al., 1998). 

LNAPL remediation and mass recovery is often undertaken by 
extracting LNAPL from recovery wells (Gatsios et al., 2018; Sookhak Lari 
et al. 2018a, 2018b) and practicable endpoints for a range of remedial 
technologies have been assessed (Sookhak Lari et al., 2020). However, 
after an acute release the value of an immediate remedial response to 
recover LNAPL is unquantified versus delaying investigations and re-
covery efforts. Additionally, there is no current quantification of the 
value of the proximity of LNAPL recovery wells to the acute release 
point. The open question here is what is the scale of benefit of a rapid 
and considered (well designed) response to an LNAPL spill? How 
beneficial is it to have an in-time and in-place remediation plan? 

Pilot and field scale studies to thoroughly address such questions 
have rarely been conducted (Sookhak Lari et al., 2020). An affordable 
and practical approach is to conduct representative simulations with a 
validated modelling framework capable of representing the dynamics of 
immiscible fluids in porous media at Darcy scale (Sookhak Lari et al., 
2019a). 

Application of such a framework at a field scale includes heavy 
computational demands and requires parallel-processing capability 
(Sookhak Lari et al., 2019a). No quantitative study has yet been con-
ducted to simulate non-symmetric remediation (LNAPL recovery from 
wells) of developing transient LNAPL plumes following acute release 
incidents (Sookhak Lari et al. 2019b, 2020). 

Here and for the first time, we apply a verified multi-phase modelling 
framework and supercomputing facilities to study the importance and 
benefits of in-time and in-space remediation response to an acute LNAPL 
release incident. For the purposes of assessing remediation response, 
active skimming is the selected technology. However, the results of the 
modelling assessment are analogous for other liquid-phase recovery 
techniques. 

2. The model setup and scenarios 

The effectiveness and efficiency of remediation following an acute 
LNAPL release is a function of how fast the LNAPL plume expands 
laterally over the region of the capillary fringe. To mimic such a critical 
circumstance, a relatively highly permeable soil, and a low viscosity 
LNAPL representing gasoline is taken as a key scenario. The soil pa-
rameters are assumed to be typical of sand where the intrinsic perme-
ability is 7.2 × 10− 12 m2 and the van Genuchten parameters are 2.68 and 
14.5 for n and α (1/m) respectively. The LNAPL viscosity and specific 
density are 0.45 cP and 0.75 respectively (Sookhak Lari et al., 2018b). 

The simulation domain is 80 m (length) × 80 m (width) × 6 m 
(depth) and the numerical mesh includes 4 × 106 grid cells. The side and 
top boundaries are of Dirichlet type. A no flow condition is assumed at 
the base of the domain. As a standard approach and to establish a 
representative saturation depth profile, initially a one-dimensional 
model was first set up with a constant head at the bottom and top. 
This provided a water saturation profile that was then applied at the side 
boundaries of the three-dimensional model. The LNAPL release to the 
subsurface was through the nodes with a constant release rate (versus a 
constant release pressure). Simulations for selected cases were con-
ducted on a finer mesh (5 × 106 grid cells) to ensure results did not 
change due to the mesh resolution. Further details on the modelling 
approach can be found in Sookhak Lari et al. (2020). 

To evaluate the effect of the rate and volume of the LNAPL released 
on the rate of the LNAPL plume expansion, two case were considered; 
75 m3 and 150 m3 of LNAPL released at the centre of the domain (over a 
2 m2 area) at an elevation of − 1.0 m below the surface (3 m above the 
water table). No groundwater flow was induced in the model – hence 
radial flow of LNAPL occurred under natural flow conditions. The 
release duration for both cases was 7 days. The natural expansion of the 
LNAPL plumes with no active remediation was initially considered. 

Then, the significance of the remediation response time and LNAPL 
recovery well locations was evaluated. Four options for the location of 
the LNAPL recovery well were considered (Fig. 1); a recovery well 
located at the centre of the release (well #1), and at 5, 10 and 15 m from 
the centre (wells #2, #3 and #4 respectively). For each option, the effect 
of LNAPL recovery commencing at five different times is evaluated; 
immediately after the release is finished (i.e., day 7), day 14, day 21, day 
28 and day 35. Twenty simulations were conducted to evaluate the 
scenarios. 

TMVOC-MP was the primary model used for the simulation frame-
work (Jung et al., 2017). Application of the code to study multi-phase 
multi-component NAPL dynamics and remediation has been exten-
sively verified (Engelmann et al., 2021; Lekmine et al., 2017; Sookhak 
Lari et al., 2015, 2018a). 

The integral mass conservation equation applied in TMVOC-MP is 
(Pruess and Battistelli 2002) 

d
dt

∫

Vn

MKdVn =

∫

Γn

FK ⋅ndΓn +

∫

Vn

qKdVn (1)  

where dVn is an arbitrary subdomain, Γn is the surface area, MK is the 
mass, F is the mass flux, q is the sink/source term and n shows the 
normal vector. Here, K = 1, …,NK, where NK is the number of LNAPL 
components included. A single component LNAPL with no partitioning 
is used in this investigation to allow efficient consideration of the range 
of scenarios. For the capillary head h [L], 

Sij
j − Sm

1 − Sm
=
[
1 +

(
αijh

)n]− m
, i, j=G,Aq,N, i ∕= j (2)  

where Sij
j represents the effective wetting phase fluid saturation and Sm is 

the irreducible saturation of the wetting phase (assumed 0.05) (Pruess 
and Battistelli 2002). 

Most simulations were undertaken on the CSIRO Pearcey which is a 
Dell Power Edge M630 cluster system running Linux. Each node has dual 
10-core Intel Xeon E5-2660 V3 processors. The Magnus Cray XC40 su-
percomputer (Intel Xeon Haswell processor cores) located at the Pawsey 
Supercomputing Centre in Perth, Australia was also used. Each node in 
this machine consists of 24 cores. All simulations in this study took 
almost 3.1 × 106 of CPU hours. Typically, it included 20–25 nodes. 

3. Results and discussion 

First, we show results for the natural expansion of LNAPL plumes for 
the model scenarios and estimate the potential recoverable (mobile) 
LNAPL fraction over time as the plume extends in the subsurface. This 
provides a scale to the changes in potential recoverable LNAPL as it 
moves and expands post-release from the spill release point. Here the 
recoverable (mobile) LNAPL fraction is approximated as the LNAPL with 
a saturation above the irreducible (wetting phase) saturation. 

Secondly, to assess the benefits of a rapid recovery strategy and the 
benefits of recovery wells in close proximity to the release, we provide 
results for LNAPL recovery from extraction wells at variably distances 
from the release point, and wells that start extraction at different times 
relative to the release occurrence. 

K. Sookhak Lari et al.                                                                                                                                                                                                                         
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3.1. LNAPL plume expansion and fraction of LNAPL recoverable 

Figs. 2–4 depict simulated results for the natural expansion of the 
two LNAPL plumes (no active LNAPL recovery), with released volumes 
of 75 and 150 m3, during the first 7 days. At 7 days (Fig. 2) the vertical 
thickness and depth of LNAPL penetration below the groundwater table 
is significantly greater for the case of the 150 m3 release. This is mainly 
due to a higher LNAPL saturation (higher relative permeability) and 
greater LNAPL head. 

The rate of lateral expansion of the plumes diminishes rapidly with 
time, and both plumes asymptote to a near maximum radial distances of 
25–30 m, after approximately 150 days (Fig. 3 (right)). For a unit cy-
lindrical radial zone, a 150 m3 volume would occupy 1.4 times (spare 
root of 2) the radial distance away from the release point compared to 
the 75 m3 volume – so if the radial distance for a 75 m3 release was 25 m, 
the radial distance for a 150 m3 release would be 35 m. Note that in the 

modelled scenario, the radial spread is restricted to 30 m, due to the 
greater vertical thickness and penetration of the LNAPL relative to that 
of the 75 m3 release. Likewise, and as expected (Fig. 3 (left and middle)) 
the equivalent thickness (b) of the recoverable LNAPL in a typical 
monitoring or recovery well is greater for the case of 150 m3 but is a 
nonlinear ratio to the 75 m3 case. 

Fig. 3 (left and middle) shows the rapid decrease in thickness at the 
centre well (#1) immediately after the release is finished; the rate of 
decrease in b is much higher for the 150 m3 release. This is due to the 
higher relative permeability to the LNAPL (as a result of higher LNAPL 
saturation) in this case, which enhances LNAPL mobility (see also 
Fig. 2). 

The value of b for wells #3 and #4 (located at 10 m and 15 m dis-
tances from the centre) first increases and then decreases, due to the 
positive net lateral LNAPL flux towards these locations at the early 
stages of the LNAPL plume expansion. In the longer term (i.e., after 200 

Fig. 1. A sketch of the three-dimensional domain and the location of the LNAPL recovery wells #1 to #4 (at the centre of the LNAPL plume and 5 m, 10 m and 15 m 
away respectively). The LNAPL saturation plume (Sn) represents a snapshot on day 25 for the naturally expanding plume (75 m3). The slice plot shows the aqueous- 
phase saturation (Sw). 

Fig. 2. LNAPL saturation versus time and natural expansion of the LNAPL plume for the case of 75 m3 (top row) and 150 m3 (bottom row) of the LNAPL released.  
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days), for either release event, all monitoring wells show LNAPL thick-
nesses that are largely similar across the area within a 15 m radius; from 
3 to 5 cm for the 150 m3 release and from 2 to 4 cm for the 75 m3 release. 

Important in assessing the quantum of recoverable of LNAPL is how 
much remains recoverable from the affected region of the aquifer over 
time. Fig. 4 shows changes over time in the percentage of recoverable 
LNAPL (approximated as the LNAPL with a saturation above the irre-
ducible wetting phase saturation) within a given radius of the spill 
release point. It is seen that at early stages after ceasing the release (say 
10 days), the percentages of the recoverable LNAPL within all the three 
radial distances (5, 10 and 15 m) are higher for the case of 150 m3 

release. However, over time (e.g., >20 days), the percentage of recov-
erable LNAPL for the 75 m3 case is higher and remains higher for all the 
studied radial distances. This is largely due to the initial distribution of 
LNAPL to deeper below the groundwater table for the high volume 
release event leading to significant residual mass that is no longer 
recoverable (see Fig. 2), and as time progresses more and more of the 
larger volume release becomes residual non-mobile LNAPL. Regardless, 
over the entire period the total absolute volume of recoverable LNAPL is 

greater for the larger initial release. For example at 150 days within a 15 
m radius, for the 150 m3 release, the LNAPL recoverable is 37% of the 
original or 55.5 m3, compare to the smaller 75 m3 release where the 
LNAPL recoverable is 45% of the original or 33.75 m3. Together, these 
findings encourage a rapid remediation response especially for perhaps 
larger volume acute LNAPL release incidents, where the LNAPL vertical 
distribution has a greater thickness initially and the volume of residual 
(immobile) LNAPL increases over time. 

3.2. LNAPL recovery strategy benefits for the high-volume release 
scenario 

Figs. 5 and 6 present the results for simulations of active recovery of 
the LNAPL, with recovery commencing at different times and through 
wells at different radial distances from the spill release location. The 
results are for the 150 m3 release scenario; the more acute release. 
Regardless of the time of commencement, active LNAPL recovery for all 
cases was continued until day 67. 

In Fig. 5, the volume of the LNAPL recovered versus time is depicted 

Fig. 3. Left and middle; Changes in the LNAPL thickness versus time for the wells located at different distances (cases of 150 m3 (left) and 75 m3 (middle)). Right; 
LNAPL plume radius versus time for both of the naturally expanding LNAPL plumes. 

Fig. 4. Percentage of recoverable LNAPL within given radial distances versus time for naturally expanding LNAPL plumes (75 m3 release on the left and 150 m3 

release on the right). 
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for all the recovery commencement times and recovery well locations. 
As expected, commencing recovery as early as possible on day 7 (end of 
the release period) and from a well close to the centre of the release (see 
well #1 located at the centre) yields the largest recovered LNAPL vol-
umes – up to 57 m3 over 60 days of recovery/extraction, which amounts 
to about 38% of the initial released mass. This is more than the entire 
recoverable LNAPL volume over a 707 m2 area (<15 m radius) if LNAPL 
was allowed to naturally spread over a 150 day period (see Fig. 4 – right 
panel, note that the total recoverable volume decreases over time). 
Considerably more wells would need to be installed and energy costs (for 
pumping) incurred to recover the equivalent LNAPL volume across such 
a larger area. 

For the well located at the centre (#1), immediate action to recover 
LNAPL on day 7 versus a delayed one, starting on day 35, gives the ratio 
of the LNAPL recovered after 67 days of around 3 (57 m3 versus 19 m3). 
This ratio is 4, 6 and 5 for the wells #2, #3 and #4 (located at 5 m, 10 m 
and 15 m away from the centre). The higher ratio for well location #3 
(compared to #4) is due to the simultaneous interaction of the early 
stage positive lateral LNAPL flux into the well and smaller proportion of 
immobile LNAPL (residuals) at that time. 

For recovery starting on day 7, the ratio of the recovered LNAPL in 
well #1 (located at the centre) to well #2 (located 5 m away) is more 
than 3.5. This ratio is more than 6 and 39, if we respectively compare the 

centre well and the wells located at 10 m (#3) and 15 m (#4) distances, 
all commencing recovery on day 7. 

For a delayed commencement to recover, e.g., commencing on day 
35, the ratio of the total volume of LNAPL recovered at the centre well 
(#1) versus the wells located at 5, 10 and 15 m distance (#2, #3 and #4) 
is 5, 13 and 59. Comparing these with the counterpart values for an early 
commencement (3.5, 6 and 39), it is seen that for a delayed response the 
location of the recovery well becomes even more critical. To achieve 
similar recovered volumes, there would be the need for a greater number 
of recovery wells extracting LNAPL for much longer. At the extreme (see 
Fig. 5) the ratio of the maximum and minimum LNAPL recovered (centre 
well starting on day 7 and the well at 15 m distance starting on day 35) is 
more than 190 (57 m3 versus 0.3 m3). 

Fig. 6 summarises the efficiency of the recovery scenarios (LNAPL 
recovered/LNAPL released) for all the four well locations and the five 
commencement times. It is seen that the LNAPL removal efficiency 
versus start time almost has a linear behaviour for all the well distances. 
This is interesting given the sharply decreasing and non-linear recov-
erable LNAPL with time between 7 and 35 days in Fig. 4 (right panel), 
and variable LNAPL thicknesses in Fig. 3 (left panel) over this period. On 
the other hand, in Fig. 6 (right panel) the LNAPL removal efficiency is 
non-linear with respect to the well distance especially at shorter dis-
tances. This is thought largely due to the rapid changes in LNAPL 

Fig. 5. The volume of LNAPL recovered versus time for different recovery wells and start times for the 150 m3 scenario (Well@ 0 m is well #1, Well@ 5 m is well #2, 
Well@ 10 m is well #3, Well@ 15 m is well #4). Square, circle, diamond, triangle and dash represent recovery start times on days 7, 14, 21, 28 and 35 respectively. 
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thicknesses for the wells closer to the plume centre. 

4. Conclusions 

Acute large volume leakage of LNAPLs from storage tanks might 
occur due to cracks and ruptures. An early remedial response and tar-
geted recovery of LNAPL from near to the release point would seem 
advantageous and, as such, scenarios have been evaluated to quantify 
the scale of value and efficiency of such strategies. It would seem 
apparent that a remediation response would benefit from a higher 
LNAPL saturation (and therefore higher volume of free LNAPL and 
relative permeability) inside the radius of capture of recovery wells. 

To overcome existing limitations of using analytical approaches to 
study LNAPL dynamics in the subsurface (Jeong and Charbeneau 2014), 
a comprehensive three-dimensional multi-phase numerical framework 
and supercomputing resources were applied to assess such potential 
benefits. The location of LNAPL recovery wells and remediation 
commencement time options were evaluated to determine relative ef-
ficiencies in recovering a rapidly developing LNAPL plume. 

The results included findings on the dynamics of naturally expanding 
LNAPL plumes as a function of the released LNAPL volume. It was shown 
that the depth of the LNAPL penetration below the groundwater table 
(during the early stages) is a key parameter affecting the growth of the 
plume radius and the percentage of the recoverable LNAPL (within a 
given radius) over time. 

It was seen that LNAPL recovery efficiency through a skimming re-
covery well and the commencement time are almost linearly related 
regardless of the distance of a recovery well away from the LNAPL 
release point. Much lower volumes and percentages of the spilled vol-
ume were recovered if recovery was delayed or recovered from wells 
away from the centre of the spill zone. Remediation efficiency was found 
to be a more complex function of the well distance away from the LNAPL 
release point. For the cases studied here, it was shown that a rapid 
response remediation plan (commencing just after the release) through a 
well located at the centre of the plume could recover 190 times more 
LNAPL mass than a one-month delayed remediation through a well 15 m 
away from the centre of the plume. Indeed, the first case could recover 
nearly 40% of the initially released LNAPL within two months of oper-
ation. This compares to the potential need for multiple wells recovering 
LNAPL over more prolonged periods, across a larger LNAPL area if a 
plume was allowed to grow and remedial action was delayed. 

Parts of the released LNAPL would be naturally degraded due to 
natural source zone depletion (NSZD) (Sookhak Lari et al., 2019a), 
however this process was ignored in the simulations due to the relatively 
short time frames simulated. Also excluded was the effect of partitioning 
of LNAPL components into other phases, mainly to study a more acute 
case where the LNAPL had a greater potential to laterally expand. The 
effects of spatial variability were also not considered (Johnston and 
Trefry 2009) however high permeability sands with a low viscosity 
LNAPL was seen as representative of a scenario that would provide 
indicative benefits or disbenefits of rapid or delayed remedial responses 
to a large LNAPL release event. 

For the first time, the results estimated the significance of the time 
and place of a remediation response to an acute LNAPL release incident. 
In order to address the open question discussed in Section 1, we quan-
tified the importance of a rapid response based on several field variables. 
We presented the data in the form of nomographs and charts for easy 
application and to assist practitioners and regulators to improve 
guidelines and policies for decision making. 

The modelling framework applied in this study showed that the 
representative simulation of non-symmetric remediation and recovery 
of LNAPLs is computationally affordable. The framework can easily be 
implemented to include other types of recovery and remediation ap-
proaches (such as multiphase extraction). 
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