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1.  Introduction
Hydrogen is a clean fuel that can potentially revolutionize the energy supply chain and decarbonize fuel 
consumption (Hanley et al., 2018; Tarkowski, 2019). However, hydrogen storage is currently the key hur-
dle that prevents the establishment of an industrial-scale hydrogen economy (Berta et  al.,  2018; Flesch 
et al., 2018; Heinemann et al., 2018; Iglauer et al., 2021; Lord et al., 2014; Shi et al., 2020; Tarkowski & 
Czapowski, 2018; Yekta et al., 2018; Zhang et al., 2016). It is, thus, necessary to develop better hydrogen-stor-
age solutions (Zhang et al., 2016). One new concept is the storage of hydrogen gas in underground coal 
seams, where hydrogen adsorbs on the coal surface and can be withdrawn again at any time when required. 
This concept is analog to methane storage in such geologic underground coal seams. Methane is adsorbed 
on the coal surface over geologic times, and it is now a resource produced via coal bed methane (CBM) 
production (e.g., Moore, 2012; Seidle, 2011). Connected with that is also enhanced CBM production, where 
CO2 is injected into a deep coal seam; the CO2 displaces more methane while it is itself adsorbed on the coal 
surface (Chaturvedi & Sharma, 2020; Keshavarz et al., 2017).

However, while CH4 and CO2 adsorption has been extensively studied to optimize CBM, no data are avail-
able for hydrogen adsorption on coal. We, therefore, measured H2 adsorption on a typical sub-bituminous 
coal sample, and demonstrate that substantial amounts of H2 can be stored via this approach, even at mod-
erate pressures. This study will thus aid in the larger-scale implementation of a hydrogen economy.

2.  Experimental Procedure
Sub-bituminous coal (Pan Upper, supplied by Premier Coal located in Collie, Western Australia; maximum 
vitrinite reflectance: 0.38%) was selected and thoroughly analyzed for its essential properties (Table 1). In 
addition, the coal was characterized via Thermal Gravimetric Analysis (TGA) and the coal surface was char-
acterized via Fourier-Transformed Infrared Spectroscopy (FTIR) and energy dispersive spectroscopy, the 
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detailed results can be found in the Supporting Information. The coal was then crushed with a blade grinder 
and sieved to a homogeneous particle size (<250 µm). Low-pressure N2 (99.999 vol%) BET adsorption and 
desorption curves and the zeta potential of the coal powder were then measured to further characterize the 
coal surface. Note that the zeta potential was measured with a Zetasizer Nano ZS in deionized water at pH 
= 8.7, 0.1 MPa, and 296 K. For more details regarding the TGA, FTIR, and N2 BET measurements, please 
see the Supporting Information.

Subsequently, the adsorption profiles of CO2 (purity = 99.99 mol%) and H2 (purity = 99.995 mol%) were 
measured at elevated temperatures and a wide pressure range (0.1–14.3 MPa) using a PCTpro adsorption 
analyzer (Setaram Instrumentation). The average standard deviation of the high-pressure adsorption exper-
iments was estimated as ±7.3% (H2) and 8.0% (CO2), based on replicate measurements.

3.  Results and Discussion
Clearly, H2 adsorption increased dramatically with increasing pressure, Figure  1. Initially, this increase 
was very steep, but the adsorption curve plateaued out at ∼4 MPa. Thus, at low pressure (0.1 MPa), only 
small amounts of H2 could be adsorbed (0.005 moles/kg coal), while at 3.38 MPa, 0.23709 moles H2/kg 
coal were adsorbed (both measured at 303 K), a 47,418-fold increase. The H2 amount adsorbed increased 
further to 0.54686 moles H2/kg coal at 11.74 MPa (at 303 K) and 0.60183 moles H2/kg coal at 14.3207 MPa 
(at 318 K), a 120,000-fold increase. Such a type I adsorption curve indicates the presence of micropores 
(which is expected in coal; Okolo et al., 2015) and that H2 was adsorbed as a mono-layer (Singh et al., 1985). 
This is in contrast to the low-pressure N2-BET adsorption profiles which indicated a type II adsorption 
system (compare the Supporting Information), thus N2 was adsorbed in multiple molecular layers on the 
coal surface at low pressure. Note that the type II N2-isotherm was caused by N2 condensing in narrow pore 
throats, as N2 boiling temperature (at atmospheric pressure) is 77 K (and the experiment was performed at 
77 K) (Flores, 2014). Furthermore, changes in temperature (from 303 to 333 K) only slightly influenced the 
adsorption profile (a marginally smaller amount of H2 was adsorbed at the higher temperature). We con-
clude that substantial amounts of H2 can be stored in deep coal seams where high pressures and elevated 
temperatures prevail.

However, approximately 10 times the amount of CO2 could be adsorbed (e.g., 2.64 moles of CO2/kg coal at 
3.302 MPa vs. 0.23709 moles of H2/kg coal at 3.382 MPa, both measured at 303 K). This is mainly related to 
the very low zeta potential of the coal (−70 mV measured at pH 8.7, 296 K, and 0.1 MPa in deionized wa-
ter). Such a high negative surface charge will strongly interact with a molecule that has a high quadrupole 
moment (the CO2 quadrupole moment is −4.3 × 10−26 esu.cm2; Buckingham et al., 1968). Note that CO2 can 
also undergo Lewis acid-base reactions because of this high quadrupole moment, and form hydrogen bonds 
with alcohol or carbonyl groups (Raveendran et al., 2005; Fujii et al., 2002). As coal is a very complex organ-
ic material (Hatcher & Clifford, 1997), the coal tested also contained alcohol and carbonyl groups (compare 
the infrared spectra in the Supporting Information); these groups further strengthened the affinity (and 
thus adsorption) between CO2 and coal. This is in contrast to H2 which also has no external electric dipole 
moment and a quadrupole moment which is one magnitude smaller (+0.651 × 10−26 esu.cm2; Buckingham 
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Proximate analysis (wt %)

Inherent moisture Ash Volatile matter Fixed carbon

21.7 2.5 28.0 47.8

Ultimate analysis (wt%)

Carbon Hydrogen Nitrogen Relative density (%)

58.1 2.98 1.15 1.39

Maceral composition (volumetric, %)

Vitrinite Liptinite (Exinite) Inertinite Mineral matter

33.3 11.3 43.9 11.5

Table 1 
Essential Analysis Properties of Pan Upper Raw Coal
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et al.,  1968). H2 adsorption onto the coal surface is therefore driven by dispersive (non-polar–non-polar 
interactions, that is, induced dipole moment – induced dipole moment interactions) Van der Waals forces 
only, which in total are substantially weaker than the total interaction forces between CO2 and the coal sur-
face. This weaker interaction between the H2 and the coal surface results in reduced H2 adsorption capacity.

4.  Conclusions
Hydrogen storage is currently a key barrier to the implementation of an industrial-scale hydrogen econ-
omy. We, therefore, examined here the potential of hydrogen storage in underground coal seams, where 
H2 could be stored as an adsorbed phase on the coal surface. Indeed, this is possible from a fundamental 
technical perspective as we demonstrated via laboratory adsorption experiments. Substantial amounts of 
H2 (0.23709 moles H2/kg coal) could be stored at moderate pressure and temperature (303 K and 3.3 MPa, 
note that these thermo-physical conditions prevail at a depth of approximately 300 m; Dake, 1978); this ad-
sorption capacity could be further enhanced at higher pressures (14.3 MPa) to 0.60183 moles H2/kg coal (at 
318 K). We conclude that hydrogen storage in deep coal seams is potentially possible, this study, therefore, 
supports the large-scale set-up of a hydrogen supply chain.
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Figure 1.  Hydrogen adsorption on sub-bituminous coal as a function of pressure and temperature. Data for CO2 have 
been added for comparison.
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