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Abstract
Deep learning has provided numerous breakthroughs in natural imaging tasks. However, its successful application to

medical images is severely handicapped with the limited amount of annotated training data. Transfer learning is commonly

adopted for the medical imaging tasks. However, a large covariant shift between the source domain of natural images and

target domain of medical images results in poor transfer learning. Moreover, scarcity of annotated data for the medical

imaging tasks causes further problems for effective transfer learning. To address these problems, we develop an augmented

ensemble transfer learning technique that leads to significant performance gain over the conventional transfer learning. Our

technique uses an ensemble of deep learning models, where the architecture of each network is modified with extra layers

to account for dimensionality change between the images of source and target data domains. Moreover, the model is

hierarchically tuned to the target domain with augmented training data. Along with the network ensemble, we also utilize

an ensemble of dictionaries that are based on features extracted from the augmented models. The dictionary ensemble

provides an additional performance boost to our method. We first establish the effectiveness of our technique with the

challenging ChestXray-14 radiography data set. Our experimental results show more than 50% reduction in the error rate

with our method as compared to the baseline transfer learning technique. We then apply our technique to a recent COVID-

19 data set for binary and multi-class classification tasks. Our technique achieves 99.49% accuracy for the binary clas-

sification, and 99.24% for multi-class classification.

Keywords Deep learning � Transfer learning � Dictionary learning � COVID-19 � Computer-aided diagnosis �
Thoracic disease classification � Chest radiography

1 Introduction

Deep learning [30] is becoming increasingly popular in

medical image analysis [33]. This technology allows to

imitate very complex mathematical functions using com-

putational models that can perform intricate decision

making with high accuracy. However, deep learning is a

data-driven technology. To induce effective computational

models in a supervised learning setup, it requires huge

amount of annotated training data. In general, this

requirement is very hard to fulfil in Medical Imaging

[3, 36]. Hence, to leverage deep learning, techniques in the

medical imaging domain resort to transfer learning.

Transfer learning [8, 50] takes a model learned for a source

domain and applies it to a target domain. The source

domain is chosen such that it can provide abundant training

data to learn an effective model. The parameters of the

model are then fine-tuned to the target domain using

transfer learning with the help of available limited data.

Although useful, transfer learning suffers significantly at

the hands of large covariate shift between the source and

target domains, and target domain training data scarcity.

This is particularly true for medical imaging. Medical

image analysis techniques rely on ‘natural’ images to form

the source domain [10, 15, 53]. Specifically, they use the
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models trained on ImageNet data set [12, 34] that contains

over one million annotated images of one thousand daily-

life object categories. An overwhelming majority of these

categories, e.g. carpet, pot, are completely irrelevant for

typical medical imaging tasks. Besides, the ImageNet

samples are colour images, usually captured in setups far

from laboratory settings. Not to mention, the architectures

of the models trained for ImageNet data set are designed to

discriminate between one thousand classes—a number

much larger than a typical medical imaging classification

task. These and other such factors not only make transfer

learning for medical imaging with these models difficult,

they also severely handicap the performance of the overall

framework.

In this work, we develop a technique to address above

problems by significantly boosting the transfer learning

performance for medical image classification task.

Specifically, we aim at the settings where the target domain

data is not only scarce but also has a different modality

than the source domain. We consider ImageNet models

trained on colour images and use those to classify thoracic

diseases with chest radiography greyscale images. We

choose the ImageNet models (trained on natural images) as

the source models following the common practice of

transfer learning in medical image analysis. On the other

hand, our choice of thoracic disease classification as a test

bed is based on the fact that these diseases are considered a

major health threat around the globe [60]. Moreover,

availability of the Chest X-ray 14 data set [62] allows us to

clearly establish the effectiveness of our approach by

considerably varying the amount of available data for our

target domain. Additionally, we are able to demonstrate the

effectiveness of our technique for a practical contemporary

problem of COVID-19 detection using radiography.

In the proposed technique, instead of following the norm

of simply fine-tuning an ImageNet model with the samples

of our target domain and account for the data modality

difference with image preprocessing, we propose a

sophisticated framework that tunes a collection of source

domain models to the target domain through a hierarchical

learning process. For the source domain models, we use

DenseNet [21], ResNet [17], VGG-16 [65] and Inception-

V3 [52] models. The framework meticulously extends the

original models to automatically account for the data

modality differences during training. Eventually, the

models are used in an ensemble to make the predictions.

These predictions are further augmented by the output of

an ensemble over dictionaries [57] formed by the features

of data samples extracted through our models. We combine

both sparse and dense representations [2] for the dictionary

ensemble to augment the output of deep learning model

ensemble. We thoroughly evaluate our technique with the

challenging multi-class classification scenario of thoracic

diseases. Our experiments with Chest X-ray14 data sets

show that the overall technique results in a large gain over

the performance of the best fined-tuned model under typ-

ical transfer learning setup when both techniques use the

exact same limited training data. At the same time, our

technique results in 99:49% binary class classification

accuracy and 99:24% multi-class classification accuracy

for the recent COVID-19 data set.

The remaining article is organized as follows. In Sect. 2,

we review the related literature. The proposed technique is

discussed in Sect. 3. We present experimental results in

Sect. 4. The article concludes in Sect. 5, also discussing

future work.

2 Related work

Since we choose thoracic disease classification with chest

radiography as our test bed, we mainly focus on deep

learning based techniques only for this problem in this

section. Deep learning is becoming increasingly popular

for the said problem [49]. For instance, Wang et al. [62]

developed a weakly supervised framework for multi-label

classification and localization of thoracic diseases and

reported results for eight common pathologies on chest

X-ray8 data set. They used different ImageNet models for

abnormal finding classification and localization. Later, Li

et al. [31] proposed a unified approach for disease identi-

fication and localization with limited annotated data. They

employed the Multiple Instance Learning (MIL) formula-

tion, which helped them to improve the performance as

compared to the baseline models of ResNet and DenseNet.

Zhou et al. [66] proposed a weakly supervised adaptive

DenseNet-169 for the thoracic disease identification and

classification in chest radiographs.

Rajpurkar et al. [45] proposed a 121-layered CNN

model named ChexNet which is claimed to achieve human

level performance on the F1 metric for pneumonia detec-

tion. However, it requires training on the large-scale Chest

X-ray14 data set [62]. Wong et al. [64] proposed a deep

learning-based framework using an ImageNet model

Inception-ResNet-V2 for normal vs abnormal classification

of 3217 chest X-ray images. Wang et al. [60] proposed

ChestNet model which consists of a classification branch

and an attention branch for computer-aided diagnosis of

thoracic disease on CXR images [62]. They used ResNet-

152 which is pretrained on ImageNet data set. The classi-

fication branch assists as a uniform feature extractor, and

attention branch exploits the correlation between the class

label and pathological abnormalities through analysing the

feature maps learned in the classification branch. Ho et al.

[19] proposed a technique for multiple feature integration.

They used pretrained model DenseNet-121 for localization
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and integrated the extracted shallow features (Scale-In-

variant Feature Transform (SIFT), Local Binary Pattern

(LBP), Histogram Oriented Gradients (HOG)) and deep

(CNN) features for classification of 14 Thoracic disease in

chest X-rays. Similarly, Lakhani et al. [29] used AlexNet

and GoogLeNet to classify pulmonary tuberculosis. In [63],

the authors proposed the TieNet model for text represen-

tations of distinctive image extraction. They used the

TieNet for classification of X-ray images using image

features and text extracted from analogous reports. Fur-

thermore, they utilized the TieNet for CXR reporting sys-

tem that simulates reporting and outputs disease

classification with a precursive report.

From the transfer learning viewpoint, this framework is

often used by medical imaging community to address the

issue of small data size. Grickshik et al. [16] is one of the

first contributions to use transfer learning with pretrained

CNNs for image classification [46] while learning from

relatively small data set for object detection [13]. Recently,

Raghu et al. [44] studied transfer learning for medical

images and found that it is challenging to directly take

advantage of ImageNet models with transfer learning for

the tasks like thoracic disease classification. Da et al. [39]

used features extracted from a set of ImageNet models for

lung nodule classification in CT images. They used the

extracted features to train a list of multi-class classifiers,

including MLP, and studied their performance. Neverthe-

less, they neither consider model ensembles, nor they

contributed towards thoracic disease classification. Behzadi

et al. [6] used a pretrained ImageNet models for the

detection of consolidation in Pediatric Chest X-ray images.

They tuned their problem-based ChestNet by removing a

few pooling layers and used image preprocessing to cater

for model generalization. With the worldwide outbreak of

COVID-19, studies on X-ray images have been conducted.

Aplostolopoulos et al. [5] transferred some existing object

classification models into the COVID-19 classification

area. They compared five currently existing models,

namely, VGG-19 [51], MobileNet v2 [47], Inception [52],

Xception [7], and Inception ResNet v2 [9]. VGG-19 out-

performs the other models and has an accuracy of 98:75%

in the two-class classification scheme and 93:48% in the

three-class classification scheme. Kumar et al. [27] used

ResNet-152 to extract features with seven traditional

machine learning classifiers, including logistic regression,

nearest neighbours, decision tree, random forest, AdaBoost

classifier, naive Bayes, and XGBoost classifier. This model

has an accuracy of 97:7% on the XGBost classifier. Farooq

et al. [14] developed COVID–ResNet, a deep learning

framework that aims to classify COVID-19. This frame-

work is highly sensitive to normal 96:58% and COVID-19

100% classes.

3 Proposed technique

For the transfer learning techniques reviewed in the pre-

vious section, and other such techniques in general, the

domain transfer is mostly carried out with a rather sim-

plistic fine tuning of the original (i.e. source domain) model

using the target domain data. In a sharp contrast, we pro-

pose a much more sophisticated transfer learning that not

only systematically changes the architecture of the original

network, but also hierarchically fine-tunes it on an aug-

mented target domain data. Moreover, we use an ensemble

of the modified networks to make a prediction. The pre-

diction mechanism is further augmented by an ensemble of

a dictionary-based classification mechanism. Our technique

is able to exhibit a significant performance gain over the

conventional transfer learning using exactly the same

limited training data of the target domain data. A schematic

of the overall technique is illustrated in Fig. 1. Below we

provide details related to each component of our technique.

3.1 Source domain model selection

Following the common convention of employing natural

images as the source domain for medical image transfer

learning, we consider the networks trained on ImageNet as

the source domain models in this work. To that end, we

choose DenseNet201 [20], ResNet50 [17], Inception-V3

[52] and VGG-16 [65] models. As can be seen in Fig. 1, we

use these models in an ensemble. Hence, our selection is

based on the criterion of increasing the architectural

diversity of the underlying networks, thereby increasing the

representation power of the ensemble. We refer interested

readers to the original works for the exact details of the

original network architectures. Below we summarize the

major insights that resulted in our final selection of the

models.

Among the mentioned models, VGG [51] has a very

systematic architecture that gradually compresses the size

of the input image/features as we go deep into the network,

but keeps increasing the number of convolutional filters to

account for this reduction in the feature size. This results in

an increasing number of feature maps in the later layers of

the network, which endows strong representation power to

the overall model. Different from VGG, the strength of

ResNet [17] comes from skip connections that allow

copying residue of feature maps from one layer to a sub-

sequent layer. It is now a common knowledge that these

connections are able to significantly improve the network’s

representation power. As compared to ResNet, VGG is

completely void of skip connections, which makes its

internal representation quite different from ResNet.
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DenseNet [20] builds on the insights of ResNet and

introduces dense skip connections by connecting a layer to

all subsequent layers through skip connections. This, along

with further architectural changes, significantly alters the

internal representation of DenseNet from the ResNet.

Hence, we also include this network in our pool of models.

One important aspect to note is the use of suffixes with the

network names in the preceding paragraphs. Crudely

speaking, ‘16’, ‘50’ and ‘201’ refer to the number of layers

in the networks. As can be seen, the chosen models go from

relatively shallow to very deep in terms of the number of

layers. This is intentional, as it results in more architectural

diversity.

Different from VGG, ResNet and DenseNet the archi-

tecture of Inception-V3 [52] mainly relies on inception

blocks for its representation prowess. These blocks are not

available in any of the aforementioned networks. Conse-

quently, the architecture and the internal representation of

Inception-V3 are considered very different from those

networks. This makes Inception-V3 a good candidate for

our pool. As can be noticed, our selection of models is

methodical. All ImageNet models are trained on the same

data set (i.e. ImageNet). This makes the diversity of their

internal representation a direct function of their architec-

tures. Hence, by employing models of diverse architec-

tures, we maximize the representation capacity of our

ensemble.

3.2 Deep model augmentation

The most common issue for transfer learning is the mis-

match between the dimensions of input expected by the

network and the actual dimensions of the target domain

samples. Moreover, the number of class labels to be pre-

dicted at the output may also differ for the target domain.

To resolve the latter, we employ the common strategy of

replacing the ‘fully connected’ and ‘softmax’ layers of the

original networks with N-neuron layers of the same types,

where ‘N’ is the number of output classes of the target

domain. For the former, we augment the input stage of the

networks with additional convolutional layers. These layers

serve two purposes in our models. (a) They allow us to use

greyscale single-channel images as inputs to the networks

that are originally pretrained on three-channel colour

images. (b) We are also able to use images twice as large as

the input images originally expected by the model.

In above, (a) is important because the images for chest

radiography are grey scale. Generally, the difference in the

number of channels of greyscale and colour images is

handled by the existing methods by either three-fold

stacking of the single channel image, or using primitive

image processing techniques. In contrast, we let our model

‘learn’ this transformation automatically from the target

domain itself using end-to-end training. Moreover, due to

(b), we are able to take advantage of additional information

in larger input images. The large images also get com-

pressed automatically by the added convolutional layers in

our augmented networks. For each of the used model, we

summarize details of the added layers in Table 1.

According to the table, the ‘Original’ input layer gets

replaced by the ‘Modified’ block of layers, which expects a

lager ‘Input’ size. It can be noticed that the dimensions of

the output ‘Activations’ of the ‘Modified’ layers match the

dimensions of the ‘Input’ of the ‘Original’ layer. Hence, an

added block seamlessly combines with the original model.

The convolutional kernel size in each ‘Modified’ block is

kept similar to the kernel size of the first convolutional

layer of the original network. The stride and number of

filters are adjusted to match the input dimensions expected

by the first convolutional layer of the original network.

Similarly, the Batch-Normalization operation and ReLU

Fig. 1 Schematics of the proposed technique: A set of natural (colour)

image deep learning models are augmented with additional input and

modified output layers. The augmented models are hierarchically fine-

tuned with limited (greyscale) images of chest X-rays. Features

extracted from augmented models are also used as dictionaries to

compute dense and sparse representations of unseen samples. Outputs

of model ensemble and dictionary codes are combined to predict

output labels
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activations are also applied based on their application in

the original architectures.

3.3 Deep model training

We train our augmented deep models individually using a

hierarchical three-step strategy. In the first step, we freeze

the inner layers of the network and train only the aug-

mented input layers and the modified output layers for five

epochs using learning rate 0.001 with Adam optimizer

[26]. This training is done using the original training data

of our target domain. The objective of this step is to reach a

reasonable initialization point for the subsequent training

steps. In the second step, we reduce the learning rate ten

times and conduct five more training epochs; however, this

time we use augmented training data. We give details on

data augmentation in the next paragraph. In the third step

of model training, we further reduce the learning rate ten

times and run five more epochs using the augmented data.

However, this time we let the complete network get fine-

tuned to smooth out any abrupt weight variations between

the original and augmented layers. The last step is allowed

to modify weights of the whole network, albeit slightly. We

use the default parameter settings of the Adam optimizer

for training, except for the learning rate, which is varied as

discussed above.

In our implementation, we employ cropping, rotation

and flipping as the data augmentation strategies. For

cropping, we select the inner 850� 850 block of the

original 1024� 1024 image and then resize the cropped

image back to 1024� 1024. For rotation, we use a random

angle of rotation between -7 to 7 degrees. This is based on

the observation that chest radiographs are often tilted in the

same range. We only apply horizontal flip. To augment the

training data, an additional copy of the original sample gets

modified by each of the aforementioned transformations

with 0.3 probability in a sequential manner. This results in

almost doubling our training data synthetically.

3.4 Representation augmentation
with dictionaries

Within the broader field of Machine Learning, deep

learning is a representation learning technique. Another

popular technique for representation learning is known as

‘dictionary learning’ [57] that represents data with the help

of an over-complete basis. Put simply, given an (over-

complete) basis D—a.k.a. dictionary—for an input sample

y, it strives to compute a representation vector a such that

y � Da. The representation a can be subsequently used for

further analysis. It has been shown that this technique can

boost the performance of deep learning representation [1].

Hence, we further augment our framework with this tech-

nique to achieve maximum performance with minimal

training data of the target domain.

Concretely, given an augmented fine-tuned model, we

forward pass all original training samples through it and

record the activations of the layer before the softmax layer.

For each model, we use these activations to construct the

dictionary D. Essentially, each column of the dictionary

thus constructed is a feature of a training sample, as

extracted from our modified model. With ‘n’ models used

Table 1 Network adaption for

transfer learning at input stage
Network Original Input Modified Input Activations

DenseNet201 Input_1 224�224�3 Input_grey 448�448�1 224�224�3

Conv 7, 3, [2,2]

Batch-N, ReLU

ResNet50 Input_1 224�224�3 Input_grey 448�448�1 224�224�3

Conv 7, 3, [2,2]

Batch-N, ReLU

Inception-V3 Input_1 299�299�3 Input_grey 598�598�1 299�299�3

Conv 3, 3, [2,2]

Batch-N, ReLU

VGG-16 Input 224�224�3 Input_grey 448�448�1 224�224�3

Conv 3, 3, [2,2]

Batch-N, ReLU

‘Original’ names of the altered layers are given along the ‘Input’ dimensions expected. For the ‘Modified’

network, conv K, F, [S,S] indicates a convolutional kernel with kernel size K � K, with F number of filters

and a stride of [S, S]. The activations of convolutional layer are batch-normalized [22], indicated by ‘Batch-

N’, followed by ReLU activations [37]. The output ‘Activations’ of the modified layer are given in the last

column. At the output stage, the fully connected layers are modified to have N neurons instead of 1000,

where N is the number of output classes considered
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in our ensemble, we create ‘n’ such dictionaries with the

same training data. Each of these dictionaries is unique

because their columns are based on different representa-

tions resulting from different models. These dictionaries

eventually get used in the classification stage of our

framework.

3.4.1 Representation computation with dictionaries

Whereas we give complete details of the classification

stage of our technique in Sect. 3.5, for clarity, it is

imperative to discuss the representation computation of

testing samples with dictionaries here.

In order to eventually classify a test sample, we forward

pass it through each of our augmented fined-tuned net-

works. Assume that ey denotes the feature extracted for the

test sample from one of our models, where feature

extraction follows the same procedure that we use for

dictionary creation. We use the dictionary D for that model

to solve the following two optimization problems to com-

pute two new representations for the test sample:

ad ¼ argmin
a

jjey � Dajj2 þ kjjajj2; ð1Þ

as ¼ argmin
a

jjey � Dajj2 s.t. jjajj0 � k ð2Þ

where ‘k’ is a regularization constant, jj:jjp denotes the ‘p-

norm of a vector and ‘k’ is a predefined constant. The first

equation seeks to solve ey ¼ Dad in a regularised least

squares manner. We can compute a closed form solution

for that by letting ad ¼ ðD|Dþ kIÞ�1D|
ey, where I is the

identity matrix. The resulting ad is a ‘dense’ vector in the

sense that nearly all of its coefficients will have nonzero

values. Hence, we use the superscript ‘d’ in ad. For as, the

external constraint jjajj0 � k forces as to have at most ‘k’

nonzero coefficients, thereby making this vector ‘sparse’—

indicated by the superscript ‘s’. It has been shown by

Akhtar et al. [2], that both sparse and dense representations

can work hand-in-hand to make a cumulative representa-

tion achieved as a ¼ ad þ as more discriminative than any

of these representations alone. We capitalize on this

observation and use the more discriminative representation

in our final classification. We use the Orthogonal Matching

Pursuit (OMP) strategy [42] to compute the sparse repre-

sentation as. We note that the concept of using deep

learning features to construct dictionaries was first intro-

duced in [1]. However, our technique is different from [1]

in that we are strictly concerned with transfer learning for

which our base deep learning model is also augmented and

fine-tuned to the target domain. In [1], transfer learning is

not considered. Additionally, the features used by [1] are

only employed for initializing a dictionary that later gets

adapted to the training data of the same domain for which

the deep model is trained. Moreover, [1] also does not

consider combining the sparse and dense representations as

proposed in this work, which makes our contribution sig-

nificantly different from [1].

3.5 Classification

In order to classify a test sample, we forward pass it

through each of the models in our ensemble and record the

activations of their softmax layers. We also record the

activations of the layers right before the softmax to com-

pute the cumulative representation a, as discussed in

Sect. 3.4.1. Recall that we construct the columns of dic-

tionaries involved in computing a with the features of

annotated training data. This allows us to specify a class

label associated with each column of a dictionary. Alge-

braically, those labels also get associated with the corre-

sponding coefficients of a. We take advantage of this

observation and compress our representation a by inte-

grating the components of this vector for each class,

resulting in a vector acompressed 2 R‘, where ‘‘’ denotes the

total number of classes involved in our classification. From

theoretical viewpoint, acompressed encodes a cumulative

correlations between the test sample and the training data

of each class. We normalize this vector to have unit

magnitude, and use the resulting vector âcompressed with the

softmax layer activations of our deep models as follows:

Label ¼ Max-coeff
�

X

n

i¼1

ðsoftmaxi þ â
compressed
i Þ

�

; ð3Þ

where Max-coeff(.) is a function that finds the index of the

largest coefficient of a vector and ‘n’ is the total number of

used deep learning models—4 in this work. It is worth

noticing that Eq. (3) can be interpreted as maximization of

the Expected value of probability distributions over the

predicted test label where the distributions are estimated

under diverse representation learning tools.

4 Experiments

We use thoracic disease classification as the test bed for our

technique. Below we give details of the experiments that

establish the effectiveness of our technique.

4.1 ChestX-ray14 data set

For experiments, we use publicly available large-scale

Chest X-ray14 data set [62]. In total, the data set contains

112,120 frontal chest X-ray images from 30,805 unique

patients with 14 disease labels. The full data set has 51,708
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images with single or multiple disease labels and 60,412

images with no disease. The original data has a split list

with 86,524 images for training and validation and 25,596

for testing. The original resolution of the sample images

provided by the data set is 1024x1024. For each augmented

network used in our technique, we resize the images to the

input dimensions noted in Table 1 using cubic interpola-

tion after data augmentation, where applied.

In our experiments, we consider the scenario where a

sample from the data set can contain at most one disease

that needs to be correctly classified. This makes our con-

tribution specific to single label multi-class classification.

We note that this work is not concerned with multi-label

classification, and that will form part of our future work.

The chosen setup resulted in identifying 10 classes in the

training data with a reasonable amount of samples for

conclusive evidence of the effectiveness of our technique.

For each of the ten classes, we sample 775 images allowed

by the data set, resulting in 7,750 training samples per

experiment. The class labels for the used ten classes

include Atelectasis, Cardiomegaly, Effusion, Infiltration,

Mass, Nodule, Pneumothorax, Consolidation, Pleural

Thickening, and No finding. For testing, we select random

3000 samples from the same labels using the testing data of

Chest X-ray14. It is worth mentioning that none of the

patients in the training data overlaps with the patients of

testing data in Chest X-ray14, which makes the data set

specifically challenging for transfer learning.

4.2 COVID-19 data set

The second data set used to establish the effectiveness of

our technique comprises two publicly available data sets

related to COVID-19. These data sets include the COVID-

19 radiography data set [54] that is available at kaggle

repository which is developed using images from various

open access sources, and COVID-19 image data [11] which

is separately available for research purpose.

From these data sets, we selected a total of 657 chest X-

ray images consisting of 219 images each for COVID-19,

viral pneumonia and normal X-rays. Figure 2 shows rep-

resentative samples of our data set. To be compatible with

the models, the data were resized to 448� 448 and

598� 598. The data set was split into 80% training and

20% testing sets. For the transfer learning, cross-validation

revealed an optimal batch size of 16 and only 7 epochs

were necessary to fine-tune the model with learning rate

0.001. We fine-tuned the model obtained from our exper-

iments with the Chest X-ray14 data set.

4.3 Evaluation metrics

We employ standard evaluation metrics used by medical

imaging and computer vision community to establish the

effectiveness of our technique. Recall that our source

domain is natural images, which is relevant to computer

vision community. Hence, we find it more informative to

also include the metric scores used for computer vision

tasks.

Let TP, TN, FP and FN denote the number of true

positive, true negative, false positive and false negative

predictions. We use the following definitions of Specificity

(Spec.), Sensitivity (Sens.) and F1-Score:

Spec. ¼ TN

TNþ FP
; Sens. ¼ TP

TP + FN
; ð4Þ

F1-Score ¼2� PPV� TPR

PPVþ TPR
ð5Þ

where PPV ¼ TP/(TP?FP) and TPR ¼ TP/(TP?FN).

Based on these metrics, we use the definition of Accuracy

(Acc.), as commonly adopted by the medical imaging

community [28] as:

Acc. ¼ TPþ TN

TPþ TNþ FPþ FN
� 100%: ð6Þ

We also use yAccuracy (yAcc.), which is the definition of

accuracy commonly used in computer vision community

[1] for single-label multi-class classification problems:

yAcc. ¼ TP

#of total test samples
� 100%: ð7Þ

It should be noted that the two definitions can amount to

different accuracies for the same set of predictions. We

often refer to Acc. as the binary classification accuracy and

yAcc. as the multiclass classification accuracy.

Tools and resources : For our experiments, we fine-tune

our models with NVIDIA GTX 1070 GPU with 8GB

RAM. For the pretrained models, we use the ImageNet

models provided by MathWorks and fine-tuned them using

MATLAB. We use the SPAMS library [35] to implement

the OMP algorithm.

4.4 Results on chest X-ray14 data set

We summarize the results of our experiments on Chest

X-ray14 data set in Table 2. The table includes the results

of ‘Baseline’, which is a DenseNet201 model that isFig. 2 Samples of chest X-ray images from COVID-19 data set
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pretrained on ImageNet (source domain) and then fine-

tuned on our training set (target domain) by the commonly

used conventional Transfer Learning (TL) technique. The

‘Den’, ‘VGG’, ‘Res’ and ‘IV3’ respectively denote the

DenseNet201, VGG-16, ResNet50 and Inception-V3

models augmented by our technique for transfer learning.

The ‘Proposed’ is the proposed full ensemble technique

that additionally uses the dictionaries, as discussed in

Sect. 3. The table reports the mean values of Spec.,

Sens., F1-Score, and Acc. across the ten labels used in our

experiments.

To show the contribution of each modified model in our

technique, each following row of Table 2 adds a new

model to the ensemble, denoted by ‘?’ symbol. We also

report the Error Reduction Rate (ERR) and Gain resulting

from each constituent of the technique. For a given row,

‘ERR’ is the percentage reduction in the error for the model

in that row, as compared to the previous row. Similarly, the

‘yGain’ is the percentage improvement in the ‘yAcc.’ for a
given row as compared to the last row. These results

clearly show a consistent improvement in the performance

of our technique with each additional component. Results

of the full technique are given in the last row.

It is worth indicating that in Table 2, the ‘Baseline’ was

chosen after testing conventional transfer learning with

DenseNet201, VGG-16, ResNet50 and Inception-V3 sep-

arately. We chose DenseNet201 as it performed the best.

Despite that, the performance was not acceptable for the

challenging radiography test set used in our experiments.

The baseline model was not able to generate a single TP

prediction of two classes (details below), which also

resulted in undefined F1-Score of the model. The proposed

augmentation of DenseNet201 led to a significant perfor-

mance gain. Recall that this gain results from multiple

factors, including; extra input layers, larger input image

size, increasing channels of input with end-to-end trained

layers, and adopting hierarchical procedure for model

induction. Owing to the diversity of the chosen models,

each new augmented model is able to make an explicit

contribution in the final performance, which is further

boosted by the dictionary ensemble. We also report the

computation time for all the networks for our approach in

Table 3. Information on the used computational resources

is already provided in Sect. 4.3.

In Table 4, we show detailed results on individual

classes on Chest X-ray14 data set. The table also includes

the results of ‘Baseline’ for reference. It can be noticed that

due to large true negative predictions, the baseline is often

able to show good specificity as well as the overall accu-

racy. However, the sensitivity and F1-score of the baseline

remain below the acceptable range. In our experiments, the

baseline transfer learning is not able to predict even a

single true positive for Consolidation and No Finding. This

resulted in an un-defined F1-score. Note that ERR and Gain

are defined w.r.t. the baseline. Hence, no values of these

metrics are reported in the table. Our technique is able to

provide acceptable results across nearly all classes. We

emphasize, both baseline and our technique use exactly the

same training data to achieve the reported results.

4.5 Results on COVID-19 data set

To establish the efficacy of our technique for a contem-

porary practical problem, we tested our proposed method to

classify COVID-19 cases from chest X-ray images. The

results of our experiments on COVID-19 data set are

summarized in Table 5. The results are reported for Den-

seNet-201, VGG-16, ResNet50, Inception-V3 and their

Ensemble. Note that, for each of the individual networks,

we have used our hierarchical transfer learning technique

to get the improved performance. The performance is

further boosted with the help of the dictionary. To show the

explicit contribution of the dictionaries, we include sepa-

rate columns for the results achieved by including the

dictionaries. We report the both binary and multiclass

classification accuracies in the table. It can be observed that

both accuracies achieve an overall gain with dictionaries.

Table 2 Results summary on

Chest X-ray14 data set:

conventional transfer learning

(TL) with DenseNet201 is the

‘Baseline’

Models Spec.% Sens.% F1% Acc.% ERR% yAcc.% yGain%

Baseline (TL) 89 80 – 83.33 – 16.76 –

DenseNet201 (Den.) 94 55 46 89.65 37.91 48.27 188.0

Den?VGG 94 55 47 90.00 3.38 50.03 3.65

Den?VGG?Res 94 58 51 90.63 6.29 53.17 6.27

Den?VGG?Res?IV3 95 60 53 91.03 4.27 55.17 3.76

Proposed 95 60 53 91.38 3.90 56.90 3.13

‘Dense’ denotes DenseNet201 augmented with our technique. Similarly, ‘VGG’, ‘Res’ and ‘IV3’ are

augmented versions of VGG-16, ResNet50 and Inception-V3 using our method. ‘Full ensemble’ is the final

technique. The Error Reduction Rate (ERR) is computed using Accuracy (Acc.) of two consecutive rows.

The yGain is computed with two consecutive rows of yAcc
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In Table 6, we show the average individual results for

all three classes in the COVID-19 data set, i.e. COVID-19,

Pneumonia and Normal. It is worth emphasizing that the

number of reliable labelled COVID-19 X-ray images is

very limited and we have used 132 test images. In Table 7,

we compare the results of the proposed technique with the

related studies using deep learning on similar COVID-19

data sets. Besides the techniques, the table also reports the

number of samples used for each technique for the indi-

vidual classes. These samples are used to train the com-

putational models, whose architecture is also mentioned.

As can be seen, the proposed technique performs excep-

tionally well for the limited amount of data that it uses,

achieving the accuracy of 99.49% for the binary classifi-

cation task. The promising results of our transfer learning

strategy with deep pretrained models in detection of

COVID-19 from chest X-ray images indicate that the load

of physicians can eventually be reduced reliably with such

computer-aided diagnostic techniques.

Table 3 Computational times

for the used models: step 1 is the

training of input and output

layers with frozen inner layers

for 5 epochs with learning rate

0.001

Models Training time Testing time (milliseconds)

Step1 Step2 Step3

DenseNet201 3 h 20 m 5 s 6 h 15 m 20 s 7 h 29 m 5 s 6

VGG 0 h 55 m 15 s 1 h 51 m 25 s 2 h 5 m 20 s 8

ResNet 0 h 47 m 20 s 1 h 26 m 15 s 1 h 35 m 10 s 6

InceptionV3 1 h 14 m 25 s 2 h 23 m 15 s 2 h 31 m 15 s 6

Step 2 is the training on augmented data with the model resulting from step 1, using learning rate 0.0001 for

five epochs. Step 3 is the training on augmented data with learning rate 0.00001 and fine tuning the

complete model weights for 5 epochs. We also include the dictionary computation time in this stage. Test

time is for a single image, including sparse coding stage

Table 4 Results of individual classes on Chest X-ray14 data set: for

A/B, A is the value computed for the proposed technique, B is the

value of ‘Baseline’ that uses transfer learning with DenseNet201

Class Spec. Sens. F1-Score Acc.

Atelectasis 0.96/0.94 0.61/0.08 0.56/0.09 93.46/88.73

Cardiomegaly 0.97/0.75 0.86/0.22 0.72/0.08 96.43/72.27

Effusion 0.97/0.86 0.59/0.06 0.66/0.05 93.36/ 76.60

Infiltration 0.93/0.86 0.36/0.09 0.42/0.09 85.13/74.43

Mass 0.97/0.63 0.67/0.19 0.55/0.03 96.56/62.40

Nodule 0.97/0.96 0.41/0.06 0.33/0.04 96.63/94.83

Pneumothorax 0.94/0.97 0.7/0.02 0.66/0.04 92.10/86.90

Consolidation 0.88/0.99 0.73/0.00 0.47/– 87.30/92.2

Pleural thickening 0.93/0.97 0.46/0.01 0.25/0.01 92.46/94.80

No finding 0.95/0.99 0.52/0.00 0.64/– 80.63/65.13

Table 5 Results summary on COVID-19 data set: dense denotes DenseNet201 augmented with our technique. Similarly, ‘VGG’, ‘Res’ and ‘IV3’

are augmented versions of VGG-16, ResNet50 and Inception-V3 using our method

Model Spec. % Sens. % F1 % Acc. without Dict.% Acc. with Dict. % y Acc. without Dict.% yAcc. with Dict.%

Dense 98.11 96.21 96.20 97.47 97.47 96.21 96.21

VGG 98.86 97.73 97.74 96.97 98.48 95.45 97.73

Res 97.73 95.45 95.48 94.44 96.97 91.67 95.45

IV3 96.59 93.18 93.08 95.45 95.45 93.18 93.18

Ensemble 99.24 98.48 98.49 98.99 99:49 98.48 99:24

‘Ensemble’ is the ensemble of the four models. ‘Acc.’ denotes the accuracy for binary classification and ’yAcc.’ is the accuracy for multiclass

classification

Table 6 Results of individual classes on COVID-19 data set

Class Spec.% Sens.% F1% Acc.%

Covid-19 100 100 100 100

Pneumonia 98.86 100 98.88 99.24

Normal 100 97.73 98.88 99.24
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5 Conclusion and future work

We presented a novel method to improve the performance

of transfer learning when the target domain data is not only

scarce, but it also has a slightly different modality. Our

technique uses an ensemble of deep learning models that

are modified and hierarchically fine-tuned to the target

domain. Our method takes additional help from dictionary

learning—a representation learning framework. We tested

our technique by using pretrained models of natural images

(i.e. ImageNet) and transferring them to the domain of

chest radiography images. We showed that whereas limited

data of the target domain remain insufficient to achieve

acceptable performance under conventional transfer

learning, our technique is able to provide significant per-

formance improvement for the problem. Our results pro-

vide a conclusive evidence of the possibility of accuracy

gain by allowing for additional model complexity. In the

future, we intend to improve our framework by including

more recent and accurate models of the source domain and

constructing dictionaries directly from the training data

instead of using deep features as dictionaries.
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