Edith Cowan University
Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

12-4-2013

Procedures And Tools For Acquisition And Analysis Of Volatile
Memory On Android Smartphones

Andri P. Heriyanto
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/adf

b Part of the Computer Sciences Commons

DOI: 10.4225/75/57b3c9bafb86f

11th Australian Digital Forensics Conference. Held on the 2nd-4th December, 2013 at Edith Cowan University, Perth,
Western Australia

This Conference Proceeding is posted at Research Online.

https://ro.ecu.edu.au/adf/123

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fadf%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b3c9bafb86f

PROCEDURES AND TOOLS FOR ACQUISITION AND ANALYSIS OF VOLATILE MEMORY ON
ANDROID SMARTPHONES

Andri P Heriyanto
School of Computer and Security Science
Edith Cowan University, Perth, Australia
aheriyan@our.ecu.edu.au

Abstract

Mobile phone forensics have become more prominent since mobile phones have become ubiquitous
both for personal and business practice. Android smartphones show tremendous growth in the global
market share. Many researchers and works show the procedures and techniques for the acquisition
andanalysisthe non-volatile memory inmobile phones. On the other hand, the physical memory
(RAM) on the smartphone might retain incriminating evidence that could be acquired and analysed
by the examiner. This study reveals the proper procedure for acquiring the volatile memory inthe
Android smartphone and discusses the use of Linux Memory Extraction (LIME) for dumping the
volatile memory. The study also discusses the analysis process of the memory image with Volatility
2.3, especially how the application shows its capability analysis. Despite its advancement there are
two major concerns for both applications. First, the examiners have to gain root privileges before
executing LiIME. Second, both applications have no generic solution or approach. On the other hand,
currently there is no other tool or option that might give the same result as LiME and Volatility 2.3.

Keywords
Mobile Phone Forensics, Android Smartphone, Volatile Memory, Memory Forensics, LiIME, Volatility

INTRODUCTION

According to Serber (2013), there are nine trends in the future that will highlight the significant
increase in demand of Mobile Phone Forensics. Those trends are implementation of BYOD,
enormous growth in mobile applications, tougher encryption in smartphones, difference platforms
of smartphones, the upcoming of Windows 8 OS, the advancement of Mobile Devices as witnesses,
the uncertainty of the regulatory and legislative landscape, the tremendous rise of mobile malware
incidents and the increasing risk of data breaches via mobile device. Apparently, the trends will
leverage the Mobile Phone Forensicsinto the same arena as the Computer Forensics in the future.

Currently, most research and analysis of Mobile Phone Forensics are focused on static data or non-
volatile memory. Static data that resides on the Subscriber Identity Module (SIM), memory cards
such as external SD Cards or emulated MultiMediaCard (eMMC) and the internal flash memory such
as NAND flash memory(Alghafli, Jones, & Martin, 2011; Garfinkel, 2011; Hoog, 2011; Thackray,
2010). Hence, due to limited capacity of the non-volatile memory storage media, the volatile data or
other information such as the application data, internet browsing data and instant messaging
conversation histories are often not stored in the non-volatile storage media.

The issue will become more evident when dealing with the encryption keys, temporary file system
and advanced mobile malware. This malware may not store their footprints on the non-volatile
memory. Hence, the only option for the examiner is by conducting the investigation on the volatile
memory. There are two techniques that available for the examiner to perform such investigation:
traditional live response and memory forensics. Whilst according with Aljaedi et al.(2011), there is a
disadvantage impact on traditional live response technique that might create a significant risk in
losing of evidence. Therefore, this paper is proposing the use of memory forensics in incident
response cases.

The Android OS has become more predominant in the global smartphones markets both in current
and future time. The usage and adoption of Android OS is not bound only to smartphones but has
been utilized into Netbooks, Ultra Mobile PCs, Printers, Gaming Devices, Home Appliances, GPS

84

receivers, E-readers, Home Audio, Media Players, TVs, Vehicles etc. As usual, if one Operating
System becomes more prevalent, then it will lure more cyber-criminals to target it as an object to
attack.

It became evident that the growth in usage and market share on Android OS is linear with the
increasing of malicious software that is targeting the Android devices. Moreover, the advanced
malware such as Mobile Trojan banking malware might only reside its data on the volatile memory
storage, specifically on Android’s smartphone. Therefore, the only viable option for a mobile phone
examiner to acquire and analyse the incriminating evidence is by performing live memory forensic
on volatile memory on Android smartphones.

The purpose of this work is to answer the question: what is the proper procedure and what are the
free tools that are available for mobile phone forensic examiners when acquiring and analysing the
memory forensics in Android smartphones? Additionally, the procedures and free tools should be
applied with a forensically sound rule of thumb. Therefore, the evidence that has been acquired and
analysed should fulfil the legal consideration. The work reveals the Linux Memory Extraction (LIME)
application to acquire the memory from the Android devices and Volatility 2.3 for the analysis
process. Furthermore, the work uses the image evidence from DFRWS Rodeo 2012 for the analysis
process in order to show the capability of Volatility 2.3 for analysis purposes.

RELATED WORKS

There is research, works and presentations that reveal the procedures, techniques and tools for
conducting mobile phone forensics in Android platform, but limited information about how to
perform the acquisition and analysis of the volatile memory in it. Thing et al. (2010), Case (2012b),
Sylve et al. (2012), Ligh (2013), and Macht (2013) are several researchers who revealed the memory
forensics specifically in Android platform. The procedure for handling memory has become critical
since the memory is volatile. Unproper procedures for acquiringthe memory from an Android
smartphone would cause the loss of vital evidence forever. Brezinski and Killalea (2002) show that
the every examiner should consider the order volatility in collecting evidence. Therefore, collecting
the volatile memory should be a priority in any evidence acquisition procedure.

Sylve (2012) shows the importance of memory forensics in mobile phone forensics on his paper for
several reasons. First, RAM dump provides both structured and unstructured information. Second,
the use of strings on memory dump reveals on crucial evidence such as application data, fragments
of communication and encryption keys. Third, it shows the kernel and application structures. Fourth,
it reveals the previous processes, open files, network structure etc. According with Case (2011),
memory forensics is vital to orderly recovery of runtime information.

Furthermore, works from Labs (2013) demonstrate the advancement of memory forensic in Android
platform on Chuli Malware incident. This malware after infecting the Android’s smartphone, could
steal all the credential data such as a phone book and messages. The main goal of the work is
investigating the malware with LIME to capture the physical RAM and analyse the image with Dalvik
Inspector. This process found the evidence such as the phone number and IP Address of Command
and Control (C&C) Server that belong to alleged cyber-criminal and sets of possible C&C commands.

Digital Forensic Research Workshop (DFRWS) has held the annual forensic conference and challenge
since 2001. Both events have created much attention and new progression in the digital forensic
community, especially in Memory Forensics. DFRWS 2012 has the challenge regarding with Memory
Forensic in Android smartphone. The challenge is to answer seven questions that relate with botnet
infection in a HTC EVO 4G Android device. This challenge will eventually support the development of
LIME and Volatility version 2.3.

85

LIME (formerly known as DMD) is a Loadable Kernel Module (LKM), which allows the acquisition of
volatile memory from Linux and Linux-based devices, such as those powered by Android. The tool
supports acquiring memory either to the file system of the device or over the network. LIME is
unique in that it is the first tool that allows full memory captures from Android devices. It also
which allows it to produce memory captures that are more forensically sound than those of other
tools designed for Linux memory acquisition(Forensics, 2012).

The Volatility Framework is a open collection of tools, implemented in Python under the GNU
General Public License, for the extraction of digital artifacts from volatile memory (RAM) samples.
The extraction techniques are entirely independent of the investigated system, but offer
unprecedented visibility into the runtime state of the system. The purpose of the framework is
introducing the techniques and complexities associated with extraction of digital artifacts from
volatile memory samples and to provide a platform for further work into this exciting area of
research.

WHERE AND WHAT IS THE DATA ON ANDROID DEVICES

Hoog (2011) divides the data on Android Devices for locating the data into two groups: Data at Rest
and Data in Transit. First, there are five locations that could contain the data at rest: NAND-Flash
Memory (non-volatile memory), memory card such as SD card and Embedded MultiMediaCard
(EMMOC). Removable media such as Universal Integrated Circuit Card (UICC) or known as SIM Card or
SD Card are other locaters for Data at Rest. The last location of Data at Rest is on the Data Backups
for the Android. Second, there are three locations that might be contained the data in transit:
Network Service Provider, Physical RAM (volatile memory) and the Cloud.

There is potential for data evidence to be stored on NAND-Flash Memory and SD Card/eMMC. The
examples of data such as SMS/MMS, call logs, voice mail, financial applications, personal email, web
history, Google search history, YouTube, pictures and videos, geo-location, game history and
interactions, corporate email and attachments, voice mail and faxes sent via email, user names,
passwords and domain information, Wi-Fi Access Point with its information and passwords, calendar
items, instant messenger and corporate files that are stored on the devices.

Potential data evidence found on UICC of SIM Card in forms of personal data such as SMS, EMS and
address book/contact lists, secure key identification IMSI, ICCID, own number (dependent on service
provider), service provider, LAl (local area identity — cell site information), allowed network
information and PIN key encryption(Thackray, 2010).

Network service provider might give the data with legal consent such as call, SMS and MMS logs.
Voice mail might be retained by the provider for several days depends on the regulation along with
IMSI, ICC, IMEI, ESN and MSN. Internet traffic, emails, web activity, subscriber information, and PUK
code are examples of data from provider. The cell site analysis and triangulation to identity the
movement and location or users/devices are examples of data that might be collected from the
provider(Thackray, 2010).

There could be various obtained data on physical memory (RAM) such as passwords, two-factor

or cached to non-volatile storage (e.g. account numbers and balances). Examiners can recover
process information on RAM such as process listing, memory maps, open files and networking

information such as network interface information, open and listening sockets, and ARP tables.

86

According to Brothers (2007) and Hoog (2011), there are five techniques that available for acquiring
the data from a mobile phone: manual extraction, logical extraction, physical extraction including
JTAG technique, chip-off and macro read. All the techniques might be applied on the Android
smartphone. There are several tools available for supporting such techniques with hardware and
software-based tools. Commercial, freeware and open-source applicationsare available for data
acquisition from mobile phones.

A presentation by viaForensics (2011) proposed various acquisition techniques such as SD card
analysis using physical and simulated techniques, examining the backups, using Android Debug
Bridge (adb), AFLogical App and viaExtract App. There are several compelling features in viaExtract
such as SD Card imaging and Android Physical. The application images the SD card without
removeing it from the device. This feature is essential since many Android devices still locates its SD
card under the battery. This condition will create an obstacle if the examiner wants to dump the
memory from physical (RAM) into the SD card. The examiner should image the SD card before the
they want to dump the memory in the first place without removing the battery to access the SD
card, otherwise the data on the memory will be lost.

Two methods are available for data extraction of running processes in Android smartphone. First,
the examiner uses the Android Debug Bridge (ADB) to access a shell on the device and execute
specific commands to dump the data, such as running processes, network connections and other
device logs. Second, the examiner uses the Dalvik Debugging Monitor Server (DDMS), a tool that
comes together with the Android SDK for dumping the contents of memory of a running process in
the Android smartphone. Nevertheless, none of the methods described above has proven to dump
the ‘full contents’ or all of the pages on the memory (Valenzuela, 2013).

Joe Sylve, et al. (2012) creates new kernel module for dumping the memory on Android devices,
named Droid Memory Dumpstr (DMD) or known as Linux Extraction Memory (LIME). This technique
could be categorised as physical extraction, because the the process performed by dumping the data

USB mode, image the SD Card and finally dump the memory into SD Card(Joseph Sylve, 2012).

PROPER PROCEDURE FOR ACQUISITION

Procedure for Acquisition

L.Simao et al., 2011 proposed the procedure to acquire the data on Android Smartphone with
regards to five conditions: turn on/off condition, availability of removable card, locked/unlocked
condition, lockable/unlockable feature and super user feature. These conditions will affect the
procedures, steps to be taken and tools to be used for acquiring the data by the examiner. The paper
does not discuss the proper procedure for securing and handling the Android devices prior to data
acquisition. The workflow of the procedure is shown on Figure 1.

87

A) Read the seizure
documents

NO

D) Extract data from
memory card and
replace card

C) Is it possible to
extract memory
card data?

B) Phone is on?

E) Is it possible to
physically isolate from
network?

G) Turn the phone
on

H) Isolate from | F) Turn the phone
Network ™ on

NO

S) Root shell via
ADB?

T) Authentication
may be ignored?

U) Extract accessible system
info (dmesg, dumpsys, logcat)

1) Phone is
locked?

K) Is it possible
to unlock?

R) Is it possible to
connect via ADB?

V) Memory card data
already extracted?

L) Extract memory
card data and
consider its
replacement

1) Memory card
data already

Q) Dump the
extracted?

memory

X) Could memory card
data be extracted?

h 4

YES

0) Relevan
applications
running?

Z) Dy hy
P) Extract phone JiDocumentithe

data acquisition
data
process Y) Extract memory
card data
o) v

EXAM AND
ANALYSIS

M) Phone with

N) Mirror system
—>
Root Access?

partitions

Y

Figure 1: Workflow with the process of acquiring data with the Android operating system(de L, et al., 2011)

The work supports the procedure since its proceeding the extraction of memory card (SD
Card/eMMC) before dumping the memory. Memory dumping process needs the media storage to
store the image and the only option available is the memory card. Care should be taken that the
process of dumping the memory should not turnoff the smartphone to access the memory card.
This process turned out to be the only possible method if the smartphone uses a non-removable
memory card such as eMMC. Therefore, the examiner should perform physical extraction upon the
memory card before dumping the memory. In order to improve the procedure, the work directly
suggest to dump the memory without asking whether the relevant application is running on the
Android smartphone.

Linux Memory Extraction (LiME)

LIME was created to overcome the limitation that exist on the previous tools. Traditionally, memory
captures on Linux is acquired by accessing the /dev/mem device, which contained a map of the first
gigabyte of RAM. This allowed acquisition of 896 MB of physical memory without the need to load
code into the kernel. This approach did not work for machines with more than 896 MB of RAM. The
/dev/mem device has recently been disabled, due to security concerns on all major Linux
distributions as it allowed for reading and writing of kernel memory.

In order to capture all physical memory, regardless of size, and to work around the loss of the
/dev/mem device, Ivor Kollar created fmem. According to Joe Sylve et al. (2012) the fmem module
does not work on Android devices. Hence, they create the LIME specifically to overcome the issue.
On the other hand, LIME still uses the loadable kernel module like fmem. The important feature of
LIME is the capability of dumping the memory directly to SD card or over the network (network
dump over adb). The target of the feature is minimizing an interaction between userand kernelland.

88

Moreover, it allows examiners to produce acquired memory that is more forensically sound than
other tools designed for Linux memory acquisition.

Forensically Sound Process on LiME

According with Joe Sylve, et al., (2012) there are three reasons why LIME meets the basic forensic
soundness standard. First, it attempts to minimize the impact on the target device when transferring
connected, only a single binary (the kernel module) needs to be transferred and executed to
perform the acquisition. Third, loading of the module requires a minimal footprint as the LIME
module is small (~70 KB) and requires few kernel functions to acquire memory.

Joseph Sylve (2012), has performed a test for the soundness of DMD/LIME by comparing the RAM
Snapshot using the emulator with RAM image that have acquired with DMD-both by TCP and direct
SD Card and fmem. The result on Table 1 shows the percentage of identical pages. This test shows
the effectiveness of LIME in capturing the pages in physical memory (RAM) and also supporting the
claim of forensic soundness on LiME.

Table 1: Percentage of Identical Pages on DMD and Fmem(Joseph Sylve, 2012)

Method Total Number of | Number of Identical | Percentage of Identical
Pages Pages Pages

DMD (TCP) 131072 130365 99.46%

DMD (SD Card) 131072 129953 99.15%

fmem (SD Card) 131072 105080 80.17%

504ENSICS (2013) reveals two types of acquisition technique on LIME. First is the acquisition of
memory over a TCP connection. On this technique, the examiner should copy the kernel module to
the phone’s SD card using ADB. All network data is transferred via USB. After that, the target device
should listen to specified TCP Port (port 4444) and then the examiner should connect to the device
the acquired RAM image to the host device. Second is the acquisition a memory dump via the
phone’s SD card. This option will be taken if the examiner wants to make sure no network buffer is
overwritten. In order to execute the process, the examiner should image the SD card to save
unallocated space. After that, the examiner should tethering the device to a Linux machine and
activating USB storage exposes a /dev/sd?. The device can be imaged using traditional means (eg.
using dd on the Linux machine). If the SD can be removed, then the examiner could remove the SD
card to acquire the memory dump, but if could not be removed, then the examiner could use ADB to
transfer the memory dump to investigator’s machine.

Gain Root Privileges

Every examiner before they decided to use the tools such as ADB and LiME should be aware that
they have to gain root privileges on the Android devices. The root privileges in Android device is not
enabled by default due to a security mechanism. Therefore, the first task for every examiner before
they execute the ADB and LIME or any software-based physical technique is to gain root privileges.
On the other hand, gaining root privileges sometimes is not an easy task. The techniques for root
privileges will vary not only for each manufacturer and device but for each version of Android and
the Linux kernel in use(Hoog, 2011).

ANALYSIS PROCESS OF THE MEMORY IMAGE WITH VOLATILITY 2.3

According with Case (2012a) and Volatility (2013), there are at least nine analysis capabilities on
Volatility release 2.3. The analysis capabilities include iomem and limeinfo, processes, kernel objects,
memory caches, networking, mounted filesystems, files in memory, rootkit detection and specific
analysis. There is new features on the latest realease of Volatility such as new ARM address space to
support memory dumps from Linux and Android devices on ARM, added plugins to scan linux

&9

process and kernel memory with yara signatures, dump LKMs to disk, and check TTY devices for
rootkit hooks and added plugins to check the ARM system call and exception vector tables for hooks.
The Volatility release 2.3 also supports the Address Space with LimeAddressSpace to be able to
analyse the acquired memory with LiIME(Volatility, 2013). Appendice 1 shows the detail information
regarding detailed analysis capability.

In order to show the analysis capability of Volatility, the work documented several commands for
analysing the image evidence from DFRWS Rodeo 2012 name “Evo4GRodeo.lime.”

lomem and limeinfo
The plugins will provide output similar to /proc/iomem whichshows the physical addresses currently
reserved for |0 devices like PCl and video card memory.

aphdnc@aph4nc:~/Volatility 2.3$ python vol.py -f

Volatile Systems Volatility Framework 2.3 _alpha

PCI mem 0x0 OxFFFFFFFF
msm_hdmi.0 0x2B00000 Ox2EFFFFF
kgsl_phys_memory 0x3700000 Ox39FFFFF
kgsl 0x3700000 0x39FFFFF
ram_console 0x3400000 Ox3A3FFFF
msm_panel. 1 0x3B00000 Ox3DFFFFF
System RAM 0x20000000 O0x2E7FFFFF
Kernel text 0x20038000 0x204DSFFF
Kernel data 0x204D6000 0x2062F617
System RAM 0x30000000 Ox33FFFFFF
System RAM 0x34000000 Ox3BSFFFFF
kgsl _reg _memory 0xA0000000 0xA00IFFFF
kgsl 0xA0000000 0xA001FFFF
msm_serial_hs_bcm.0 0xA0200000 0xA0200FFF
msm_sdcc. 1 0xA40300000 0xA0300FFF
msm_sdcc.2 0xA0400000 0xA0400FFF
msm_sdcc.3 0xA0500000 OxA0500FFF
msm_hsusb 0xA0800000 0xA0801000
spi_base 0xA1200000 OxA1200FFF
msm_i2c.0 0xA9900000 0xA9900FFF
msm_i2¢ 0x49900000 0xA9900FFF
mdp 0xAA200000 0xAA2EFFFF

msm_mddi. (0

0xAA600000

0xAA600FFF

Processes Shows

The plugins show per-processing listings, child/parent process relationship, opened files and

memory maps.

Volatile Systems Volatility Framework 2.3_alpha

0x8000-_0x20000 r-x

34 /init

0x20000- 0x21000 rw-

34 /init

Kernel Objects

The plugins show the list of kernel modules, debug buffer and memory caches.

Volatile Systems Volatility Framework 2.3_alpha

lime 8014

bem4320 228359

90

Memory Caches

The plugin will mimics /proc/slabinfo on a running machine, gather files from the dentry cache,
gather tasks from the kme_cache, recover the routing cache from memory, recovers packets from
the sk_buff kemem_cache and gather VMAs from the vm_area_struct cache

Networking
The plugin will recover the ARP table, replicate ifconfig output, recover the routing cache, replicate
netstat output and recover per-socket packet queues.

dummy(Q 0.0.0.0 00:00:00:00:00:00 False
ifb0 0.0.0.0 00:00:00:00:00:00 False

0:00:00:00:00

ip6tnl0 0.0.0.0 00:00:00:00:00:00
eth0 50.94.125.176 00:00:00:00:00:00

aphdnc@aph4nc:~/Volatility 2.38 python vol.py -f
/media/IMATION/DFRWSRodeo2012/Evo4GRodeo.lime --profile=LinuxEvo4Gx86 linux_arp
Volatile Systems Volatility Framework 2.3_alpha
[] at 00:00:00:00:00:00 on lo
[50.94.125.1] at 00:90:fb:34:af ca on eth(

Mounted Filesystem
The plugin will lists mounted file systems including the mount flags and gather mounted fs/devices
from kmem_cache

Volatile Systems Volatility Framework 2.3_alpha

tmpfs /app-cache
tmpfs rw,relatime
tmpfs /mnt/obb

tpfs . /mnt/sdcard/.android_secure 1 tmpfs
VVV /data/htcfs

fuse] rw,relatime,nosuid,nodev

/dev/block/vold/179:1 /mnt/sdcard viat
rw,relatime,nosuid,nodev,noexec

none /dev/cpuctl

cgrou rw,relatime

tmpfs /dev

tmpfs____________wrelatime

91

devpts /dev/pts
devpts rw,relatime

/dev/block/mtdblock4 /system vaffs2

proc /proc

Files in Memory
The plugin shows all files and entire file systems that can be recovered directly from memory and
shows unencrypted contents of encrypted files.

2 -> /mnt/obb
3 -> /mnt/asec
4 -> /mnt/sdcard/.android_secure

Specific Analysis

The plugin basically switch from the kernel land on the previous analysis capability into userland to
analyse the Android applications. The aim is to analyse the specific application to focus on the data
structure of one process.

CONSIDERATIONS ON LiME AND VOLATILITY 2.3

Customized Loadable Kernel Module on LIME

The Linux kernel uses a security mechanism called module verification(Joe Sylve, et al., 2012). It is
intended to prevent the kernel from accepting incompatible or possibly malicious code to being
inserted into the operating system. This feature makesit impossible to load a general module for
every type of Android smartphone. There is no option available to load module in a kernel-agnostic
way for generic solution approach. Apparently, the only approach is available is to create a pool of
precompiled modules. Every module in the pool is compiled against a specific kernel; basically there
is one module for each device and Android version. Therefore, every examiner should build the
customized Loadable Kernel Module (LKM) for each smartphone and Android version in order to
acquire physical memory with LIME(Macht, 2013; Valenzuela, 2013).

Creating the Profile on Volatility 2.3

According with Macht (2013), a profile needs to be created which can be passed to Volatility on the
command line, before an examiner wants to analyse the memory image. A Volatility profile is a set
of vtype definitions and optional symbol addresses. The Volatility 2.3 (Alpha version) only has one
profile for Android devices: LinuxEvo4Gx86. On the other hand, there are several profiles for
Microsoft Operating System. There are two main reasons for that. First, Volatility development has
started from a Microsoft Windows point of view and Android support is quite new, consequently
there are less corresponding profiles are available by default. Second, there are many different
flavours of different kernels available in the Android market. Moreover, every single vendor such as
HTC, Samsung or LG usually has multiple devices running a different kernel. The problem with that is

92

each kernel needs its own Volatility profile. The situation is identical with usage of LIME: every
examiner needs to create an own profile for every Android smartphone for forensic investigation.

CONCLUSION AND FUTURE WORK

The work supports the procedure for acquiring the data evidence in Android smartphones with
regard to the order of volatility. First of all, the procedure should image the SD card in order to
create space to store the memory dump. Every examiner could consider using LIME as the tool for
conducting the acquisition process. As the tool, LIME deliberates the forensically sound process and
could capture almost all of the pages on the physical memory.

Volatility 2.3 shows the analysis capability for investigating the acquired image evidence with LiME.
Several plugins and commands have been developed to gather the specific purposes. The work has
demonstrated the analysis upon the evidence image from DFRWS Rodeo 2012. The analysis result
shows how the application could answer the questions on the forensic challenge.

Despite the benefit that would be created from LIME and Volatility 2.3, there are two concerns
regarding with its usage. First, the examiner should gain the root privileges before executing LIME.
Sometimes this process is quite difficult task and will depend on the manufacturer, version ofthe
Android OS and Linux Kernel. Second, there is no generic solution or approach for every type of
Android smartphone. Examiners should create customized LKM for each Android device in order to
use LIME. The same problem is persists on Volatility 2.3, the examiner should create a specific
profile for specific Android smartphones to be able to analyse the acquired image.

Nevertheless, both applications are offering the best solution that no other options could offer for
the digital forensics community. Especially in acquiring and analyzing the volatile memory inthe
Android smartphone. The development of both applications is still growing and needs support from
community in order to create more ‘user-friendly’ options for both applications.

Future works could be applied to investigate the Mobile Trojan Banking Malware Incidents,
smartphone encryption keys and temporary file systems in Android smartphones. Hence, it would
support the development of LIME and Volatility as a contribution to the digital forensic community.

REFERENCES
504ENSICS. (2013) LiIME-Linux Memory Extractor: Instructions v1.2. 504ENSICS, LLC.

Alghafli, K. A., Jones, A., & Martin, T. A. (2011). Guidelines for the digital forensic processing of
smartphones.

Aljaedi, A, Lindskog, D., Zavarsky, P., Ruhl, R., & Almari, F. (2011). Comparative Analysis of Volatile
Memory Forensics: Live Response vs. Memory Imaging. Paper presented at the Privacy,
security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee
third international conference on social computing (socialcom).

Brezinski, D., & Killalea, T. (2002). Guidelines for Evidence Collection and Archiving (RFC 3227).
Retrieved from http://www.hjp.at/doc/rfc/rfc3227.html.

Brothers, S. (2007). iPhone Tool Classification. Retrieved from
http://www.appleexaminer.com/files/iPhone_Levels.pdf

Case, A. (2011). Memory Analysis of the Dalvik (Android) Virtual Machine. Retrieved from
Case, A. (2012a). Android Forensics with Volatility and LIME: YouTube.

Case, A. (2012b). Android Memory Forensics: DFIR Online.

93

de L, S., Morum, A., Sicoli, F. C., de Melo, L. P., & de Sousa Junior, R. T. (2011). Acquisition of digital
evidence in android smartphones.

Forensics, L. (2012). LIME Forensics, from https://code.google.com/p/lime-forensics/)

Garfinkel, S. L. (2011). Android Forensics. Retrieved from http://simson.net/ref/2011/2011-07-
12%20Android%20Forensics.pdf

Hoog, A. (2011). Android Forensics: Investigation, Analysis and Mobile Security for Google Android:
Syngress.

Labs, E. (2013). Android Application (Dalvik) Memory Analysis & The Chuli Malware, 2013, from
http://www.504ensics.com/android-application-dalvik-memory-analysis-the-chuli-malware/

Ligh, M. H. (2013). Android Memory Forensic, from
https://code.google.com/p/volatility/wiki/AndroidMemoryForensics

Macht, H. (2013). Live Memory Forensics on Android with Volatility. Diploma, Friedrich-Alexander
Universitat, Nurnberg.

Serber, R. (2013). Industry Experts Identify Mobile Forensics Trends, 2013, from http://www.s-
ox.com/dsp_getnewsDetails.cfm?CID=2969

Sylve, J. (2012). Android Mind Reading: Memory Acquisition and Analysis with DMD and Volatility.
Retrieved from

Sylve, J., Case, A., Marziale, L., & Richard, G. G. (2012). Acquisition and analysis of volatile memory
from android devices. digital investigation, 8(3-4), 175-184. doi:
http://dx.doi.org/10.1016/j.diin.2011.10.003

Thackray, J. (2010). Mobile Phone Forensic Investigation: Recognition, Recovery, Preservation and
Analysis Techniques: Thackray Forensics Ltd.

Thing, V. L. L., Ng, K.-Y., & Chang, E.-C. (2010). Live memory forensics of mobile phones. digital
investigation, 7, Supplement(0), S74-S82. doi: http://dx.doi.org/10.1016/j.diin.2010.05.010

Valenzuela, 1. (2013). Acquiring volatile memory from Android based devices with LIME Forensics,
Part I, 2013, from http://blog.opensecurityresearch.com/2012/04/acquiring-volatile-memory-
from-android.html

viaForensics. (2011). Android Forensics: Background, techniques and analysis tools Retrieved from
Volatility. (2013). Volatility Release 2.3, from https://code.google.com/p/volatility/wiki/Release23

Volatility. (-). Volatility Framework.

94

APPENDICES 01: Analysis Capability, Command and the Purpose

No | Analysis Command and the Purpose
Capability
1 IOMEM and e linux_iomem : Provides output similar to /proc/iomem
Limeinfo e linux cpuinfo : Prints info about each active processor
2 Processes e linux_pslist : Gather active tasks by walking the task struct->task list
e linux_pstree : Shows the parent/child relationship between processes
e linux_psaux : Gathers processes along with full command line and start time
e linux_lIsof Lists open files
e linux_memmap Dumps the memory map for linux tasks
e linux_proc_maps : Gathers process maps for linux
e linux_dump_map : Writes selected memory mappings to disk
e linux pidhashtable : Enumerates processes through the PID hash table
3 Kernel Objects e linux_dmesg : Gather dmesg buffer
e linux Ismod : Gather loaded kernel modules
4 Memory Caches e linux_slabinfo : Mimics /proc/slabinfo on a running machine
e linux dentry cache : Gather files from the dentry cache
e linux_pslist cache . Gather tasks from the kmem cache
e linux_route cache : Recovers the routing cache from memory
e linux_sk buff cache : Recovers packets from the sk buff kmem cache
e linux vma cache : Gather VM ASs from the vm_area struct cache
5 Networking e linux_ifconfig : Gathers active interfaces
e linux_netstat : Lists open sockets
e linux_arp : Print the ARP table
e linux pkt queues . Writes per-process packet queues out to disk
6 Mounted e linux_mount : Gather mounted fs/devices
Filesystem e linux mount cache : Gather mounted fs/devices from kmem_cache
7 Files in Memory e linux tmpfs : Recovers tmpfs filesystems from memory
e linux find file : Recovers tmpfs filesystems from memory
8 Rootkit Detection e linux psxview : Find hidden processes with various process listings
e linux _check afinfo : Verifies the operation function pointers of network protocols (finds
hooks in structure that control displaying of network connections (netstat))
e linux_check fop : Check file operation structures for rootkit modifications (finds
hooks in structures that deal with file opening, reading and writing)
e inux_check modules Compares module list to sysfs info, if available (finds hidden
kernel modules by xrefing with sysfs)
9 Specific Analysis e zygote : linux_pslist | grep zygote
e atoms : Print session and window station atom tables
e atomscan : Pool scanner for RTL ATOM_TABLE
e clipboard . Extract the contents of the windows clipboard
e cventhooks : Print details on windows event hooks
e gahti : Dump the USER handle type information
e gditimers : Print installed GDI timers and callbacks
e linux_bash : Recover bash history from bash process memory
e linux_check creds Checks if any processes are sharing credential structures

linux_check idt
linux_check syscall
messagehooks
patcher

sessions
userhandles
windows

wintree

: Checks if the IDT has been altered

: Checks if the system call table has been altered

: List desktop and thread window message hooks

: Patches memory based on page scans

. List details on _ MM_SESSION_SPACE (user logon sessions)
: Dump the USER handle tables

Print Desktop Windows (verbose details)

: Print Z-Order Desktop Windows Tree

95

	Procedures And Tools For Acquisition And Analysis Of Volatile Memory On Android Smartphones
	The Proceedings of 11th Australian Digital Forensics Conference

