
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2014 to 2021 

2021 

Infrequent pattern detection for reliable network traffic analysis Infrequent pattern detection for reliable network traffic analysis 

using robust evolutionary computation using robust evolutionary computation 

A. N. M. Bazlur Rashid 
Edith Cowan University 

Mohiuddin Ahmed 
Edith Cowan University 

Al-Sakib K. Pathan 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 

 Part of the Computer Sciences Commons 

10.3390/s21093005 
Rashid, A. N. M., Ahmed, M., & Pathan, A. S. K. (2021). Infrequent pattern detection for reliable network traffic 
analysis using robust evolutionary computation. Sensors, 21(9), article 3005. https://doi.org/10.3390/s21093005 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworkspost2013/10165 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F10165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F10165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.3390/s21093005
https://doi.org/10.3390/s21093005


sensors

Article

Infrequent Pattern Detection for Reliable Network Traffic
Analysis Using Robust Evolutionary Computation

A. N. M. Bazlur Rashid 1,† , Mohiuddin Ahmed 1,† and Al-Sakib Khan Pathan 2,*

����������
�������

Citation: Rashid, A.N.M.B.; Ahmed,

M.; Pathan, A.-S.K. Infrequent Pattern

Detection for Reliable Network Traffic

Analysis Using Robust Evolutionary

Computation. Sensors 2021, 21, 3005.

https://doi.org/10.3390/s21093005

Academic Editor: Jesús

García-Herrero

Received: 22 March 2021

Accepted: 16 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Science, Edith Cowan University, Joondalup, WA 6027, Australia; a.rashid@ecu.edu.au
(A.N.M.B.R.); mohiuddin.ahmed@ecu.edu.au (M.A.)

2 Department of Computer Science and Engineering, Independent University, Dhaka 1229, Bangladesh
* Correspondence: sakib.pathan@gmail.com
† These authors contributed equally to this work.

Abstract: While anomaly detection is very important in many domains, such as in cybersecurity,
there are many rare anomalies or infrequent patterns in cybersecurity datasets. Detection of infre-
quent patterns is computationally expensive. Cybersecurity datasets consist of many features, mostly
irrelevant, resulting in lower classification performance by machine learning algorithms. Hence, a
feature selection (FS) approach, i.e., selecting relevant features only, is an essential preprocessing step
in cybersecurity data analysis. Despite many FS approaches proposed in the literature, cooperative
co-evolution (CC)-based FS approaches can be more suitable for cybersecurity data preprocessing
considering the Big Data scenario. Accordingly, in this paper, we have applied our previously pro-
posed CC-based FS with random feature grouping (CCFSRFG) to a benchmark cybersecurity dataset
as the preprocessing step. The dataset with original features and the dataset with a reduced number
of features were used for infrequent pattern detection. Experimental analysis was performed and
evaluated using 10 unsupervised anomaly detection techniques. Therefore, the proposed infrequent
pattern detection is termed Unsupervised Infrequent Pattern Detection (UIPD). Then, we compared the
experimental results with and without FS in terms of true positive rate (TPR). Experimental analysis
indicates that the highest rate of TPR improvement was by cluster-based local outlier factor (CBLOF)
of the backdoor infrequent pattern detection, and it was 385.91% when using FS. Furthermore, the
highest overall infrequent pattern detection TPR was improved by 61.47% for all infrequent patterns
using clustering-based multivariate Gaussian outlier score (CMGOS) with FS.

Keywords: infrequent; rare; pattern detection; network traffic; unsupervised; feature selection;
evolutionary computation; cooperative co-evolution

1. Introduction

The current digital ecosystem, bolstered by the innovations and advancements of
new technologies produces a massive amount of data continuously. The devices and
technological settings that generate the data include the sensor networks, Internet of
Things (IoT), healthcare, cybersecurity, and many other domains [1–3]. The massive
amount of generated data is termed Big Data. In the existing literature, we find that several
Vs are associated with the characteristics of Big Data. The most common Vs are volume,
velocity, and variety. These Vs indicate the amount of data generation, the different types
of data, and the speed of data generation [4,5]. Big Data provides the opportunity to the
research community to discover new knowledge, such as exploring the identification of
different types of network attacks in cybersecurity. However, analysis of data generated
by different network applications is computationally expensive [6]. One of the common
data analysis tasks in cybersecurity domain is anomaly detection, which basically identifies
data patterns, i.e., a pattern-driven data mining process, that identifies data or events that
deviate from the usual or expected behavior [7]. To learn, predict, detect, and classify
anomalous data in this context, both supervised and unsupervised machine learning (ML)

Sensors 2021, 21, 3005. https://doi.org/10.3390/s21093005 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8672-5023
https://orcid.org/0000-0002-4559-4768
https://orcid.org/0000-0001-6572-3451
https://doi.org/10.3390/s21093005
https://doi.org/10.3390/s21093005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093005
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093005?type=check_update&version=1


Sensors 2021, 21, 3005 2 of 16

anomaly detection techniques are usually used [2]. When the datasets of various domains
are considered, including cybersecurity datasets, we observe that they consist of many
features. However, not all the features are relevant, i.e., most are irrelevant, as such may
degrade the classification or clustering performance by many ML algorithms [2,4]. Feature
selection (FS) is an approach to select the most relevant subset of features while removing
the irrelevant features, which results in reducing the execution time (ET) and improving
the classification or clustering performance. Hence, removing unnecessary features in
cybersecurity datasets is an essential preprocessing step before the main data analysis
task. In addition, FS can also reduce the storage requirements [2,6]. Data fusion usually
refers to integrating information gathered from different sources, for example, sensors,
IoT, databases, etc. Data fusion also corresponds to collecting different types of data via
a procedure and is used for building a model. Data fusion can be categorized into a low,
intermediate, or high level that depends on the processing stage. A low-level data fusion
can combine different sources of raw data to create new raw data [8,9]. Therefore, data
fusion is another necessary step before applying an FS technique or anomaly detection
technique to identify a data pattern.

In the literature, many FS approaches have been studied. The evolutionary computation
(EC)-based FS approaches are widely used as a search technique for the FS process. How-
ever, when the search space increases because of the Big Data characteristics, traditional
EC-based approaches are not suitable [2,4,6]. Recently, cooperative co-evolution (CC),
a meta-heuristic-based FS approach, has shown its effectiveness in Big Data Analytics.
Examples of such CC-based approaches include a cooperative co-evolutionary algorithm-based
feature selection (CCEAFS) [4] with a penalty-based wrapper objective function and a coop-
erative co-evolution-based feature selection with random feature grouping (CCFSRFG) [6]. The
terms, cooperative co-evolutionary algorithm and cooperative co-evolution indicate the same
algorithm. CCFSRFG is more effective than CCEAFS. Thus, CCFSRFG can be used as the
preprocessing step in cybersecurity data analysis, i.e., for anomaly detection.

This paper introduces a novel infrequent pattern detection by the FS approach, CCFS-
RFG. The proposed approach has been evaluated by unsupervised anomaly detection tech-
niques. Hence, it is called Unsupervised Infrequent Pattern Detection (UIPD). A benchmark
and widely used cybersecurity dataset has been collected from the UNSW Canberra Cyber
Centre repository (https://www.unsw.adfa.edu.au/unsw-canberra-cyber/ (accessed on
16 April 2021)). Ten (10) unsupervised anomaly detection techniques have been used to
detect infrequent patterns from this dataset. Comparative experimental results analysis
indicates that in terms of true positive rate (TPR), in most cases, the proposed infrequent
pattern detection approach outperforms the standard state-of-the-art anomaly detection
techniques when using FS as a preprocessing step.

1.1. Research Questions

This paper aims at answering the following fundamental and associated subquestions:

• How can a feature selection process be applied to the cybersecurity datasets that can
select a suitable subset of features and can improve the unsupervised pattern/anomaly
detection techniques’ performance?

– How can the unsupervised pattern/anomaly detection techniques be applied to
the original dataset and the dataset with fewer features?

– Can the infrequent pattern/anomaly detection techniques perform well on a
dataset with feature selection as on the original dataset?

1.2. Paper Roadmap

The rest of the paper is organized as follows. Section 2 discusses the infrequent pattern
mining for network traffic analysis. Section 3 presents the feature engineering approach
using evolutionary computation. Section 4 illustrates the proposed methodology for
infrequent pattern detection for network traffic analysis. Section 5 contains experimental

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/


Sensors 2021, 21, 3005 3 of 16

results and analysis based on a benchmark cybersecurity dataset. The conclusion and
future work directions are included in Section 6.

2. Infrequent Pattern Mining

A data pattern X can be defined as frequent if it supports many regular patterns, which
correspond to the "common features" in the dataset. On the other hand, a data pattern X
can be defined as infrequent or rare whose frequency of appearance is below a user-defined
threshold limit in the dataset [10]. Anomaly detection is related to identifying the inter-
esting data patterns, which unusually deviate from their expected behavior. Sometimes,
anomaly detection can also be called outlier detection [11]. It is an important data analysis
task in many domains, such as cybersecurity, healthcare, the Internet of Things (IoT),
fraud detection, and intrusion detection. For example, a cyberattack is a malicious attack
that may damage a computing system via unauthorized network access, code, or data
injection. Then, anomalies that can be considered can be categorized into three different
types: (1) point/rare anomaly, (2) contextual anomaly, and (3) collective anomaly. The first
category indicates a specific data instance that deviates from the normal pattern, the second
category points to a data instance that behaves anomalously in a specific context, and the
third category represents a collection of data instances that behave anomalously [7,12]. The
fundamental cyberattacks include: (1) denial of service (DoS), (2) probe, (3) user to root (U2R),
and (4) remote to user (R2U). DoS interrupts the normal computing and causes unavailability
of services, probe attacks a targeted host or network for reconnaissance purpose, U2R
tries to get illegal access to an administrative account, and R2U tries to get local access
to a targeted system. In the literature, U2R and R2U are grouped into point/rare anoma-
lies, DoS is grouped into collective anomalies, and the probe is grouped into contextual
anomalies [5,7].

In the case of network traffic analysis, it can be observed that there are several infre-
quent or rare anomalies in the cybersecurity datasets. We find both frequent and infrequent
pattern minings, which have been studied. However, infrequent pattern mining is more
challenging than frequent pattern mining [10]. A number of different anomaly detection
approaches are used to analyze the network traffic. Three dominant approaches have
handled the network traffic analysis tasks: (1) supervised, (2) semi-supervised, and (3) un-
supervised [11–13]. The anomaly detection techniques, which rely on labeled training data,
are supervised. Supervised techniques require training data that are usually expensive
to generate. These techniques face difficulties when it comes to detecting new types of
attacks. Semi-supervised methods require a small amount of labeled data for building a
model to detect anomalies. However, unsupervised techniques do not need any training
data and can detect previously unseen attacks [11]. A taxonomy of anomaly detection
techniques [11,12] is shown in Figure 1.

Anomaly 

Detection

Supervised
Semi-

supervised
Unsupervised

Signature-

based

Anomaly-

based
Nearest-based Clustering

Frequent 

Itemset

Figure 1. A taxonomy of anomaly detection approaches.

There are many unsupervised anomaly detection techniques available in the liter-
ature. However, the widely used 10 unsupervised methods fall into three categories:



Sensors 2021, 21, 3005 4 of 16

nearest neighbor, clustering, and statistical. These techniques are k-NN global anomaly
score, local outlier factor (LOF), connectivity-based outlier factor (COF), approximate local
correlation integral (aLOCI), local outlier probability (LoOP), influenced outlierness (IN-
FLO), cluster-based local outlier factor (CBLOF), local density cluster-based outlier factor
(LDCOF), clustering-based multivariate Gaussian outlier score (CMGOS), and histogram-
based outlier score (HBOS) [7]. The taxonomy of all these unsupervised anomaly detection
techniques [11,12] is illustrated in Figure 2.

Unsupervised Anomaly Detection

k-NN

LOF

COF

aLOCI

LoOP

INFLO

HBOS

CBLOF

LDCOF

CMGOS

Nearest Neighbor Clustering Statistical

Figure 2. A taxonomy of unsupervised anomaly detection techniques.

3. Feature Engineering using Evolutionary Computation

Feature selection (FS) or feature engineering (FE) is a technique to select a suitable sub-
set of relevant features for representing the datasets with a reduced number of features
that can maximize the classification accuracy [2]. Formally speaking, FS is a mechanism
for selecting a subset of s features from a complete set of n features (s < n and n is the
dimension of the dataset in terms of the number of features) by removing the irrelevant or
unnecessary features [14]. Irrelevant features may degrade the classification performance
of machine learning (ML) algorithms. Hence, removing these unnecessary or irrelevant
features and representing the dataset with fewer features is the primary objective of an FS
process. In order to discover the subset of features from the dataset, a search technique
is required to initiate the FS process. Different ML algorithms then evaluate the selected
subset of features in terms of performance measures, such as classification accuracy. To
terminate the FS process, a termination condition, for example, a maximum number of
generations or the desired number of features selected, is required to complete the entire
process. At the end of the FS process, a validation procedure may test the validity of
the selected subset of features in terms of a real-world scenario [2,4]. A range of search
techniques, such as heuristics or evolutionary computations (ECs), can be used in the
FS process. However, the widely used search strategy in the FS process is EC. A tax-
onomy of evolutionary FS approaches [2,4,6] is illustrated in Figure 3. Evolutionary FS
approaches can be categorized into three types: (1) evaluation criteria-based, (2) evolu-
tionary computation-based, (3) the number of objectives-based. Evaluation criteria-based
FS approaches are further categorized into the filter, wrapper, and embedded methods.
Filter method scores and ranks data samples using different measures, such as information
theory or T-test. The wrapper method first selects subsets of features and evaluates the
goodness of the selected features using various measures, such as support vector machine
(SVM). The embedded method combines both filter and wrapper approaches, i.e., model
formation and evaluation of features are performed in a single process. The different EC
algorithms that are used in the FS process are evolutionary algorithm (EA), co-evolutionary
algorithm (CEA), swarm optimization, hybrid, and other algorithms. The standard algo-
rithms in these categories are genetic algorithm (GA), genetic programming (GP), parallel



Sensors 2021, 21, 3005 5 of 16

GA, cooperative co-evolutionary algorithm (CCEA), particle swarm optimization (PSO),
ant colony optimization (ACO), minimum redundancy maximum relevance (mRMR),
teaching learning-based algorithm (TLBO), TLBO with opposition-based learning (TLBOL),
conditional mutual information maximization (CMIM), binary genetic algorithm (BGA),
gravitational search algorithm (GSA), artificial bee colony (ABC), memetic algorithm (MA),
and differential evolution (DE) [2,4,6].

Evolutionary Feature Selection

Evaluation 

Criteria

Evolutionary 

Computation

Number of 

Objectives

Information 

Theory

T-test

k-NN

SVM

LASSO

Gradient 

Boosting

NSGA-IIGA

GA

GP

Parallel GA

PSO

ACO
CCEA

mRMR+TLBOL

CMIM+BGA

TLBO+GSA

ABC

MA

DE

Filter Wrapper Embedded Single-objective Multi-objectives

Swarm 

Optimization
CEAEA Hybrid Others

Figure 3. A taxonomy of evolutionary feature selection approaches.

3.1. Cooperative Co-Evolution

The cooperative co-evolution (CC) is a metaheuristic algorithm. It is also one kind of
evolutionary computation approach and population-based search approach. Potter and De
Jong first introduced the CC concept in 1994 to solve large-scale and complex optimization
problems [15]. CC follows a divide-and-conquer strategy to divide a large and complex
problem into several subproblems. It evolves co-adapted subproblems on an iterative
basis to build a complete solution to the problem. Formally speaking, a CC technique
decomposes an n-dimensional problem of search space S = 1, 2, ..., n into m subproblems
S1, S2, ..., Sm [15]. Each subproblem with a maximum of n-dimensions represents a new
search space SP(i) for a particular problem. In contrast, the rest of the dimensions nj,
with j 6= Si are kept fixed. Other subproblems follow the same process to decompose
the entire search space with lower dimensions, which can be evolved by any population-
based evolutionary computation (EC) algorithm. The optimization of each subproblem
can be performed independently of each other using a homogeneous or heterogeneous
optimizer. Communication between the subproblems is required to build a complete
solution to the problem using an objective or fitness function f . This implies that a candidate
solution in search space SP(i) contains a few elements (comprising an individual I) of the
n-dimensional problem (I ∈ SP). Therefore, in CC, a common n-dimensional context vector
v is required to build using a collaborative individual (e.g., the current best individual) from
each subproblem. A candidate solution to the problem is built by joining representative
collaborators from the context vector to evaluate an individual in a subproblem. Potter
and De Jong, in their original CC approach, decomposed an n-dimensional problem into n



Sensors 2021, 21, 3005 6 of 16

1-dimensional subproblems. In general, the n-dimensional problem can be decomposed
into m subproblems with the same dimension, i.e., nm = n/m [16].

Therefore, a CC consists of three main phases: (1) problem decomposition, (2) sub-
problem evolution, and (3) collaboration and evaluation [17–19]. Problem decomposition
involves the process of decomposing a large problem into several subproblems based on the
problem structure. Depending on the problem structure, the decomposition can be static or
dynamic. When the problem is decomposed statically, it can have one or more elements in
each decomposed group. However, the group elements remain fixed throughout the gener-
ations. On the other hand, when the problem is decomposed dynamically, the decomposed
groups can have different group elements other than the initial generation. Furthermore,
the group elements may change in each iteration in the case of dynamic decomposition.
Examples of different decomposition methods are in [6,18,20,21]. A homogeneous or het-
erogeneous evolutionary optimizer can perform subproblem optimization. In addition,
the optimization can be carried out sequentially or in parallel. Only one subproblem is
evolved in each iteration when optimization is performed sequentially. In contrast, multi-
ple subproblems can be optimized simultaneously in parallel. An example of widely used
optimizer in this context is in [22]. At the third stage of a CC, a collaboration mechanism
is required to build a complete solution to the problem. The complete solution is then
evaluated using the objective function. The collaborative performance of a solution can
be assigned as the fitness value to that individual being evaluated. Examples of different
collaboration and evaluation models are in [17,23].

3.2. Cooperative Co-Evolution-Based Feature Selection with Random Feature Grouping

The cooperative co-evolution-based feature selection with random feature grouping
(CCFSRFG) [6] is an evolutionary computation based wrapper FS process that can be
described as follows:

For example, a dataset D consists of n features, i.e., D = { f1, f2, f3, . . . , fn}. D. D is
decomposed randomly into m subdatasets with s(s < n) features in each subdataset:

D1 =
{

fi1 , fi2 , . . . , fis
}

, D2 =
{

fi1 , fi2 , . . . , fis
}

, . . . , Dm =
{

fi1 , fi2 , . . . , fis
}

A linear correlation coefficient can be used for measuring the linear dependency
between two random features in a network traffic dataset when the correlations are as-
sociated with a dataset’s records linearly. However, in practice, the correlation between
the features may be nonlinear for many real-world problems. Hence, the nonlinear depen-
dency between the two features cannot be measured by a correlation study. Alternatively,
selecting a subset of features from the dataset that maximize the classification accuracy is
more suitable irrespective of whether the dependency between two features is linear or
nonlinear [24]. Accordingly, the feature selection framework, CCFSRFG, with FRG as a
decomposer, selects a suitable subset of features without considering correlation.

Each subdataset is represented using a subpopulation in CCFSRFG. Here, s is the
number of features in each individual (i.e., s features of a subdataset). Consider the size of
each subpopulation (sp) is sz. An example of subpopulation sp1 consisting s individual
can be the following:

ind1 = {0, 1, 1, 0, . . . , 1}, ind2 = {1, 1, 1, 0, . . . , 0}, . . . , indsz = {0, 1, 1, 1, . . . , 1}

A 1 in an individual indicates that the feature in the corresponding is selected for
the feature subset selection. However, a 0 indicates that the feature is not selected for the
feature subset selection. An individual in any subpopulation is evaluated by combining
collaborators (i.e., individuals) from other subpopulations. For example, to evaluate
individual ind1 in subpopulation sp1, a collaborator ind3 from subpopulation sp2 and a
collaborator ind2 from subpopulation sp3. These three individuals are combined to form
a complete solution for the dataset with a reduced number features. Consider a random
decomposition of 9 features into three subpopulations (s = 4), is assumed with sp1{ind1}



Sensors 2021, 21, 3005 7 of 16

= { f3, f9, f7, f2}, sp2{ind2} = { f6, f1, f5, f8}, and sp3{ind4} = { f4}. If features { f7, f2} from
sp1{ind1}, { f1, f5} from sp2{ind2}, and { f4} from sp3{ind4} are selected because of a
binary (0 or 1) representation of features, the complete solution with sorted feature indices
can be defined as follows:

solution = { f1, f2, f4, f5, f7}

The solution with this reduced number of features is then evaluated by the ML
classifiers to measure accuracy performance. The best individual with a reduced number
of features and the highest classification accuracy is achieved by a penalty-based wrapper
objective function introduced in the CCEAFS approach [4].

When there is no previous information available, random collaborators (i.e., individu-
als) from other subpopulations are used to build a complete solution in the first generation
of CCFSRFG. The best individuals from other subpopulations are used as collaborators
from generation 1 onwards. The process continues until it reaches a fixed number of
generations, until no better fitness is achieved over the generations, or a fixed number of
features selected.

4. Proposed Methodology

The proposed unsupervised infrequent pattern detection (UIPD) is illustrated in
Figure 4.

Feature Selection 

using CCFSRFG

Feature Level 

Fusion

Data Preparing 

Level Fusion

External Dataset

Transform

Excel and 

WEKA

Processed Dataset

Apply

Unsupervised

Detection

Techniques

Infrequent 

Pattern Detection
Infrequent Pattern 

Detection

Detect Outliers

Compute TPR

Apply

Unsupervised

Detection

Techniques

Detect Outliers

Compute TPR

Compare 

Performance with 

and without FS

Sensor Data 1

Sensor Data 2

. . .

Sensor Data n

Dataset with 

Reduced Features

Selected Feature 1

Selected Feature 2

. . .

Selected Feature s

Sensor Data 1

Sensor Data 2

. . .

Sensor Data n

Data Preparing 

Level Fusion

Decision Level 

Fusion

Decision Level 

Fusion

Figure 4. Proposed CCFSRFG-based unsupervised infrequent pattern detection (UIPD) approach
with data fusion used in different stages.

The methodology for UIPD consists of a data preprocessing step utilizing the data
fusion methodology. According to the attack category, the data fusion step sorts the data
samples, separates the normal and anomalous samples, and reduces the datasets based on
selected features after the feature selection (FS) process is applied. Data fusion is also used
to prepare the dataset after the outlier is detected via RapidMiner and used for infrequent
pattern detection. Microsoft Excel and WEKA (https://www.cs.waikato.ac.nz/ml/weka/
(accessed on 16 April 2021)) have been used for this purpose. After the preprocessing of
removing attack information from the datasets, the entire dataset was used to compute
the outlier using all 10 unsupervised anomaly detection techniques mentioned in Section

https://www.cs.waikato.ac.nz/ml/weka/


Sensors 2021, 21, 3005 8 of 16

2. The infrequent pattern detection performance was computed in terms of TPR and ET.
The FS framework, CCFSRFG, was then applied to the dataset to represent it a reduced
number of features that maximize classification accuracy. Details of the CCFSRFG process
can be found in [6]. In this way, the dataset with the reduced number of features is
preprocessed to remove the attack information and the outlier detection is performed
using the same 10 unsupervised anomaly detection techniques. Likewise, with the original
dataset, the infrequent pattern detection performance was computed in terms of TPR and
ET. Finally, the infrequent pattern detection performance was compared with and without
FS in terms of TPR. Algorithm 1 is the pseudocode of the proposed UIPD approach using
unsupervised anomaly detection techniques. A JAVA-based implementation of UIPD is
available at GitHub (https://github.com/bazlurrashid/cooperative-coevolution/tree/
UIPD/) (accessed on 16 April 2021).

Algorithm 1 UIPD
Input: *.CSV formatted dataset files;
Output: TPR and ET;

1: Using RapidMiner to compute the anomaly scores;
2: Sort the anomaly scores in descending order;
3: Separate the top instances based on the actual anomalies in the ground truth and store in a CSV

file;
4: while Read the CSV files of actual anomalies and anomalies obtained in previous step until end

do
5: Split the read lines into columns and store the first column’s values into gInstances[x] and

outInstances[x];
6: Increase the value of x by 1;
7: end while
8: Compute the number of anomaly instances from both CSV files and store into gSize and outSize,

respectively;
9: Store the value of outSize− 1 into nums array;

10: for x = 1 to gSize do
11: for y = 1 to length of nums do
12: if gInstances[x] == outInstances[nums[y]] then
13: Increase the value of correct by 1;
14: Remove index y from the nums array;
15: Jump the execution to the inner loop to continue checking with other index values;
16: end if
17: end for
18: end for
19: Assign the size of outInstances into anomalies;
20: Compute TPR = correct/anomalies;
21: Display TPR and ET.

5. Experimental Results and Analysis

Experimental results are included in this section and analyzed with and without
feature selection (FS) approaches.

5.1. Benchmark Dataset

The benchmark UNSW_NB15 (https://www.unsw.adfa.edu.au/unsw-canberra-cyber/
cybersecurity/ADFA-NB15-Datasets/ (accessed on 16 April 2021)) dataset used in the
experiments is listed in Table 1 with normal and infrequent pattern data distribution.
Table 2 lists the infrequent patterns with data samples in the dataset with respect to the
total samples and with respect to the anomalous samples, respectively.

The UNSW_NB15 dataset contains a hybrid of the real modern normal and the
contemporary synthesized attacks of the network traffic. The dataset is comprised of 9 dif-
ferent attacks, including reconnaissance, backdoor, DoS, exploits, analysis, fuzzers, worms,
shellcode, and generic. The dataset has been created to deal with the current network
threat environment because the existing benchmark datasets, such as KDD98, KDD99, and

https://github.com/bazlurrashid/cooperative-coevolution/tree/UIPD/
https://github.com/bazlurrashid/cooperative-coevolution/tree/UIPD/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/


Sensors 2021, 21, 3005 9 of 16

NSL-KDD do not (inclusively) include network traffic and modern low footprint attacks.
Furthermore, the most used dataset for network traffic analysis is UNWS_NB15 in the last
5 years and KDD99 is more than 20 years old [25].

Table 1. Distribution of normal and anomalous data.

Dataset Normal (%) Anomalous (%) No. of Instances No. of Features

UNSW_NB15 44.94 55.06 82,332 42

Table 2. Distribution of infrequent pattern data in UNSW_NB15 dataset.

Anomaly Weight (%) Anomalous (%) No. of Instances

Analysis 00.82 01.49 677

Backdoor 00.71 01.29 583

DoS 04.97 09.02 4,089

Exploits 13.52 24.56 11,132

Fuzzers 07.36 13.37 6,062

Generic 22.92 41.63 18,871

Reconnaissance 04.25 07.71 3,496

Shellcode 00.46 00.83 378

Worms 00.05 00.10 44
Note: "Weight" indicates the (%) of data samples with respect to the total samples in the dataset. "Anomalous" indicates the
(%) of data samples with respect to the anomaly samples in the dataset.

5.2. Parameters and Evaluation Measures

A dynamic decomposition method, called random feature grouping (RFG), the ge-
netic algorithm (GA) as subproblem optimizer, and random and best collaboration model
with 1 + N have been used for the FS framework CCFSRFG. Subpopulation size: 30,
number of subpopulations: 2, and number of features in each subpopulation are 22 and
20, respectively. GA parameters: binary representation, 100% crossover rate, 5% muta-
tion rate, one elitism, and tournament selection. In the case of CCFSRFG termination,
100 successive generations with no improvement have been used. Classification accu-
racy and true positive rate (TRP) have been used as evaluation measures. The param-
eters used for different unsupervised anomaly detection techniques using RapidMiner
(https://rapidminer.com (accessed on 16 April 2021)) are described here. The maxi-
mum value of k, when required for different anomaly detection techniques, has been
selected based on the ceiling of the square root of the total number of instances in a
dataset, while the minimum value was kept at 2 [26]. For example, if a dataset has 100
instances, the maximum value of k is 10. Mixed measures and mixed Euclidean Distance
parameters were set for k-NN, LOF, COF, aLOCI, LoOp, INFLO, CBLOF, LDCOF, and CM-
GOS. For aLOCI, di f f erence o f levels L = 4, tree depth(levels) = 10, number o f grids =
20, n min = 20; for CBLOF, alpha = 90.0, beta = 5.0; for LDCOF, gamma = 0.1; for
CMGOS, probability f or normal class = 0.975, gamma = 0.1, covariance estimation =
Reduction, times to remove outlier = 1; for HBOS, parameter mode = all. The experimental
environment was a desktop computing machine with Intel (R) Core (TM) i7-7700 CPU
@3.60 GHz processor, 16.0 GB RAM, and a 64-bit Operating System.

https://rapidminer.com


Sensors 2021, 21, 3005 10 of 16

5.3. Results and Discussions

A summary of the FS process’s performance results after applying CCFSRFG to the
UNSW_NB15 dataset is listed in Table 3 in terms of classification accuracy, the number of
features, and execution time (ET). The naïve Bayes classifier and cross-validation were used
to evaluate the FS process. The selected 3 features by CCFSRFG from the UNSW_NB15
dataset are proto, service, ct_state_ttl. As a result that CCFSRFG is based on a metaheuristic
algorithm, the selected subset of features may not be the same in each execution. It can be
expected that there should be a minimum of features in the dataset that can maximize the
classification accuracy. However, the selected subset of features by the FS process, such as
CCFSRFG, will always depend on how the evolutionary process (selection, crossover, and
mutation) is performed internally by the algorithm itself.

Table 3. Summary of results for UNSW_NB15 dataset with and without FS using a naïve Bayes clas-
sifier.

Without FS With FS

Dataset Accuracy
(%)

No. of
Features

Accuracy
(%)

No. of
Features

Execution
Time (hour)

UNSW_NB15 45.91 42 72.78 3 09.72

From Table 3, it can be observed that CCFSRFG was able to select a suitable subset of
features with a very low number of features (only 3 for UNSW_NB15 dataset) compared
to the original dataset. Simultaneously, the original accuracy was 45.91 and 92.95, and
the accuracy after the FS process was 72.78 and 98.71, respectively. The FS process is
computationally expensive, and it also depends on the underlying dataset characteristics.
As a result of the 10 different types of attacks in the UNSW_NB15 dataset, the FS process
took 9.72 h for the UNSW_NB15 dataset using the available computing resources.

The original UNSW_NB15 dataset and the dataset with a reduced number of features
(3 features only) are used for infrequent pattern detection using 10 unsupervised anomaly
detection techniques discussed in Section 2. The summary of the experimental results in
terms of true positive rate (TPR) is listed in Table 4.

Figures 5–7 show the improved TPRs from Table 4 by different anomaly detection
techniques for detecting the infrequent patterns in UNSW_NB15 dataset. It can be observed
that every anomaly detection algorithm improved the TPR for detecting at least two
infrequent patterns when using FS. LoOP algorithm was the least, in this case, detecting
only two patterns: generic and worms, whereas the CMGOS was the topper in improving
TPR for detecting all the patterns. Other algorithms (k-NN, LOF, COF, aLOCI, INFLO,
CBLOF, LDCOF, and HBOS improved TPRs for 8, 6, 4, 4, 4, 4, 8, 8, and 5 infrequent patterns,
respectively. It can also be seen that there were eight anomaly algorithms except for COF
and HBOS, which achieved a 100% TPR when using FS for different infrequent pattern
detection. First, CBLOF, LDCOF, and CMGOS achieved 100% TPR for detecting analysis,
backdoor, DoS, reconnaissance, shellcode, and worms patterns. Second, aLOCI achieved
100% TPR for reconnaissance, shellcode, and worms patterns. Third, k-NN, LOF, LoOP,
and INFLO achieved a 100% TPR for worms infrequent pattern detection.



Sensors 2021, 21, 3005 11 of 16

Table 4. Summary of performance of the individual unsupervised infrequent pattern detection in terms of TPR (%) with and without FS for UNSW_NB15 dataset.

Infrequent Pattern With or Without FS
Outlier

k-NN LOF COF aLOCI LoOP INFLO CBLOF LDCOF CMGOS HBOS

Analysis Ori 15.51 68.83 42.98 72.38 93.94 67.65 23.63 25.11 27.92 13.88
FS 76.22 40.77 62.19 26.44 56.28 79.91 100 100 100 08.57

Backdoor Ori 15.44 54.72 42.54 66.55 74.27 66.38 20.58 27.79 25.56 11.84
FS 79.76 50.77 60.03 40.99 61.06 63.12 100 100 100 10.46

DoS Ori 33.04 59.18 52.16 68.11 52.31 49.38 41.21 48.28 52.53 25.83
FS 83.10 68.87 55.91 58.38 49.79 52.09 100 100 100 28.78

Exploits Ori 72.83 50.93 67.58 68.03 65.11 62.95 74.24 70.76 72.87 64.46
FS 86.52 72.70 57.72 41.16 46.53 44.98 91.18 91.19 98.94 71.50

Fuzzers Ori 72.83 63.38 74.02 70.37 74.07 74.83 72.29 68.87 64.05 54.57
FS 80.30 75.42 57.34 45.61 43.29 48.19 00.00 00.00 94.37 91.96

Generic Ori 04.54 53.48 51.14 36.02 51.70 51.47 09.31 09.80 07.29 42.48
FS 04.39 17.44 58.28 49.61 91.91 91.39 39.29 39.29 09.87 00.61

Reconnaissance Ori 62.67 67.88 74.57 70.42 72.03 76.74 56.78 56.26 49.34 19.45
FS 99.31 83.70 56.64 100 36.87 47.08 100 100 100 04.92

Shellcode Ori 79.10 71.43 84.92 71.43 80.95 80.69 67.46 62.43 42.59 12.43
FS 98.94 84.92 49.21 100 34.66 29.89 100 100 100 32.54

Worms Ori 95.45 56.82 81.82 65.91 68.18 65.91 95.45 88.64 72.73 72.73
FS 100 100 00.00 100 100 100 100 100 100 86.36

Note: "Ori" indicates TPR (%) without FS, "FS" indicates TPR (%) with FS. The bold values represent the improvements in detecting infrequent patterns with FS by the corresponding techniques.



Sensors 2021, 21, 3005 12 of 16

4
2

.9
8

1
5

.5
1

6
7

.6
5

2
3

.6
3

2
5

.1
1

2
7

.9
2

6
2

.1
9

7
6

.2
2

7
9

.9
1

1
0

0

1
0

0

1
0

0

10

30

50

70

90

COF k-NN INFLO CBLOF LDCOF CMGOS

T
P

R
 (

%
)

Original FS

4
2

.5
4

1
5

.4
4

2
0

.5
8

2
5

.5
6

2
7

.7
9

6
0

.0
3

7
9

.7
6

1
0

0

1
0

0

1
0

0

10

30

50

70

90

COF k-NN CBLOF CMGOS LDCOF

T
P

R
 (

%
)

Original FS
2

5
.8

3

4
9

.3
8

5
2

.1
6 5
9

.1
8

3
3

.0
4 4
1

.2
1 4
8

.2
8

5
2

.5
3

2
8

.7
8

5
2

.0
9

5
5

.9
1

6
8

.8
7

8
3

.1
0

1
0

0

1
0

0

1
0

0

20

40

60

80

100

HBOS INFLO COF LOF k-NN CBLOF LDCOF CMGOS

T
P

R
 (

%
)

Original FS

6
4

.4
6

5
0

.9
3

7
2

.8
3

7
4

.2
4

7
0

.7
6

7
2

.8
7

7
1

.5
0

7
2

.7
0

8
6

.5
2

9
1

.1
8

9
1

.1
9 9
8

.9
4

45

60

75

90

105

HBOS LOF k-NN CBLOF LDCOF CMGOS

T
P

R
 (

%
)

Original FS

(a) (b)

(c) (d)

Figure 5. Performance of the individual (unsupervised) infrequent pattern detection techniques with
and without FS on UNSW_NB15 dataset for all infrequent patterns: (a) Analysis. (b) Backdoor. (c)
DoS. (d) Exploits.

(a) (b)

(c) (d)

6
3

.3
8

7
2

.8
3

5
4

.5
7

6
4

.0
5

7
5

.4
2 8
0

.3
0

9
1

.9
6

9
4

.3
7

50

65

80

95

LOF k-NN HBOS CMGOS

T
P

R
 (

%
)

Original FS

7
.2

9

9
.3

1

9
.8

0

3
6

.0
2

5
1

.1
4

5
1

.4
7

5
1

.7
0

9
.8

7

3
9

.2
9

3
9

.2
9 4
9

.6
1

5
8

.2
8

9
1

.3
9

9
1

.9
1

0

30

60

90

CMGOS CBLOF LDCOF aLOCI COF INFLO LoOP

T
P

R
 (

%
)

Original FS

6
7

.8
8

6
2

.6
7

4
9

.3
4 5

6
.2

6

5
6

.7
8

7
0

.4
2

8
3

.7
0

9
9

.3
1

1
0

0

1
0

0

1
0

0

1
0

0

45

60

75

90

105

LOF k-NN CMGOS LDCOF CBLOF aLOCI

T
P

R
 (

%
)

Original FS

1
2

.4
3

7
1

.7
3

7
9

.1
0

4
2

.5
9

6
2

.4
3

6
7

.4
6

7
1

.4
3

3
2

.5
4

8
4

.9
2 9

8
.9

4

1
0

0

1
0

0

1
0

0

1
0

0

10

30

50

70

90

HBOS LOF k-NN CMGOS LDCOF CBLOF aLOCI

T
P

R
 (

%
)

Original FS

Figure 6. Performance of the individual (unsupervised) infrequent pattern detection techniques with
and without FS on UNSW_NB15 dataset for all infrequent patterns: (a) Fuzzers. (b) Generic. (c)
Reconnaissance. (d) Shellcode.



Sensors 2021, 21, 3005 13 of 16

7
2
.7

3

5
6
.8

2

6
5
.9

1

6
5
.9

1

6
8
.1

8 7
2
.7

3

8
8
.6

4 9
5
.4

5

9
5
.4

5

8
6
.3

6

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

50

65

80

95

HBOS LOF aLOCI INFLO LoOP CMGOS LDCOF k-NN CBLOF

T
P

R
 (

%
)

Original FS

Figure 7. Performance of the individual (unsupervised) infrequent pattern detection techniques with
and without FS on UNSW_NB15 dataset for the infrequent pattern: Worms.

Figure 8 illustrates the TPR of all infrequent pattern detections with and without FS.
It can be observed that among the 10 unsupervised anomaly detection algorithms, five
algorithms improved the overall TPR in detecting all infrequent patterns when using FS.
These algorithms are LDCOF, CBLOF, CMGOS, LoOP, and INFLO. The highest overall TPR
achieved was 66.21 by INFLO, while the lowest overall TPR achieved was 29.69 by HBOS
when using FS. In the case of the original dataset with all features, the highest overall TPR
was 60.27, and the lowest overall TPR was 38.51.

4
5

.1
7

5
6

.2
0

5
5

.2
8

3
8

.5
1

6
0

.2
2

4
0

.7
0

4
1

.1
4

3
9

.2
1

6
0

.2
7

5
9

.8
6

2
9

.6
9

4
9

.9
3

5
1

.6
9

5
2

.0
5 5
7

.6
2

5
9

.1
9

5
9

.1
9

6
1

.4
7

6
4

.8
2

6
6

.2
1

20

30

40

50

60

70

HBOS LOF aLOCI k-NN COF LDCOF CBLOF CMGOS LoOP INFLO

T
P

R
 (

%
)

Original FS

Figure 8. TPR of all infrequent pattern detections with and without FS.

5.4. Meaningful Insights

The proposed unsupervised infrequent pattern detection (UIPD) has significantly
improved infrequent pattern detection performance for at least six patterns: analysis,
backdoor, DoS, reconnaissance, shellcode, and worms with a 100% TPR when using
the dataset with FS with a reduced number of features. The simulation results of the
improvement ratio in TPR with and without FS are displayed in Figure 9. It can be
observed that the detection of analysis patterns was significantly improved for three
anomaly detection algorithms: CMGOS, LDCOF, and CBLOF. The improved TPR ratios
over the original dataset are 258.17%, 298.25%, and 323.19%, respectively. It can be noted
that CBLOF, LDCOF, and CMGOS anomaly detection algorithms were the three common
algorithms for which the TPR improvement ratio was very significant for all of the above-
mentioned six infrequent patterns. The highest TRP ratio improvement over the TPR
by the original dataset was 385.91% by CBLOF for the backdoor pattern. On the other
hand, the lowest TPR improvement ratio was 4.77% by k-NN and CBLOF for worms
pattern detection.



Sensors 2021, 21, 3005 14 of 16

Figure 9. Performance (TPR) improvement for six infrequent patterns by at least three unsupervised
anomaly detection techniques where a 100% TPR was achieved when using FS.

Furthermore, Figure 10 presents the overall TPR ratio improvement for all infrequent
pattern detection by the five anomaly detection algorithms: LoOP, INFLO, CBLOF, LD-
COF, and CMGOS when using FS. It can be observed that the highest overall TPR ratio
improvement was 61.47% by CMGOS, while the lowest was 7.55% by LoOP.

7
.5

5

1
0

.6
1

4
3

.8
7

4
5

.4
3

6
1

.4
7

0

15

30

45

60

75

LoOP INFLO CBLOF LDCOF CMGOS

O
v

er
al

l 
Im

p
ro

v
em

en
t 

(%
) 

o
f 

A
ll

In
fr

eq
u

en
t 

P
at

te
rn

s

Overall TPR Increase

Figure 10. Performance (TPR) improvement of all infrequent patterns by the five unsupervised
anomaly detection techniques when using FS.

6. Conclusions and Future Work

This paper introduced infrequent pattern detection for reliable network traffic anal-
ysis using a robust evolutionary computation approach. For this purpose, a cooperative
co-evolution-based feature selection with random feature grouping (CCFSRFG) [6] was
used as the feature selection (FS) or feature engineering (FE) mechanism to preprocess
the benchmark UNSW_NB15 (https://www.unsw.adfa.edu.au/unsw-canberra-cyber/
cybersecurity/ADFA-NB15-Datasets/ (accessed on 16 April 2021)) dataset. The original
dataset and the dataset with a reduced number of features after applying the CCFSRFG
were used for infrequent pattern detection. Ten unsupervised anomaly detection tech-
niques were used to evaluate infrequent pattern detection performance in terms of TPR.
Comparisons of the performance results were shown with and without FS. Although the FS

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/


Sensors 2021, 21, 3005 15 of 16

is computationally expensive, it was shown that if a suitable FS process is applied before the
detection of infrequent pattern, there can certainly be a few anomaly detection techniques
that can improve the TPR for a few infrequent patterns. The actual execution time for infre-
quent pattern detection with an FS process will always depend on datasets’ complexities,
including the number of features, number of instances, and the data themselves. Therefore,
as future work, the proposed UIPD approach of infrequent pattern detection for reliable
network traffic analysis can be investigated on other datasets and also using different base
classifiers other than naïve Bayes for the FS process.

Author Contributions: Conceptualization, A.N.M.B.R. and M.A.; methodology, A.N.M.B.R.; valida-
tion, A.N.M.B.R., M.A. and A.-S.K.P.; investigation, A.N.M.B.R. and M.A.; writing–original draft
preparation, A.N.M.B.R.; writing–review and editing, A.N.M.B.R., M.A. and A.-S.K.P.; visualization,
A.N.M.B.R.; supervision, M.A. and A.-S.K.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rashid, A.N.M.B. Access methods for Big Data: current status and future directions. EAI Endor. Trans. Scal. Inf. Syst. 2018, 4.

[CrossRef]
2. Rashid, A.N.M.B.; Choudhury, T. Knowledge management overview of feature selection problem in high-dimensional financial

data: Cooperative co-evolution and MapReduce perspectives. Probl. Perspect. Manag. 2019, 17, 340. [CrossRef]
3. Rashid, A.N.M.B.; Choudhury, T. Cooperative co-evolution and MapReduce: A review and new insights for large-scale

optimization. Int. J. Inf. Technol. Project Manag. (IJITPM) 2021, 12, 29–62. [CrossRef]
4. Rashid, A.N.M.B.; Ahmed, M.; Sikos, L.F.; Haskell-Dowland, P. A novel penalty-based wrapper objective function for feature

selection in Big Data using cooperative co-evolution. IEEE Access 2020, 8, 150113–150129. [CrossRef]
5. Ahmed, M.; Anwar, A.; Mahmood, A.N.; Shah, Z.; Maher, M.J. An investigation of performance analysis of anomaly detection

techniques for Big Data in scada systems. EAI Endor. Trans. Indust. Netw. Intellig. Syst. 2015, 2, e5. [CrossRef]
6. Rashid, A.N.M.B.; Ahmed, M.; Sikos, L.F.; Haskell-Dowland, P. Cooperative co-evolution for feature selection in Big Data with

random feature grouping. J. Big Data 2020, 7, 1–42. [CrossRef]
7. Ahmed, M. Intelligent Big Data summarization for rare anomaly detection. IEEE Access 2019, 7, 68669–68677. [CrossRef]
8. de Juan, A.; Tauler, R. Chapter 8—Data Fusion by Multivariate Curve Resolution. In Data Fusion Methodology and Applications;

Data Handling in Science and Technology; Cocchi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 31, pp. 205–233.
[CrossRef]

9. Li, N.; Gebraeel, N.; Lei, Y.; Fang, X.; Cai, X.; Yan, T. Remaining useful life prediction based on a multi-sensor data fusion model.
Reliabil. Eng. Syst. Saf. 2021, 208, 107249. [CrossRef]

10. Borah, A.; Nath, B. Rare pattern mining: challenges and future perspectives. Compl. Intell. Syst. 2019, 5, 1–23. [CrossRef]
11. Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31.

[CrossRef]
12. Ahmed, M.; Mahmood, A.N.; Islam, M.R. A survey of anomaly detection techniques in financial domain. Future Gener. Comput.

Syst. 2016, 55, 278–288. [CrossRef]
13. Karie, N.M.; Sahri, N.M.; Haskell-Dowland, P. IoT threat detection advances, challenges and future directions. In Proceedings of

the 2020 Workshop on Emerging Technologies for Security in IoT, Sydney, NSW, Australia, 21 April 2020; pp. 22–29. [CrossRef]
14. Chakraborty, B.; Kawamura, A. A new penalty-based wrapper fitness function for feature subset selection with evolutionary

algorithms. J. Inf. Telecommun. 2018, 2, 163–180. [CrossRef]
15. Potter, M.A.; De Jong, K.A. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel

Problem Solving from Nature; Springer: Berlin, Germany, 1994; pp. 249–257. [CrossRef]
16. van den Bergh, F.; Engelbrecht, A.P. A cooperative approach to particle swarm optimization. IEEE Trans. Evolut. Comput. 2004,

8, 225–239. [CrossRef]
17. Shi, M.; Gao, S. Reference sharing: a new collaboration model for cooperative coevolution. J. Heurist. 2017, 23, 1–30. [CrossRef]
18. Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative co-evolution with differential grouping for large scale optimization. IEEE

Trans. Evolut. Comput. 2013, 18, 378–393. [CrossRef]

http://doi.org/10.4108/eai.28-12-2017.153520
http://dx.doi.org/10.21511/ppm.17(4).2019.28
http://dx.doi.org/10.4018/IJITPM.2021010102
http://dx.doi.org/10.1109/ACCESS.2020.3016679
http://dx.doi.org/10.4108/inis.2.3.e5
http://dx.doi.org/10.1186/s40537-020-00381-y
http://dx.doi.org/10.1109/ACCESS.2019.2918364
http://dx.doi.org/10.1016/B978-0-444-63984-4.00008-9
http://dx.doi.org/10.1016/j.ress.2020.107249
http://dx.doi.org/10.1007/s40747-018-0085-9
http://dx.doi.org/10.1016/j.jnca.2015.11.016
http://dx.doi.org/10.1016/j.future.2015.01.001
http://dx.doi.org/10.1109/ETSecIoT50046.2020.00009
http://dx.doi.org/10.1080/24751839.2018.1423792
http://dx.doi.org/10.1007/3-540-58484-6_269
http://dx.doi.org/10.1109/TEVC.2004.826069
http://dx.doi.org/10.1007/s10732-016-9322-9
http://dx.doi.org/10.1109/TEVC.2013.2281543


Sensors 2021, 21, 3005 16 of 16

19. Potter, M.A. The Design and Analysis of a Computational Model of Cooperative Coevolution. Ph.D. Thesis, George Mason
University, Fairfax, VA, USA, 1997.

20. Yang, Z.; Tang, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 2008, 178, 2985–2999.
[CrossRef]

21. Omidvar, M.N.; Yang, M.; Mei, Y.; Li, X.; Yao, X. DG2: A faster and more accurate differential grouping for large-scale black-box
optimization. IEEE Trans. Evolut. Comput. 2017, 21, 929–942. [CrossRef]

22. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Opt. 1997, 11, 341–359. [CrossRef]

23. Potter, M.A.; Jong, K.A.D. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolut. Comput.
2000, 8, 1–29. [CrossRef]

24. Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an intrusion detection system using a filter-based feature selection algorithm.
IEEE Trans. Comput. 2016, 65, 2986–2998. [CrossRef]

25. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; pp. 1–6. [CrossRef]

26. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for KNN Classification. ACM Trans. Intell. Syst. Technol. 2017, 8.
[CrossRef]

http://dx.doi.org/10.1016/j.ins.2008.02.017
http://dx.doi.org/10.1109/TEVC.2017.2694221
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1162/106365600568086
http://dx.doi.org/10.1109/TC.2016.2519914
http://dx.doi.org/10.1109/MilCIS.2015.7348942
http://dx.doi.org/10.1145/2990508

	Infrequent pattern detection for reliable network traffic analysis using robust evolutionary computation
	Introduction
	Research Questions
	Paper Roadmap

	Infrequent Pattern Mining
	Feature Engineering using Evolutionary Computation
	Cooperative Co-Evolution
	Cooperative Co-Evolution-Based Feature Selection with Random Feature Grouping

	Proposed Methodology
	Experimental Results and Analysis
	Benchmark Dataset
	Parameters and Evaluation Measures
	Results and Discussions
	Meaningful Insights

	Conclusions and Future Work
	References

