Edith Cowan University
Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

12-4-2013

Volatile Memory Acquisition Tools — A Comparison Across Taint
And Correctness

William Campbell
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/adf

b Part of the Computer Sciences Commons

DOI: 10.4225/75/57b3bfa7fb867

11th Australian Digital Forensics Conference. Held on the 2nd-4th December, 2013 at Edith Cowan University, Perth,
Western Australia

This Conference Proceeding is posted at Research Online.

https://ro.ecu.edu.au/adf/115

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fadf%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b3bfa7fb867

VOLATILE MEMORY ACQUISITION TOOLS -
A COMPARISON ACROSS TAINT AND CORRECTNESS

William Campbell
School of Computer and Security Science, Edith Cowan University
wocampbe@our.ecu.edu.au

Abstract

The growth in volatile memory forensics has steadily increased in recent times. With this growth
comes a need to test the tools associated with this practise. Although there appears to be a large
amount of effort in testing static memory capture tools, there is perhaps less so for volatile memory
capture. This paper describes the attempts at categorizing criteria for testing, and then introduces
and extends upon a methodology proposed by Lempereur and colleagues in 2012. Four tools
(Windows Memory Reader, WinPmem, FTK Imager and Dumplt) are tested against two criteria
(impact and completeness). WMR and Dumplt were found to have the least impact, and also showed
the greatest accuracy across the tests.

Keywords
Volatile memory forensics, impact, taint, completeness, comparison

INTRODUCTION

Digital memory forensics traverses a difficult path in the electronic wilderness. Important
information must be discovered in its depths whilst maintaining the sanctity of the environment. Too
much disturbance can lead to the inadmissibility and questioning of potential findings. Given this,
much research has delved into finding solutions to the issues that this process faces.

Some guidelines suggest that evidence should be captured in order of volatility (Kent, et al., 2006). In
this case volatility relates to the potential destruction of information over time. There also comes a
seemingly more important premise to leave data and systems as undisturbed as possible (ACPO,
2012). What is not well documented is what happens when an attempt to capture information leads
to a change in the system under investigation.

It is important in cases such as these to fully understand the impact and magnitude that an action
may produce. From here, forensic investigators can make informed decisions about whether
information is worth the potential risk to integrity. For example, does the use of a particular memory
capture tool impact the system to a suitable level that capturing the systems memory is worth this
impact?

Whilst there has been significant investigation and evaluation into static memory tools (see Guttman
et al., 2011 for a summary example), there are fewer examples of dynamic memory capture tools.
As a desire for this source of potential evidence grows, so too will a requirement to empirically
study their collection. Unfortunately, the ability to categorically measure the effects of capturing
volatile memory is a more complex than non-volatile memory.

By its very definition, volatile data (such as RAM) will change over time. These time-related changes
will be polemic when attempting to measure changes due to other variables. For example, if changes
in a system have been detected after a tool has been run, was this caused by the tool, or simply by
time? What percentage of this change has the tool introduced, and what percentage has time?
Asking these sorts of questions is perhaps easier than answering them.

There have been several different criteria suggested across the literature by which to measure and
rank volatile memory captures (and thus the tools they were capture with). These include atomicity,
availability, correctness, completeness, integrity, speed and interference or taint (Vomel & Freiling,

10

2012; Inoue,et al., 2011; Schatz, 2007). This investigation will assess tools across two of these
criteria: correctness and taint.

Correctness refers to how representative a tools capture is of the original memory on the system, at
the time of capture. A high level of correctness will indicate that a tool has been able to accurately
capture the memory on the target system. ‘Taint’, on the other hand, refers to the impact of the tool
on the system. This will be a measurement of how a tool has altered a system, an especially
important criteria when considering the legal implications of evidence collection.

Clearly, the impact of time can be a complicated factor to account for when measuring volatile
memory capture. Lempereur and colleagues’ (2012) developed a novel solution to this problem.
They engineered a design that employed two virtual machines, one to measure the effect of time (a
control system) and one to measure the effects of an action and time (an experimental system). By
comparing the difference between the two machines, the impacts of the action are theoretically
obtained. This paper reports on the attempt to replicate the results found by Lempereur and his
colleagues, as well as extend their implementation to cover the actual testing of tools.

This investigative methodology does contain several assumptions that must be considered. The
primary assumption is that the state of the control virtual machine is an accurate representation of
what the experimental system 'should' have been, assuming no manipulations had taken place. If
this is true, any differences between the control and the experimental systems would be cause by
the actions taken upon the experimental system.

An additional assumption in this research is that a byte-by-byte comparison is a valid measurement
of memory change. As memory is expected to change over time on a given system (Lempereur et
al.,, 2012), and if a byte-by-byte comparison is a valid measure, it should be capable of detecting
these changes. Each of these two assumptions will require testing to validate the results.

When considering the use of a tool on a system, the act of capturing a systems memory can be
broken down into three distinct phases: attaching the tool, navigating to the tool and executing the
tool. Attaching consists of physically or logically attaching the tool to a device. For example,
connecting a usb containing the tool onto a system. Navigating to the tool consists of interacting
with the target system to locate the tool. For example, navigating to the tools location through the
operating systems graphical user interface. Executing the tool consists of actually running the tool.
Technically speaking, a tool may be loaded or navigated to in several different ways. It may be that
some of these methods alter memory more than others. For example, does navigating to a tool
through a graphical interface produce greater or fewer changes to a systems memory than
navigating to that same tool through a command prompt? As this question appears to be unsolved,
it was felt important to separate the impact of loading and navigating to a tool, from the actual
execution of one.

METHODOLOGY

Theoretical Approach

The research utilizes a methodology similar in nature to Lempereur and colleagues’ (2012).
Two identical virtual machine images will be used, with one of these systems employed as a
control, and the other being experimented upon. Both systems will be 'powered on' for the
same period of time. As such, the control virtual system, which has not been interacted
with, should provide a baseline against which to measure changes in the experimental
system. This will arguably remove (or at least greatly reduce) the impact of time, when
studying the outcomes of interacting with the experimental system. By comparing the
memory of the control and experimental virtual machines at certain points in time, it may be
possible tp discover the impact of the tool. This will be used as a measurement for the taint.

11

Similarly, a comparison between a tools memory capture, and the experimental systems memory at
the time the capture was started, will measure the tools accuracy (ie. completeness). It should be
noted that the current measurement for taint is narrowed down to only the effects of a tool on
volatile memory. For example, it will not account for changes to non-volatile memory, such as
registry updates or changes. Although this is certainly an area of forensics tools that should be
measured, this investigation is concentrating solely on the volatile aspects of taint.

PRACTICAL APPROACH

Two identical virtual machines images were created, one being labelled experimental, and the other
control. These were based off a 32-bit Windows 7 image. These images were consequently initiated
with QEMU (Bellard, 2013), and given 1024MB of RAM. They were also started using the snapshot
flag on QEMU, meaning that any changes to an image were temporary. That is, on shutdown of the
system, the image file would revert to its starting state.

Both virtual machines were controlled using a custom bash script. This script can be used to pause,
resume and capture the memory for both VMs, using the QEMU hypervisor. It was also used to load
a USB onto the experimental system, where required.

The experimentation was undertaken in two parts. The first set of experiments consisted of setting
stationary points in time, at which both systems were paused, and their memories captured. No
interaction other than this was performed on either virtual machine. These experiments would allow
the testing of several assumptions that had been made, and to test the validity of the methodology
as a whole. By comparing the two machines, the assumption that their memory states are identical
can be tested. Additionally, measurements of their changes over time will indicate if a byte-by-byte
comparison is a valid comparison technique.

Both systems were paused after 90 seconds, and their memories captured. The machines were then
resumed and paused over three, 60-second blocks. Their respective memories were captured at the
end of each of these blocks, giving a total of four captures for each machine. The experiment was
repeated, this time using three, 180-second blocks. Each of these iterations (ie. 180-second blocks
and 60-second blocks) were repeated several times.

The second set of experiments entailed testing several memory acquisition tools. See Table 1 for a
summary of these tools. In these cases, the experimental system was loaded with a USB containing a
specified tool. The tool was then navigated to, and executed on the system. During this process,
both the experimental and control systems were paused at certain stages, and their respective
memories captured. In all, four memory captures were created for each virtual machine (from figure
1, E1 to E4 and C1 to C4), and one was made by the tool itself (T5). See figure 1 for a diagrammatical
explanation of this process. Each tool was tested a total of 10 times.

Tool Shorthand Use Author

Windows Memory Reader v 1.0 WMR Command Line EXE ATC, 2012

Winpmemyv 1.4 WINPMEM Command Line EXE scudette@gmail.com, 2013
FTK Imager CLI v 3.1.1.8 FTK GUI EXE Access Data, 2013

Dumplt v1.3.2.20110401 DUMPIT GUI EXE Mattieu Suiche, 2011

Table 1 - A summary of the tools tested in this investigation

12

Control VM Experimental VM

1 1

Attach Tool

Navigate to Tool |

C

Execute Tool |

C

2] o) [e] [2

T5

Bash Script

Figure 1 — A diagrammatical representation of the experimental methodology.
Note that the small square boxes (eg. C2) represent a memory capture.

From here, memory captures were compared to each other as needed. This was done by using a
byte-by-byte comparison, to determine how many bytes were different between each capture. A
higher number of byte differences was considered to represent a greater change between two
captures.

RESULTS

Note that each capture file made by a tool was slightly smaller than that made by QEMU.
Specifically, each tool capture was 8192KB shorter than that made by the emulator. Investigation
showed that this difference was most likely at the end of the file, and did therefore not affect the
comparisons.

Experiment 1- Difference Between Virtual Machines

Figure 2 shows the differences in memory for each virtual system over time. In this instance, a
capture was taken at the 60, 120 and 180 second mark since the initial capture. The values are
measured in percentage change based on the total amount of memory (ie. 1024MB). Each value
represents the memory differences between the two machines across a certain time block.

Figure 3 represents a similar instance, this time with captures taken at the 180, 360 and 540 second
mark. Again, the values are expressed as a percentage difference.

13

Percentage Difference between Virtual Machines
over Time - 60 Second Blocks

ol
=
L A I I I I I
=
@
£ ©
= O
5 T
S s0o g
= Q
= o
£
S 400 T oo
=
@
z
W SO0 - === === =" === === === %% «%8%“%+“==“““=2+=+=+2+=+2=2-=-=
o
@
[+]
=
@
@ 200 --------c-cecesessasemsmmcassanamannananna-
e 2
[}
@
™
B P
= 1.00
o =
e =
@
1 E

oo—

50 120 180

Time (seconds)

Figure 2 - The change in differences between the two virtual machines over 60-second blocks

Percentage Difference between Virtual Machines over
Time - 180 Second Blocks

BOD—T = = = = == = == = == s mm e
s00—F -=-=--=-=-- 8‘ ““““““““““““““““““““
o]
o]
400 = = - - - - - - - S s s s s s s ss s s ss s s s s s ss s sss s
B 0 el
e e T eI T T T I I IR
I e I I IR LI I
o
8 8 E
8
oo 8 s

T
180 360 540

Time (seconds)

Figure 3 — The change in differences between the two virtual machines over 180-second blocks

14

As can be seen from figures 2 and 3, the majority of difference between the captures is less than one
percent of total memory. This suggests that the memory changes over time are very similar between
the two virtual machines.

There is some clustering of values around the five percent of total memory mark. A measurement of
the mean values shows that this effect tends to be cancelled out across a large enough sample space
(see Tables 2 and 3). It should be noted that the global mean for differences across the two
machines was less than 0.3 percent of total memory across the 60-second blocks, and less than 0.16
of a percent across the 180-second blocks. These results would indicate that the two machines
contain very similar memory states at the time of measurement.

Table2.The mean differences between Virtual Table 3.The mean differences between Virtual
Machine memory over 60 second blocks Machine memory over 180 second blocks
Time Mean Number Std. Deviation Time Mean Number | Std. Deviation
60 -0.77 16 3.02 180 -0.73 10 3.47
120 0.03 16 0.08 360 0.10 10 0.26
180 -0.04 16 0.46 540 0.17 10 0.36
Total -0.26 48 1.76 Total -0.15 30 1.99

Experiment 1 - Changes Over Time

The second assumption made was that a systems memory will change over time. A longer period of
time would be correlated with greater changes in memory. Figures 4 and 5 show the mean value for
each of the relevant capture differences (ie. The differences between captures 1 and 2, between
captures 1 and 3, and between captures 1 and 4).

Mean Percentage Difference between
Captures taken over 60-second Blocks

L3 e i s

e EEERREEE - EEEEEEEERE oo SRR L R

200 ------ -] - - - - - - - - - - - - - - - - - - - [- - - - - - - -

Mean Percentage Change from Baseline Capture

0.00- T T
&0 120 180

Time since First Capture(Seconds)

Figure 4 — Mean value of changes in VM memory across time (60 second blocks)

15

so0—T-~-""---

Mean Percentage Change from Baseline Capture

0.00-

Mean Percentage Difference between
Captures taken over 1B0-second Blocks

e

1000 -~ ~~" """ ==-==-====-

T
360

B e e R I R I I

S40

Time since First Capture (Seconds)

Figure 5 - Mean value of changes in VM memory across time (180 second blocks)

As can be seen from figure 4, the system appears to show changes over time. Figure 5 shows this
change occurring on a larger scale (given the captures were taken over a large time period, this
would be expected). It should be noted that the two systems appear to have changed very little in
the final 180 second block.

Experiment 2

The second set of experiments consisted of the actual testing of memory acquisition tools. The first
measurement was taken to study the impact of the tool on the system (ie. its taint). Figure 6 shows
the impact of just the execution of a tool, where figure 7 shows the impact of the loading, navigation

and execution of a tool.

W00 s

1000 == s m s

Impact of Tools (Execution Only)

10

......

D00

Mean Percentage Difference between Virtual Machines

-10.00-

Figure 6 —The mean memory difference between the two virtual machines across the execution phase only

WHR

T
WINPMEM

T
FTK

T
DUMPIT

16

Impact of Tools (Total)

2000 e

1500 -~-"""""""""="="==-==°-=-°~

Memories

1000 ==-"======°===°==+=°-<

0

Mean Percentage Difference between Virtual Machine

i R

0.00 T
VWIVR

I
WINPMEM

1
FTH

I
DURMPIT

Figure 7 —The mean memory difference between the two virtual machines across the total lifespan (ie. Loading,
navigating to, and executing a tool).

Note that a value of zero does not indicate that the tool had no effect on the system. A value close
to zero indicates that the tool had an effect similar to that of a machine being left idle for the same
time period. On the other hand, a higher value suggests a greater amount of change within a system
than if it had simply been left to idle. In these figures, the negative value associated with the WMR
tool indicates that the tool had /ess effect on the system than if the system had simply been left to
idle. Possible reasons behind this are discussed in the final section. The accuracy of tools can be
assessed by comparing the memory of the system at the start of the capture, with the memory
capture achieved by the particular tool. From the methodology discussed earlier, this was the
captures E3 and T5. The results of this comparison can be found in Figure 8.

17

Accuracy of Tools

00 00=F = = = == == = == = =2 82 ccamcmceammnma o= mnmaan

e B o R S R R E] SRR

ol SRR St BRI ST BECR 0 DR o0 SR

E e EEEEER CEEEEY EEEEERE (R EEEEERR) CEEEEEEY X! SRR

T IR EEE R EEERINE S BRI S MR S IR

Mean Percentage Similarities between Actual and
Tool-Captured Memory

0.00 T T T T
VR WINPIMER FTK DUMPIT

Figure 8 — Percentage similarities between the tools memory capture and the actual memory on the machine at
the time of said capture.

In this case, a higher value represents a greater number of similarities between the tools memory
capture and the memory of the experimental system at the time. This in turn indicates a higher level
of accuracy. As can be seen, no tool was able to completely replicate the state of memory for the
system.

DISCUSSION AND CONCLUSION

It appears that the methodology proposed by Lempereur et al. (2012) has been successfully
replicated. Evidence seems to suggest that the control virtual machine provided an accurate
representation of what the experimental system ‘should’ have been like, assuming no interaction
had taken place. This is taken from the low difference rate between the two machines after an idle
time period (less than 0.16% of total memory in the case of the 180-second blocks).

The clustering in the first block of each machine is concerning, although it does appear to even out
over the average. It is hypothesised that this artefact is caused by an event during the system
starting up. Although in experiment 1 the VM’s were given 90 seconds before the initial baseline
capture was taken, this may not have been enough. Should a starting event have occurred near this
90 second mark, it may have been captured on one VM but not the other. It is suggested that
additional study be undertaken to assess exactly what causes this artefact, and to determine if it is
preventable (such as by increasing the waiting time to 120 seconds for the initial base capture).

Of the four tools tested, DUMPIT and WMR appeared to have the lowest impact on the system. This
is taken from the fact that each showed a very similar level of impact to if the system had simply
been left idle. Likewise, these same two tools held the highest accuracy of the four tested. That said,
there were some doubts cast upon the methodology, given the negative value associated with
WMRs impact on the system. As suggested at the time, this would indicate that the tool had less
effect on the system than if the system had simple been left to idle. This is somewhat counter-
intuitive, given the fact that interaction with a system should alter its memory.

18

One possible suggestion for why this has occurred comes in the form of automated processes. It may
in fact be that the Windows operating system, upon registering no activity for a certain period of
time, will begin an automated process (for example, memory cleanup). As this event requires a state
of no activity for it to occur, the experimental system will not be subject to this same event. If this
automated process produces memory changes greater than that of the tool, it may create results as
discovered in this experiment.

Overall, there is some positive evidence to suggest that the measurement of certain criteria
regarding volatile memory analysis tools is possible. From here, it stands to reason that as tools are

assessed and ranked, their desire to improve will increase. These increases in a tools attributes can
only lead to the betterment of digital forensic investigation as a whole.

REFERENCES

Access Data (2013). "Product Downloads ". Retrieved 1 November, 2013, from
http://www.accessdata.com/support/product-downloads.

Architecture Technology Corporation (2012). "Windows Memory Reader™ ". Retrieved 1st

November, 2012, from http://cybermarshal.com/index.php/cyber-marshal-utilities/windows-

memory-reader.

Association of Chief Police Officers (2012) ACPO Good Practise Guide for Digital Evidence.

Bellard, F. (2013). "QEMU: Open Source Processor Emulator.", http://wiki.gemu.org/Main_Page.

Guttman, B., et al. (2011). Ten years of computer forensic tool testing, from
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909329.

Inoue, H., et al. (2011). "Visualization in testing a volatile memory forensic tool." Digital Investigation
8:542-S51.

Kent, K., et al. (2006) Guide to Integrating Forensic Techniques into Incident Response.

Lempereur, B., et al. (2012). "Pypette: A Platform for the Evaluation of Live Digital Forensics."
International Journal of Digital Crime and Forensics 4(4): 31-46.

Schatz, B. (2007). "BodySnatcher: Towards reliable volatile memory acquisition by software." Digital
Investigation 4: 126-134.

scudette@gmail.com (2013). "Winpmem release 1.4.1." from
http://code.google.com/p/volatility/downloads/detail?name=winpmem-.4.1.zip&can=2&q-=.

Vomel, S. and F. C. Freiling (2012). "Correctness, atomicity and integrity: Defining criteria for
forensically-sound memory acquisition." Digital Investigation 9(2): 125-137.

19

	Volatile Memory Acquisition Tools – A Comparison Across Taint And Correctness
	The Proceedings of 11th Australian Digital Forensics Conference

