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Abstract: Genetic variants in the angiotensin-converting enzyme (ACE) (rs4343), alpha-actinin-3 (ACTN3)
(rs1815739), adrenoceptor-beta-1 (ADRB1) (rs1801253), and peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PPARGC1A) (rs8192678) genes have previously been associated with elite
athletic performance. This study assessed the influence of polymorphisms in these candidate genes
towards endurance test performance in 46 players from a single Australian Football League (AFL)
team. Each player provided saliva buccal swab samples for DNA analysis and genotyping and were
required to perform two independent two-kilometre running time-trials, six weeks apart. Linear
mixed models were created to account for repeated measures over time and to determine whether
player genotypes are associated with overall performance in the two-kilometre time-trial. The
results showed that the ADRB1 Arg389Gly CC (p = 0.034) and PPARGC1A Gly482Ser GG (p = 0.031)
genotypes were significantly associated with a faster two-kilometre time-trial. This is the first study
to link genetic polymorphism to an assessment of endurance performance in Australian Football and
provides justification for further exploratory or confirmatory studies.

Keywords: ADRB1; PPARGC1a; genes; sport; performance; Australian Football; endurance

1. Introduction

Australian Football (AF) is a multi-dimensional team sport, which requires a com-
bination of endurance, strength, power, speed, and competency in sport-specific skills
including kicking, handballing, marking, and tackling [1–7]. The Australia Football League
(AFL) represents an elite AF competition and has playing times of four 20-min quarters
with time on, with games often spanning beyond 120 min due to stoppages (or, during
COVID-19-modified seasons, four 16-min quarters with time on, often spanning 100 min
due to stoppages). With an oval playing field of 135 to 185 m in length and 110 to 155 m in
width across the competition [8], players consistently run more than 13 km during a typical
game [9,10]. Accordingly, AF is characterised as an endurance sport consisting of multiple
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high-intensity and moderate-intensity efforts [11–17], with no movement restrictions on
footballers during active play. However, positional differences in movement and match-
play profiles exist, with players commonly grouped as nomadic (i.e., high running volumes
covering the entire playing surface, such as midfielders) or non-nomadic (key positions,
such as ruckmen, forwards, and backs) players [14]. Due to these unique qualities, there
are many athletic abilities required to be successful within the elite AFL competition.

Athletic ability and performance can be influenced by multiple variables, including
environmental factors such as training history, nutrition, body morphology, cognitive
factors, and injury susceptibility. Recently, the genetic underpinning of athletic perfor-
mance in elite athletes is gaining ascendency to understand the predictability of an athlete’s
capacity to perform under various constraints in addition to the potential trainability or
responsiveness of athletes to various strength and conditioning modalities. Genetics can
affect strength, power, and endurance, additional to other traits such as muscle fibre size
and composition, flexibility, and neuromuscular coordination [18–25]. Athletic status is at
least a partially inheritable trait, with upwards of 66% of athlete variance being explained
via genetics [26]. Interest in how an individual’s genotype can impact phenotypes related
to athletic performance has gained traction in recent times in AF. Some of the first iden-
tified and most influential candidate genes associated with athletic performance include
angiotensin-converting enzyme (ACE), alpha-actinin-3 (ACTN3), adrenoceptor-beta-1 (ADRB1),
and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) [27].

Variants within the ACE and ACTN3 genes have been associated with endurance,
strength, and power. The ACE enzyme regulates fluid volume within the renin–angiotensin–
aldosterone system (RAS) [28,29]. Within intron 16 of the ACE gene is an insertion/deletion
(I/D) polymorphism (rs4343) of an Alu repetitive element, with the I allele being associated
with a lower level of ACE enzyme activity [30]. An abundance of evidence indicates that the
insertion polymorphism and I allele are associated with elite endurance status in single dis-
ciplinary sports such as running (ranging from middle distance to ultramarathon) [31,32],
triathletes [33], and rowers [34,35]. The DD genotype has also been found to be benefi-
cial to sprinters [36]. The ACTN3 protein contributes to the formation of skeletal muscle
fibres [37], and helps coordinate type II fast-twitch muscle fibre contraction [22,23,37]. The
R577X polymorphism (rs1815739) within the ACTN3 gene can encode for a premature
stop codon (T allele), which is associated with improved endurance performance [22,38].
The TT genotype frequencies were found to be significantly lower in bodybuilders and
power athletes [39], whereas the T allele and TT genotype frequencies are likely higher in
endurance athletes such as endurance running [40–42], road cyclists [40], and rowers [40].
Research into the influence of the ACTN3 R577X polymorphism in sports has found higher
frequencies of the C allele and CC genotype in strength, power, or speed sports such as
speed skating [43], track sprinters [36,41,42,44], and field athletes [41,42]. The ACTN3 gene
has also been investigated in soccer, with Santiago et al. [45] finding that the CC and CT
genotypes were significantly higher.

Variants within the ADRB1 Arg389Gly (rs1801253) and PPARGC1A Gly482Ser (rs8192678)
genes have also been linked with endurance performance [24,25,46–52]. The ADRB1 gene
encodes for G-coupled receptors in cardiac tissue that impacts cardiac output [25,53]. Due
to this, most research into ADRB1 genetic variation has been conducted in patients with
cardiac conditions, such as idiopathic or ischemic cardiomyopathy. For example, Wagoner,
Craft, Zengel, McGuire, Rathz, Dorn, and Liggett [52] investigated a variant (rs1801253)
within the ADRB1 gene and found that patients with the C allele demonstrated an increase
in maximum rate of oxygen consumption (VO2max), exercise time, and endurance perfor-
mance. However, Wessner et al. [54] found that the GG genotype of this ADRB1 variant
was more prevalent in international or highest national level handball and soccer players.
The PPARGC1A gene is involved in glucose regulation and lipid metabolism, as well as
determination of fibre type and skeletal muscle fibre formation [24,46]. The PPARGC1A
Gly482Ser variant within this gene has been associated with athletic performance, with the
A allele found to be at a lower frequency in Israeli endurance runners, with significant
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differences between those endurance runners and sprinters of the same level [55]. In
addition, the AA genotype was found to be the more favourable genotype for a population
of Russian and Lithuanian powerlifters compared to controls [56]. In a meta-analysis of the
PPARGC1a rs8192678 variant [57], the A allele and the AA genotype were suggested to be
beneficial for athletic performance regardless of the type of sport; however, studies in AF
are lacking.

Due to the potential influence of these candidate genetic variants on endurance
performance in athletic pursuits and non-elite AF populations, the primary purpose of this
study was to investigate any associations of the ACE (rs4343), ACTN3 (rs1815739), ADRB1
(rs1801253), and PPARGC1A (rs8192678) polymorphisms with two-kilometre time-trial
endurance test performance in elite AF players. The secondary purpose of the study was
to determine if there was a genetic difference between nomadic and non-nomadic players,
to examine if particular genotypes were more favourable for certain positions.

2. Materials and Methods
2.1. Participants

Forty-six (n = 46) elite male AF players recruited from an AFL football club participated
in the study. All players were injury-free at the time of testing. To ensure anonymity,
players were assigned a randomised, non-identifiable code. All players were provided
with information letters outlining the purpose of the study, along with its potential benefits
and risks, and provided written informed consent for their participation. The study was
approved by the Edith Cowan University Human Research and Ethics Committee (ID:
2019-00181-JACOB).

2.2. Sample Collection and DNA Analysis

Buccal saliva samples were collected via mouth swabs with participants instructed to
brush the edge of a soft tip swab along the insides of their cheek and gums for 30 s [58,59].
Players were asked not to consume coffee, alcohol, or food two hours prior to saliva
collection. Collected samples were labelled with a numeric code for de-identification and
were sent to the Australian Genome Research Facility (AGRF; Brisbane, QLD, Australia;
NATA 17025) for DNA extraction and genotyping using the Agena Bioscience MassARRAY
system (AGRF). A summary of the genetic variants investigated in this study is presented
in Table 1.

2.3. Endurance Testing

Endurance performance was evaluated twice to obtain accurate and reliable results for
two-kilometre time-trials performed six weeks apart. Trials were conducted on a certified
athletics track (Oceania Athletics Association) during pre-season training in conjunction
with the football club’s regular pre-season testing. During the six-week training block,
players participated in the same structured pre-season training program overseen by the
club’s high-performance department. All times were visually verified through video
recording in conjunction with the AFL club’s guidelines for two-kilometre time-trials.

2.4. Statistical Analysis

Data were statistically analysed using SPSS V.24 (IBM, Armonk, NY, USA). A gen-
eralised linear mixed model (GLMM) was created to analyse the relationship between
covariates and overall performance in the two-kilometre time-trial. Separate GLMMs were
created to account for repeated measures over time, and to determine whether player
genotypes are associated with overall performance in the two-kilometre time-trial. Beta
(β) coefficients have been reported as a standardised measure of effect (i.e., effect size) for
the GLMMs. Further analysis was completed with the genotype and allele frequencies,
which were compared using Pearson’s Chi-square (χ2) tests between nomadic and non-
nomadic positions, as well as T-tests, or a non-parametric alternative, to determine the
mean difference between groups. A significant nominal p-value of <0.05 was employed.



Sports 2021, 9, 22 4 of 12

ETA square values (η2) for Chi-square analyses were also calculated to determine the effect
of any observed associations, defined as none (η2 < 0.010), small (η2 < 0.060), moderate
(η2 < 0.140), and large (η2 < 0.200).

Table 1. Variant distribution in elite Australian Football (AF) athletes.

Elite AF n (%)

ACTN3 R577X CC 21 (45.7%)
CT 23 (50.0%)
TT 2 (4.3%)

C allele 65 (70.7%)
T allele 27 (29.3%)

ACE I/D II 11 (23.9%)
ID 23 (50.0%)
DD 12 (26.1%)

I allele 45 (48.9%)
D allele 47 (51.1%)

ADRB1 Arg389Gly CC 25 (54.3%)
CG 18 (39.1%)
GG 3 (6.5%)

C allele 68 (73.9%)
G allele 24 (26.1%)

PPARGC1a Gly482Ser GG 23 (50.0%)
GA 18 (39.1%)
AA 5 (10.9%)

G allele 64 (69.6%)
A allele 28 (30.4%)

3. Results

This study is preliminary in nature with access to a single AFL football team producing
a sample size of 46 elite AF players. Demographic characteristics of these male players
were: age = 24.4 ± 4.0 years; weight = 88.3 ± 8.1 kg; height = 187.8 ± 6.3 cm; body
mass index (BMI) = 24.9 ± 1.4. Two-kilometre time-trials produced completion times of
406.9 (± 22.0) seconds for the first trial and 400.9 (± 17.0) seconds for the second trial. The
players’ genotype and allele frequencies are presented in Table 1.

Age (p = 0.750; 95% CI [−1.191, 0.861]), height (p = 0.086; 95% CI [−6.964–104.060]),
weight (p = 0.110; 95% CI [−0.086–0.827), and BMI (p = 0.674; 95% CI [−2.164, 3.332]) were
not significantly associated with two-kilometre performance (Table 2). Therefore, these
variables were not considered as covariates in subsequent GLMMs investigating individual
genetic variants.

Table 2. Generalised linear mixed model of covariates and the two-kilometre time-trial time.

Variable β Coefficient Standard Error t Value Significance 95% CI

Time 5.467 4.184 1.307 0.195 −2.847–13.781
Age −0.165 0.516 −0.320 0.750 −1.191–0.861

Height 0.524 0.302 1.735 0.086 −0.076–1.124
Weight 0.378 0.231 1.635 0.106 −0.082–0.838

BMI 0.584 1.382 0.423 0.674 −2.164–3.332
Note: β coefficient = standardised effect size.

To account for repeated measures, separate GLMMs between the first time-trial (time
point 1) and the second time-trial (time point 2) revealed that ADRB1 Arg389Gly and
PPARGC1a Gly482Ser variants were significantly associated with two-kilometre time-trial
performance (Table 3). Participants with the ADRB1 Arg389Gly CC genotype were 17.568 s



Sports 2021, 9, 22 5 of 12

faster (p = 0.034; 95% CI [−33.766, −1.371]) in the two-kilometre time-trial when compared
to participants carrying the GG genotype. Similarly, individuals with the PPARGC1a
Gly482Ser GG genotype were 14.421 s (p = 0.031; 95% CI [1.311, 27.531]) faster in the
two-kilometre time-trial than individuals with the AA genotype.

Table 3. Generalised linear model of genetic variables and the two-kilometre time-trial time.

Variable β Coefficient Standard Error Significance 95% CI

ADRB1

Intercept 416.292 7.826 0.000 400.738–431.849
Time point 1 5.467 4.128 0.189 −2.740–13.673

2 0 *
ADRB1 Arg389Gly CC −17.568 8.128 0.034 −33.766–−1.371

CG −13.806 8.297 0.100 −30.301–2.688
GG 0 *

ACE

Intercept 397.802 4.403 0.000 389.049–406.556
Time point 1 5.467 4.198 0.196 −2.878–13.812

2 0 *
ACE I/D II 6.049 5.815 0.301 −5.510–17.608

ID 4.146 4.999 0.409 −5.791–14.084
DD 0 *

ACTN3

Intercept 399.571 9.807 0.00 380.074–419.067
Time point 1 5.467 4.222 0.199 −2.927–13.860

2 0 *
ACTN3 R577X CC 0.748 10.153 0.941 −19.436–20.932

CT 2.929 10.093 0.772 −17/135–22.993
TT 0 *

PPARGC1a

Intercept 389.763 6.175 0.00 377.488–402.038
Time point 1 5.467 4.111 0.187 −2.706–13.640

2 0 *
PPARGC1a
Gly482Ser GG 14.421 6.595 0.031 1.311–27.531

AG 11.293 6.800 0.100 −2.224–24.810
AA 0 *

Note: Significant effects are bolded. * indicated comparison group. β coefficient = standardised effect size.

Nomadic players had an average height of 185.08 ± 4.58 cm, average weight of
84.78 ± 5.61 kg, and average BMI of 24.75 ± 1.37. Non-nomadic players had an average
height of 197.35 ± 3.36 cm, average weight of 100.57 ± 5.36 kg, and average BMI of
25.83 ± 1.27. A T-test was conducted been nomadic and non-nomadic players for height
(p = 0.312; 95% CI [−15.234–−9.312]), while Mann–Whitney tests were conducted for
weight and BMI. Non-nomadic players scored higher in weight (Mdn = 40.58) and BMI
(Mdn = 30.54) than nomadic players (weight: Mdn = 18.31; BMI: Mdn = 21.76; weight:
U = 409.00; p = 0.00; BMI: U = 288.500; p = 0.048). There was a significant difference
in ADRB1 Arg389Gly genotype frequency between nomadic and non-nomadic positions
(χ2 = 6.293, p = 0.037), with the CC genotype being significantly overrepresented in nomadic
positions (63.6%) compared with non-nomadic positions (25.0%; Table 4). Furthermore,
the C allele was significantly overrepresented in nomadic positions (80.3%) compared to
non-nomadic positions (19.7%; χ2 = 6.148, p = 0.017).



Sports 2021, 9, 22 6 of 12

Table 4. Genotype and allele distribution between nomadic and non-nomadic positional categories.

Nomadic n (%) Non-Nomadic n (%) Significance (p) ETA Squared
(η2)

ACE I/D II 8 (24.2%) 3 (25.0%)
ID 16 (48.5%) 7 (58.3%) 0.904 0.013 Small
DD 9 (27.3%) 2 (16.7%)

I allele 32 (48.5%) 13 (54.2%)
0.812 0.005 SmallD allele 34 (51.5%) 11 (45.8%)

ACTN3 R577X CC 14 (42.4%) 6 (50.0%)
CT 17 (51.5%) 6 (50.0%) 1.000 0.019 Small
TT 2 (6.1%) 0 (0.0%)

C allele 45 (68.2%) 18 (75.0%)
0.611 0.009 NoneT allele 21 (31.8%) 6 (25.0%)

ADRB1 CC 21 (63.6%) 3 (25.0%)
Arg389Gly CG 11 (33.3%) 7 (58.3%) 0.037 0.140 Large

GG 1 (3.0%) 2 (16.7%)

C allele 53 (80.3%) 13 (54.2%)
0.029 0.137 ModerateG allele 13 (19.7%) 11 (45.8%)

PPARGC1a GG 17 (51.5%) 6 (50.0%)
Gly482Ser AG 11 (33.3%) 6 (50.0%) 0.393 0.055 Small

AA 5 (15.2%) 0 (0.0%)

G allele 45 (68.2%) 18 (75.0%)
0.611 0.009 NoneA allele 21 (31.8%) 6 (25.0%)

Note: Significant effects are bolded.

4. Discussion

This preliminary study investigates the frequency of genotypes from a group of
candidate genes, which may contribute to the differences in endurance performance of
elite AF players. The study further investigated the presence of any associations between
candidate variants and performance in the two-kilometre time-trial for elite AF players.
This study is the first to investigate the frequencies of the ADRB1 Arg389Gly and PPARGC1a
Gly482Ser variants in elite AF players. The C allele of ADRB1 Arg389Gly and the G allele of
PPARGC1a Gly482Ser had higher frequencies than their respective allele counterparts, with
the homozygous genotypes for those alleles also having a greater frequency than the other
genotypes. Secondly, the results from the current study found a significant association
between two-kilometre time-trial performance and ADRB1 Arg389Gly and PPARGC1a
Gly482Ser variants, indicating these may contribute to endurance performance.

The ADRB1 gene encodes for the beta-adrenergic receptor, with stimulation resulting
in the activation and phosphorylation of targeted proteins in cardiac tissue, regulating
cardiac function [60–62]. In previous literature, positive associations between the C allele
of the ADRB1 Arg389Gly polymorphism have been seen in aerobic capacity performance in
heart disease populations [52]. Sawczuk et al. [63] did find an association of the haplotype
including loci Arg389Gly and Ser49Gly, showing that the 49Gly:Arg389 carriers had a
positive association with endurance performance. In a sporting context, a group of Austrian
handball and soccer players were found to have a higher frequency of the Arg389Gly GG
genotype; however, its effect on endurance performance was not investigated further [54].
Despite differences between the current study and previous literature, the association
between the C allele of ADRB1 Arg389Gly and the improvement in testing outcome, along
with the higher frequency of the Arg389Gly CC genotype and Arg389Gly C allele in the elite
AF population provides evidence that the Arg389Gly C allele may be the preferred allele
in AF. Nonetheless, with the conflicting research around ADRB1, further investigation
is required.



Sports 2021, 9, 22 7 of 12

The PPARCG1a Gly482Ser variant was also significantly associated with two-kilometre
time-trial performance in our study. When accounting for repeated measures, individuals
with the AA genotype of the Gly482Ser variant were predicted to perform 14.46 s slower on
the time-trial. These results are supported by a study with Turkish elite endurance athletes,
where participants with the A allele were found to have poorer endurance performance
and aerobic capacity [64]. Similar results were found in Maciejewska, Sawczuk, Cieszczyk,
Mozhayskaya, and Ahmetov [48] who found that the G allele of the PPARGC1a Gly482Ser
polymorphism was associated with elite endurance performance in a Polish population.
However, studies conducted in Chinese populations have found no association [65] be-
tween endurance performance and the PPARGC1a Gly482Ser polymorphism; however,
this could be explained by the different frequencies of the variant in Chinese populations.
Further studies found that the “less optimal” genotype of AA had better performance times
in a cohort of elite endurance triathletes [66,67]. As AF players were of primarily European
descent, the results from the study still indicate that ethnicity may impact the phenotypic
response of the PPARGC1a polymorphism.

The current study showed that there was no significant association of ACE I/D variant
and performance in time-trial results. The II genotype is associated with lower ACE
plasma levels [68], leading to greater dilation through the vascular system, thus increasing
cardiac output [69–72]. However, in sub-elite AF players, the deletion polymorphism was
found to positively affect endurance performance, as well as the more commonly expected
20-metre sprint and vertical performance [59]. Heffernan et al. [73] found no difference in
the ACE I/D polymorphism between rugby union players and Caucasian controls, while
Magi et al. [74] found that the ACE I/D gene was more prevalent in young cross-country
skiers, with lower frequencies of the DD genotype.

We previously reported that the frequency of the T allele of the ACTN3 R577X variant
is underreported in elite AF [75,76], reflecting the results of Massidda, Bachis, Corrias,
Piras, Scorcu, Culigioni, Masala, and Calo [76] who found no significance in ACTN3 poly-
morphism distribution in Italian team sports athletes, endurance athletes, and healthy
controls. However, Santiago, Gonzalez-Freire, Serratosa, Morate, Meyer, Gomez-Gallego,
and Lucia [45] found CC and CT genotypes to be significantly higher in soccer players,
indicating that the C allele may be more beneficial to soccer players and potentially other
team sports. However, when examining the effect of this genotype on endurance capacity,
it was not significantly associated with two-kilometre time-trial performance. This finding
is in part supported by Silva et al. [77] who found those with the TT genotype had a greater
baseline VO2max; however, after undergoing their training protocol, no difference between
TT and CC genotypes was illustrated while investigating the effects of endurance training
on healthy adult males. This may indicate a limit to where carriage of the TT genotype
is of benefit once similar training protocols are partaken. However, over a five-year pe-
riod in junior Estonian cross-country skiers, an increase in maximal oxygen uptake peak
(VO2peak) was seen for males with the TT genotype [74]. In contrast, in elite Brazilian soc-
cer players, the players with the TT genotype had significantly higher estimated maximal
oxygen consumption (VO2max) using the Yo-Yo intermittent endurance test than their CC
counterparts [78]. Even though the results from our study regarding ACTN3 need further
investigation, the significantly higher frequency of the C allele provides initial evidence
that it may be more beneficial for an AF player to have either the CC or CT genotype to
become elite.

Another finding from the current study was the significant difference between the
nomadic and non-nomadic positions and the ADRB1 Arg389Gly genotypes. To our knowl-
edge, this is the first study to investigate the genetic differences in AF players playing in
different positions. Playing positions were defined and grouped by the AFL club, with
nomadic players being those who followed the play across the full oval. This supports
the previous findings of this study, suggesting that the Arg389Gly CC genotype and the
Arg389Gly C allele are a potential benefit to endurance performance and furthermore, to
elite AF players in general. Due to the nature of nomadic positions, there can be an as-
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sumption that players who fall into this category will have greater endurance performance
capacities because of the demands of the position. However, this does not account for the
possible genetic impact of the ADRB1 Arg389Gly C allele.

5. Limitations of the Study

Complete access to an elite AFL squad was provided, and is a strength of the study.
However due to the elite nature of the cohort and the novel, exploratory nature of the
study, the sample size of the participants is relatively low and these findings in Australian
Football may require replication with larger sample sizes across multiple teams or the
entire AFL competition. Furthermore, to account for individual variability in performance
of the two-kilometre time-trial, multiple measures were taken to ensure consistent and
reliable performance necessary for genetic association. While more precise measures of
VO2max using a laboratory setting could have been used to test endurance performance,
the validity of the two-kilometre time-trial should be noted with its routine use in elite AF,
including the AFL National Draft Combine, which is conducted every season prior to the
draft. Though the investigators are confident in the training partaken and the synchronicity
of it, the inability to dictate a precise training schedule and method across all players is
a limitation. This study was limited to investigating genetic associations with endurance
performance. Each genetic variant was investigated singularly; however, it is known that
often, a combination of genes and genotypes provides the phenotypic outcome.

6. Conclusions

The C allele of the ADRB1 Arg389Gly variant and the homozygous GG genotype of the
PPARGC1a Gly482Ser variant were significantly associated with two-kilometre time-trial
performance in AFL players. The CC ADRB1 Arg389Gly genotype was found to have a
better improvement in repeated two-kilometre time-trials compared to the GG genotype,
while the GG PPARGC1a Gly482Ser genotype had a poorer performance. These results
may indicate a preferred genotype for endurance running performance in elite Australian
Footballers. Additional analysis also discovered the ADRB1 Arg389Gly C allele was signifi-
cantly different for characterised nomadic player positions relative to non-nomadic key
positions. Further research into possible interactions and combinations of multiple variants
and their influence on endurance performance outcomes, and differences between precise
playing positions appear to be a logical next step in this research field. Future research
into the genetic distribution of elite AF players and the genotype and allelic impact on
endurance performance should utilise controlled trials with specifically prescribed training
measures to provide high-quality insights. Further studies should also look to increase the
sample size of elite cohorts for characterisation by engaging multiple teams in the AFL
competition; through controlled trials, this may improve practitioner understanding of the
athletic potential of individual footballers. Insights into the contribution of genetic variants
and training response to various fitness parameters are a high priority for sport scientists,
which may enable the preparation of high fidelity and highly targeted strength and con-
ditioning programs with precision exercise prescription based on a specific footballer’s
trainability and training response relative to genetic characteristics—a long-term aspiration
of this line of research.
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