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Abstract 1 

The early identification of Suboptimal Health Status (SHS) creates a window 2 

opportunity for the predictive, preventive, and personalized medicine (PPPM) in 3 

chronic diseases. Previous studies have observed the alterations in several mRNA 4 

levels in SHS individuals. As a promising “omics” technology offering comprehension 5 

of genome structure and function at RNA level, transcriptome profiling can provide 6 

innovative molecular biomarkers for the predictive identification and targeted 7 

prevention of SHS. To explore the potential biomarkers, biological functions, and 8 

signaling pathways involved in SHS, an RNA sequencing (RNA-Seq)-based 9 

transcriptome analysis was firstly conducted on buffy coat samples collected from 30 10 

participants with SHS and 30 age- and sex-matched healthy controls. Transcriptome 11 

analysis identified a total of 46 differentially expressed genes (DEGs), in which 22 12 

transcripts were significantly increased and 24 transcripts were decreased in the SHS 13 

group. A total of 23 transcripts was selected as candidate predictive biomarkers for 14 

SHS. Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and 15 

Genomes (KEGG) pathway enrichment analysis revealed that several biological 16 

processes were related to SHS, such as ATP-binding cassette (ABC) transporter and 17 

neurodegeneration. Protein-protein interaction (PPI) network analysis identified 10 18 

hub gene related to SHS, including GJA1, TWIST2, KRT1, TUBB3, AMHR2, BMP10, 19 

MT3, BMPER, NTM and TMEM98. A transcriptome predictive model can distinguish 20 

SHS individuals from the healthy controls with a sensitivity of 83.3% (95% Confidence 21 

Interval (CI): 73.9%-92.7%), a specificity of 90.0% (95% CI: 82.4%-97.6%), and an 22 



area under the receiver operating characteristic curve of 0.938 (95% CI: 0.882-0.994). 1 

In the present study, we have proved that blood (buffy coat) samples appear to be a 2 

very promising and easily accessible biological material for the transcriptomic 3 

analyses focused on the objective identification of SHS by using our transcriptome 4 

predictive model. The pattern of particularly determined DEGs can be used as 5 

predictive transcriptomic biomarkers for the identification of SHS in an individual who 6 

may, subjectively, feel healthy but at the level of subcellular mechanisms the changes 7 

can provide an early information about potential health problems in this person. Our 8 

findings also indicate the potential therapeutic targets in dealing with chronic diseases 9 

related to SHS, such as T2DM and CVD, and an early onset of neurodegenerative 10 

diseases, such as Alzheimer’s and Parkinson’s diseases, as well as the findings 11 

suggest the targets for personalized interventions as promoted in PPPM. 12 

 13 

Keywords Predictive preventive personalized medicine, Transcriptome profiling, 14 

Suboptimal health status, Predictive biomarkers, Novel transcriptomic biomarkers, 15 
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Introduction 1 

Suboptimal health status - a window opportunity for the PPPM in chronic 2 

diseases 3 

Predictive, preventive, and personalized medicine (PPPM) is a holistic strategy in 4 

healthcare that aims to predict individual predisposition, to provide targeted prevention, 5 

and to create personalized treatment [1]. Chronic diseases are usually treated after 6 

disease onset, which is a very much delayed approach from the perspective of PPPM 7 

[2]. Suboptimal health status (SHS) is an intermediate physical state between ideal 8 

health and disease, which fits within the paradigm of PPPM [3]. Several studies have 9 

suggested that SHS might precede the occurrence of chronic diseases, including type 10 

2 diabetes mellitus (T2DM) [4, 5] and cardiovascular diseases (CVD) [6, 7]. As a 11 

subclinical stage of chronic diseases, the early identification of SHS plays a significant 12 

role in the targeted prevention and personalized treatment of chronic diseases from 13 

the perspective of PPPM [8]. 14 

Suboptimal health status questionnaire-25 (SHSQ-25), the most widely used 15 

screening tool for SHS, has been developed based on the perceived health complaints 16 

and physical symptoms affected by SHS [9]. The SHSQ-25 includes 25 items 17 

constituting five dimensions: the immune system, the cardiovascular system, the 18 

digestive tract, fatigue, and mental status [9], and it has been used in Caucasian [10], 19 

African [4, 11], and Asian populations [6, 12]. Screening multi-omics biomarkers for 20 

the early identification of SHS have a great potential to implement the advanced 21 

paradigm of PPPM [13]. Several multi-omics biomarkers, including cortisol [14], 22 



relative telomere length [15], intestinal microbiota [16], and metabolites [17], have 1 

been investigated. However, the transcriptomic biomarkers for the identification of 2 

SHS has not been investigated. 3 

 4 

Transcriptome – a promising “omics” technology provides novel biomarkers for 5 

SHS identification 6 

The transcriptome is a promising “omics” technology involving the identification 7 

and quantification of the complete set of transcripts in a specific tissue or cell type. It 8 

contains the full information about all RNA transcribed by the genome at a particular 9 

developmental stage, and under a certain physiological or pathological condition [18]. 10 

Transcriptome analysis not only provides us a better understanding of the human 11 

genome at the transcription level, but also gives a comprehensive perspective of 12 

genome structure and function [19]. Moreover, it may reveal the key alterations of 13 

biological processes that respond to pathogens, diseases, and environmental 14 

challenges, thus offering novel predictive biomarkers, useful not only for the 15 

comprehension of their underlying mechanisms but also for their predictive diagnosis 16 

and targeted prevention [20]. 17 

 18 

Changes in transcriptome might be involved in the underlying mechanism of 19 

SHS 20 

Our previous study observed the association between chronic psychosocial 21 

stress and SHS, as well as it found that decreased mRNA expression of glucocorticoid 22 



receptor α is associated with a high level of SHS [21]. The adrenaline and cortisol 1 

could impact glucocorticoid receptor expression and splicing [14, 21]. In addition, 2 

changes in the transcriptome of circulating immune cells were also observed in 3 

patients who suffered from chronic fatigue syndrome, a disease resembling SHS [22]. 4 

The biological pathways, including mitochondrial function, oxidative stress, and 5 

chronic inflammation are involved in the pathophysiologic mechanism of chronic 6 

fatigue syndrome [22]. Tomas-Roig et al. found that changes in mRNA expression, 7 

such as mRNA level of dopamine receptor, are associated with long-term psychosocial 8 

stress [23]. The association between chronic psychosocial stress and SHS, together 9 

with the alterations of mRNA expression in individuals with chronic psychosocial stress, 10 

leads to the hypothesis of this study that the alteration of transcriptome profiling might 11 

occur in SHS participants and changes in gene expression might be involved in the 12 

underlying mechanism of SHS. 13 

 14 

Study Objectives 15 

This study aimed to firstly describe comprehensive transcriptomic biosignature for 16 

SHS, and objectively screen predictive biomarkers for SHS, using RNA-Seq-based 17 

transcriptome profiling. In addition, the Gene Ontology (GO) annotation, Kyoto 18 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and 19 

protein-protein interaction (PPI) network analysis of the potential differentially 20 

expressed genes (DEGs) were also conducted, so that further understanding of the 21 

biological processes involved in SHS and SHS-related chronic diseases was obtained, 22 



which proves to be useful for the PPPM attitude towards chronic diseases. 1 

 2 

Materials and methods 3 

Study design and participants 4 

From September 2017 to November 2017, a case-control study was conducted 5 

among a Chinese Han population who received annual health examination at the 6 

Student Healthcare Centre of Weifang University. In order to minimize the influence of 7 

confounding factors, all the participants were undergraduate students aged 18 to 20 8 

years who were living in the university campus apartments. The inclusion and 9 

exclusion criteria were described previously in our study [17]. All the participants were 10 

required to complete SHSQ-25 in September 2017. After follow-up for 3 months, we 11 

assessed their SHS scores for the second time. Participants with SHSQ-25 score ≥ 12 

35 in both two surveys were selected as cases. Then, age- and sex-matched healthy 13 

participants with SHSQ-25 score < 35 in both two surveys were selected as controls. 14 

In total, 30 SHS participants and 30 age- and sex-matched controls were included in 15 

the current study. 16 

This study was approved by the Ethics Committee of the Weifang University, 17 

Weifang, China. Written informed consent was obtained from each participant at the 18 

beginning of the study. The ethics approval was given in compliance with the 19 

Declaration of Helsinki. 20 

 21 

Data collection 22 



Demographic characteristics and lifestyle information of participants, including 1 

age, sex, ethnicity, smoking, drinking dietary, and sleep duration were collected by 2 

questionnaires. The anthropometric measurements, routine biochemical tests, and 3 

clinical characteristics were measured as described in our previous study [17]. The 4 

physical activity levels, insomnia, anxiety, and depression were measured using the 5 

International Physical Activity Questionnaire [24], the Athens insomnia scale [25] the 6 

Hamilton anxiety rating scale [26], and the Hamilton depression rating scale [27], 7 

respectively. 8 

 9 

Blood sample collection and RNA extraction 10 

Two tubes of blood samples (5 ml) were collected from each participant by 11 

venipuncture in the morning after an overnight fasting. One tube of blood sample was 12 

collected using a vacuum tube containing polymeric gel to acquire serum, which was 13 

used for routine biochemical tests. The other blood sample was collected for RNA 14 

extraction. Total RNA was extracted from buffy coat samples of 30 SHS individuals 15 

and 30 healthy controls using TRIzol reagent (ThermoFisher Scientific, Waltham, 16 

USA). The concentration and purity of extracted RNA were measured using Nanodrop 17 

2000 (ThermoFisher Scientific, Waltham, USA). The quality of RNA was assessed 18 

using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). Then, RNA 19 

samples were stored at -80°C until RNA-Seq library preparation. 20 

 21 

RNA-Seq library preparation and sequencing 22 



Total RNA samples were quantified using Qubit 2.0 Fluorometer (ThermoFisher 1 

Scientific, Waltham, USA). Then, 100 ng of RNA from each sample was used for library 2 

preparation using NEBNext UltraTM RNA Library Prep Kit for Illumina (New England 3 

Biolabs, Ipswich, USA) according to the manufacturer’s protocols. Briefly, the mRNA 4 

was purified using magnetic beads, and isolated mRNA was reversely transcribed to 5 

double-stranded complementary DNA (cDNA). Then, the cDNA libraries were 6 

denatured as single-stranded DNA molecules, captured on Illumina flow cells, 7 

amplified as clusters, and finally sequenced using an Illumina HiSeq Xten Sequencer 8 

(Illumina, San Diego, USA) for 150 bp paired-end reads.  9 

 10 

Statistical analysis 11 

Raw FASTQ files were filtered to remove the adaptors, polyN reads, and low-12 

quality bases using FastQC software (Babraham Institute, Cambridge, UK). Clean 13 

reads were mapped and aligned to the human genome using HISAT2 program, and 14 

mapped reads were counted using featureCounts software [28]. Normality distribution 15 

of all variables was tested by the Shapiro-Wilk test. Normally distributed continuous 16 

variables were reported as mean ± standard deviation (SD), and non-normally 17 

distributed continuous variables were represented as medians and interquartile 18 

ranges (IQR). Categorical variables were represented as frequencies and 19 

percentages. The differences in categorical variables between the two groups were 20 

tested by the Chi-square test or Fisher’s exact test. The differences in continuous 21 

variables between the two groups were tested by the Student t-test or Mann-Whitney 22 



U test. To identify DEGs related to SHS, mRNA expression profile data in read counts 1 

were analysed using the “DESeq2” package in R [29]. The Benjamini-Hochberg 2 

method was used to adjust the false discovery rate (FDR). In order to identify the 3 

biological functions and pathways in which DEGs were enriched, GO and KEGG 4 

enrichment analyses were performed using the “clusterProfiler” package in R [30]. To 5 

further explore the interaction among the DEGs, a PPI network of DEGs was 6 

constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) 7 

database [31]. The top 10 genes ranked by degree were selected as hub genes using 8 

the cytoHubba application [32], while the Cytoscape software 3.8.1 (National Institute 9 

of General Medical Sciences, Bethesda, USA) was used to visualize the PPI network. 10 

Multivariate binary logistic regression was used to construct transcriptome diagnostic 11 

models for SHS. Receiver operating characteristic (ROC) curves and the area under 12 

the curve (AUC) were used to assess the diagnostic performance of the models.  13 

Data analysis was performed using SPSS 25.0 (IBM Corporation, New York, USA) 14 

and R 4.0.2 [33]. All reported P values were two-tailed, and P < 0.05 was considered 15 

statistically significant. 16 

 17 

Results 18 

Characteristics of participants 19 

The average ages of SHS and control groups were 19.03 and 18.87 years, 20 

respectively. Higher SHS, insomnia, anxiety, and depression scores were observed in 21 

the SHS group (All P < 0.05). Aside from these, there were no statistically significant 22 



differences observed between the SHS and control groups in terms of the other 1 

variables (All P > 0.05). The characteristics of participants were summarized in 2 

Supplementary Table 1. 3 

 4 

Identification of potential transcriptomic biomarkers 5 

A total of 46 DEGs were identified between SHS and control group, including 22 6 

upregulated genes and 24 downregulated genes in SHS group, based on the criteria 7 

of P value < 0.05 and the fold change > 2 (Figure 1). The detailed list of 46 DEGs is 8 

presented in Supplementary Table 2. The AUC values were calculated to assess the 9 

diagnostic accuracy of 46 candidate transcripts (Supplementary Table 3). As shown in 10 

Table 1, 23 transcripts with statistically significant AUC values were selected as the 11 

candidate biomarkers for SHS. 12 

 13 

GO enrichment analysis 14 

To investigate the biological functions related to SHS, GO enrichment analysis of 15 

46 DEGs was performed. Significantly enriched terms were those with a P value < 16 

0.05 and gene count ≥ 2. The results revealed that the 22 upregulated DEGs were 17 

significantly enriched in intermediate filament, contractile fiber, intermediate filament 18 

cytoskeleton, and apical plasma membrane in terms of cellular component (CC) 19 

(Figure 2A). Regarding biological process (BP), the upregulated DEGs were enriched 20 

in adult heart development, organophosphate ester transport, male gonad 21 

development, development of primary male sexual characteristics, male sex 22 



differentiation, gonad development, protein heterotetramerization, development of 1 

primary sexual characteristics, regulation of cardiac muscle cell proliferation, and 2 

cardiac muscle cell proliferation (Figure 2B). Under molecular function (MF), the 3 

upregulated DEGs were enriched in ATPase-coupled transmembrane transporter 4 

activity, primary active transmembrane transporter activity, lipid transporter activity, 5 

and growth factor activity (Figure 2C). For the downregulated DEGs, significant 6 

enrichment was observed in anchored component of membrane and vacuolar lumen 7 

regarding CC (Figure 2D). In terms of BP, the downregulated DEGs were enriched in 8 

negative regulation of bone morphogenetic proteins (BMPs) signalling pathway, 9 

positive regulation of extracellular signal-regulated kinase-1 (ERK1) and ERK2 10 

cascade, negative regulation of ossification, gliogenesis, regulation of cellular 11 

response to growth factor stimulus, regulation of ERK1 and ERK2 cascade, regulation 12 

of BMP signalling pathway, ERK1 and ERK2 cascade, cellular transition metal ion 13 

homeostasis, and regulation of gliogenesis (Figure 2E). For MF, the downregulated 14 

DEGs were enriched in protein serine/threonine kinase activity (Figure 2F).  15 

 16 

KEGG enrichment analysis 17 

To explore the biological pathways related to SHS, KEGG enrichment analysis of 18 

DEGs was performed. As shown in Figure 3A, the upregulated DEGs were significantly 19 

enriched in ATP-binding cassette (ABC) transporters. In addition, KEGG enrichment 20 

analysis identified three significant pathways of the downregulated DEGs, including 21 

proteoglycans in cancer, Parkinson disease, and neurodegeneration (Figure 3B). 22 



 1 

PPI network analysis and hub gene recognition 2 

 In order to provide a comprehensive view of potential functional relationships of 3 

DEGs, the 22 upregulated genes and 24 downregulated genes were mapped by the 4 

STRING database to establish a PPI network (Figure 4). Protein pairs with a 5 

combination score > 0.15 were selected in the PPI network. The top 10 genes with the 6 

highest degree of connectivity were defined as critical hub genes (Figure 5), including 7 

gap junction protein α1 (GJA1), twist family basic helix-loop-helix transcription factor 8 

2 (TWIST2), keratin 1 (KRT1), tubulin β3 (TUBB3), anti-mullerian hormone receptor 9 

type 2 (AMHR2), bone morphogenetic protein 10 (BMP10), metallothionein 3 (MT3), 10 

bone morphogenetic protein binding endothelial regulator (BMPER), neurotrimin 11 

(NTM), and transmembrane protein 98 (TMEM98). 12 

 13 

Transcriptome predictive model for SHS 14 

Multivariate binary logistic regression analysis was conducted to construct a 15 

predictive model based on the transcripts of 10 hub genes. Transcriptome dataset was 16 

normalized before logistic regression analysis and stepwise method (entry criteria: P 17 

< 0.05 and exclusion criteria: P > 0.10) was used to select the best combination of 18 

transcripts. Consequently, two transcripts were selected in the model and the model 19 

based on candidate transcripts was as follows: 20 

Logit (p = SHS) = 0.137 - 66.878 × (BMPER mRNA) + 29.328 × (AMHR2 mRNA) 21 

The model yielded a sensitivity of 83.3% (95% CI: 73.9%-92.7%), a specificity of 22 



90.0% (95% CI: 82.4%-97.6%), and an AUC of 0.938 (95% Confidence Interval (CI): 1 

0.882-0.994, P < 0.001) (Table 1 & Figure 6). 2 

 3 

Discussion 4 

Predictive diagnosis and targeted prevention is the cost-effective strategy for 5 

personalized medicine [34]. As a reversible stage in advance of chronic diseases, SHS 6 

proposes a new effective conception for preselection of healthy but pathology-7 

predisposed individuals under the perspective of PPPM. Identifying key biological 8 

pathways relevant to SHS and its progression towards chronic diseases are 9 

considered as viable strategies for predictive diagnosis, targeted prevention and 10 

personalized therapy of chronic diseases. With the emergence of RNA-Seq-based 11 

technologies, transcriptome profiling could play a significant role in deciphering gene 12 

expressions on RNA level and identifying molecular biomarkers for SHS. The findings 13 

of present study have found that blood transcriptomic biomarkers have a promising 14 

prospect of clinical application in the prediction and prevention of chronic diseases, as 15 

we discuss below. 16 

 17 

⚫ Glucokinase regulator (GCKR) 18 

In the present study, significantly lower level of GCKR mRNA was found in 19 

individuals with SHS. Glucokinase regulator protein, encoded by GCRK gene, is a 20 

hepatocyte-specific regulatory protein that inhibits glucokinase in liver cells [35]. 21 

Glucokinase, a hexokinase isozyme, is a key regulator of glucose disposal and storage, 22 



and responds to increases in circulating glucose concentration by initiating a signalling 1 

cascade that results in insulin secretion from pancreatic islets β cell [36]. Alterations 2 

in glucokinase expression and activity are associated with poorly controlled T2DM [37] 3 

and nonalcoholic fatty liver disease (NAFLD) [38]. It has been reported that common 4 

variants in the GCKR gene are associated with increased blood triglycerides [39, 40], 5 

lower fasting glucose [40], and NAFLD [41]. The glucokinase regulator protein, which 6 

binds with glucokinase and inactivates it from carbohydrate metabolism, is able to 7 

serve as a new treatment target for T2DM [42]. Significantly lower level of GCKR 8 

mRNA in the SHS individuals in this study indicates that disorders of glucose 9 

metabolism might play an important role in the pathophysiology of SHS. Given the 10 

findings, GCKR mRNA might be a potential predictive diagnostic biomarker for the 11 

progression of SHS towards T2DM, and glucokinase regulator protein could be applied 12 

as potential therapeutic or preventive targets for SHS and T2DM. 13 

 14 

⚫ Gap junction protein α1 (GJA1) 15 

The present study observed that GJA1 is upregulated in individuals with SHS. 16 

Gap junction protein α1, also known as connexin 43 protein, is protein subunit that 17 

constitute gap junction channels [43]. The intercellular channels of gap junction 18 

facilitate the transfer of ions and small molecular from cell to cell, and are thought to 19 

modulate several processes, including embryogenesis, differentiation, and 20 

electrotonic coupling [44]. GJA1 expression is affected by several pathophysiological 21 

conditions, such as hypertension, hypercholesterolemia, and diabetes [45]. In the 22 



present study, the higher level of GJA1 mRNA in SHS individuals indicates that GJA1 1 

mRNA could be associated with the molecular mechanisms of SHS related to chronic 2 

diseases, such as hypertension, CVD and T2DM. Building on these findings, GJA1 3 

mRNA could serve as a potentially predictive biomarker for the early identification of 4 

SHS. Gap junction protein α1 is proposed to be a therapeutic or preventive target for 5 

the progression of SHS toward chronic diseases. 6 

Furthermore, Squecco et al. has reported that the bioactive sphingolipid, 7 

sphingosine 1-phosphate, can enhance GJA1 protein expression [46]. Our previous 8 

study has found sphingolipids metabolism is the disturbed metabolic pathway related 9 

to SHS, and significantly higher levels of sphinganine 1-phosphate and sphingomyelin 10 

are observed in SHS individuals [17]. Taken in consideration these findings, we 11 

suggest that the upregulated GJA1 mRNA could be affected by the disturbed 12 

sphingolipids metabolism in SHS individuals. However, further studies are needed to 13 

validate the interactions between gap junction protein α1 and sphingolipids in SHS 14 

individuals. 15 

 16 

⚫ BMPs signalling pathway 17 

Functional annotation and pathway enrichment analysis of DEGs provided an 18 

intuitive overview of the molecular mechanisms of SHS. The significant GO terms 19 

related with SHS were BMPs signalling pathway and regulation of ERK1/2 cascade. 20 

BMPs, a group of signalling molecules, are part of the transforming growth factor-β 21 

superfamily of proteins. It is initially discovered for their ability to induce bone formation 22 



[47], BMPs are now known to play important roles in the adult vascular endothelium, 1 

promoting angiogenesis and mediating oxidative stress [48]. Due to the critical roles 2 

of BMPs in maintenance of adult tissue homeostasis, it is found that dysregulation in 3 

BMPs signalling pathway contribute to various diseases, including cancer, skeletal 4 

disorders and CVD [49]. Our previous studies suggested that SHS might precede the 5 

occurrence of CVD [6, 7]. In the present study, significantly lower levels of BMPER 6 

and hemojuvelin BMP co-receptor (HJV) mRNA, which involved in the BMPs signalling 7 

pathway, were found in individuals with SHS. Our findings indicate that BMPs 8 

signalling pathway may play an important role in the pathophysiology of SHS. 9 

Transcripts of BMPER and HJV could be potential biomarkers for the predictive 10 

identification, targeted prevention, and personalized management of the progression 11 

of SHS towards chronic diseases. 12 

 13 

⚫ ERK1 and ERK2 cascade 14 

ERK1 and ERK2 cascade is key signalling pathway that regulates a large variety 15 

of cellular processes, including adhesion, migration, differentiation, metabolism, and 16 

proliferation [50]. This signalling cascade is dysregulated in a variety of diseases or 17 

conditions, including CVD [51], insulin resistance [52], and inflammation [53]. In the 18 

current study, significantly lower levels of metallothionein 3 (MT3) and C-C motif 19 

chemokine ligand 3 (CCL3) mRNA, which involved in the ERK1 and ERK2 cascade, 20 

were observed in individuals with SHS. Our findings demonstrate that the 21 

dysregulation of ERK1 and ERK2 cascade are associated with the molecular 22 



mechanisms of SHS. The association between the ERK1 and ERK2 cascade and 1 

several pathologies indicate that insulin resistance and inflammation may be involved 2 

in the pathophysiology of SHS. Effectively inhibits or blocks the occurrence, 3 

development, and progression of the chronic inflammation process playing important 4 

roles in the prevention of inflammation-related diseases [54]. The transcripts of MT3 5 

and CCL3 could be used as potential biomarkers for population risk stratification, as 6 

well as therapeutic or preventive targets for inflammation-related diseases. 7 

 8 

⚫ ABC transporters 9 

The KEGG enrichment analysis revealed that ABC transporter and 10 

neurodegeneration are the biological pathways related to SHS. ABC transporters are 11 

a large family of transmembrane proteins. These proteins bind ATP and use the energy 12 

to drive the transport of various molecules across cell membranes [55]. In human, the 13 

48 ABC proteins are divided into seven subfamilies, from A to G, based on sequence 14 

and organization of their ATP-binding domain [55]. The ABCA4 protein transports 15 

vitamin A derivatives and perform a crucial role in the visual cycle [56]. In the present 16 

study, the downregulation of ABCA4 was observed in the individuals with SHS, which 17 

indicates that the decreased level of ABCA4 mRNA is associated with the SHS 18 

phenotype of eyes, such as eye ache and fatigue. 19 

The ABCG8 protein functions to facilitate the transport of sterols in the intestine 20 

and liver [57]. Our previous study found that steroid hormone biosynthesis pathway is 21 

disturbed in SHS individuals [17], which indicates that the upregulation of ABCG8 22 



might be associated with the disorder of steroid hormone biosynthesis in SHS 1 

individuals. Chen and colleagues have observed that trimethylamine-N-oxide, a 2 

metabolite produced by gut microbiota, is associated with increased ABCG8 3 

expression [58]. In addition, Zhu et al. has proved that intestinal microbiota, 4 

Enterococcus faecalis, increase the expression of ABCG8 [59]. Our previous study 5 

has found that alterations of intestinal microbiota occur in SHS individuals [16]. In the 6 

present study, the higher level of ABCG8 mRNA might be associated with the altered 7 

diversity of intestinal microbiota in SHS individuals. 8 

 9 

⚫ Neurodegeneration 10 

Neurodegeneration is an age-related progressive deterioration of neuronal 11 

structures and functions ultimately leading to cognitive disability. It is the main 12 

pathological feature of neurodegenerative diseases, including Parkinson’s disease 13 

and Alzheimer’s disease. Timely and prompt diagnosis of the neurodegeneration 14 

disease is critical as it offers a chance for an early intervention that may be helpful in 15 

preventing further progression of the diseases. Predictive transcriptome patterns in 16 

blood can serve as biomarkers for the early identification of neurodegeneration [60]. 17 

In the present study, significantly lower levels of TUBB3 and calcium/calmodulin 18 

dependent protein kinase II β (CAMK2B) mRNA, involved in the neurodegeneration 19 

diseases, were observed in SHS individuals. These findings indicate that 20 

neurodegeneration might be involved in the pathophysiology of SHS. Our previous 21 

study also found the association between SHS and cognitive impairment [61]. Given 22 



these findings, transcripts of TUBB3 and CAMK2B could be potential biomarkers for 1 

the predictive identification, targeted prevention, and personalized management of the 2 

progression of SHS towards neurodegeneration diseases, such as 3 

Parkinson’s disease and Alzheimer’s disease. 4 

 5 

Strength and Limitations 6 

To the best of our knowledge, this is the first study to provide the comprehensive 7 

transcriptomic characterization for SHS using RNA-Seq-based transcriptome profiling. 8 

Our findings exhibit strong predictive abilities of transcriptomic biomarkers for the early 9 

identification of SHS. These transcriptomic biomarkers also provide better insight into 10 

the critical genes associated with SHS and a deeper understanding of its biological 11 

progression towards chronic diseases. Thus, the SHS-related transcripts and the 12 

particular pattern of transcripts can be used as potential biomarkers for the predictive 13 

diagnosis, population risk stratification, personalized management, and targeted 14 

intervention of SHS towards chronic diseases and neurodegenerative diseases. 15 

Several limitations in the present study are noteworthy. First, our study is a case-16 

control study with a relatively small sample size, hence the generalisation of these 17 

findings could be questioned. Considering the fact that our study provides the original 18 

observations on the transcriptomic characteristics of SHS population, the present 19 

study has provided a new idea that blood transcripts might offer a novel alternative for 20 

the predictive diagnosis, targeted prevention and personalized treatment of chronic 21 

diseases. Therefore, further validations for these transcriptomic biomarkers in multi-22 



centered clinical studies with large sample sizes and in multiple ethnic populations are 1 

also needed. In addition, considering the quantitative accuracy of RNA-Seq technology, 2 

a RT-qPCR study is underway against the same cohort to validate the putative 3 

transcript biomarkers and selected hub genes based on the findings in this study. 4 

Building on the present findings, it is essential to deeply investigate the functions of 5 

those SHS-related DEGs and the biological pathways in the progression of SHS 6 

toward chronic diseases. 7 

 8 

Conclusions and expert recommendations 9 

The early identification of SHS has the potential of predicting chronic diseases at 10 

early stage, and evidence-based intervention on SHS may be a cost-effective way for 11 

the targeted prevention, and personalized therapy of chronic diseases. A total of 23 12 

transcripts was selected as candidate predictive biomarkers for the identification of 13 

SHS. The present study clearly revealed the potential value of transcriptomic 14 

biomarkers for the predictive identification of SHS from the perspective of PPPM. The 15 

pattern of the differentially expressed genes can be used as biomarkers for patient 16 

stratification. We suggest that SHS-related transcriptomic biomarkers and other SHS-17 

related biomarkers at multi-omics levels are the key promise for the practice of PPPM 18 

in chronic diseases. 19 

The downregulation of GCKR in SHS individuals indicated that glucose 20 

metabolism disorder plays a significant role in the pathophysiologic mechanism of 21 

SHS. The GCKR protein could serve as a potentially preventive/therapeutic target for 22 



the progression from SHS towards T2DM. We recommend that further studies of large 1 

prospective cohorts should be conducted to investigate the crucial role of GCKR in the 2 

SHS progression, which could be useful for the predictive diagnosis and targeted 3 

prevention of T2DM. BMPs signalling pathway, ERK 1/2 cascade and ABC 4 

transporters play potential roles in the pathophysiologic mechanism of SHS. These 5 

findings determined the potential utility of SHS-related signalling pathways for targeted 6 

prevention and personalized therapy of chronic diseases. We recommend 7 

strengthening the studies of signaling pathways in SHS with different omics strategies. 8 

Ten genes, including GJA1, TWIST2, KRT1, TUBB3, AMHR2, BMP10, MT3, BMPER, 9 

NTM and TMEM98, play hub roles in the underlying mechanisms of SHS. We also 10 

suggest that it is crucial to deeply study the functions and activities of these 11 

differentially expressed genes in the underlying mechanism of SHS.  SHS may 12 

precede the actual onset of neurodegeneration diseases, such as Alzheimer’s disease 13 

and Parkinson’s disease. The integration of subjective health measure (SHSQ-25) and 14 

objective biomarkers (transcripts of TUBB3 and CAMK2B) enables clinician and public 15 

health workers to predict individual’s high risk of developing neurodegeneration 16 

diseases.  17 

SHSQ-25 can be used as an alternative health screening tool in the population-18 

based health survey, particularly when there is a lack of laboratory-based resources. 19 

Primary healthcare providers must be able to detect and manage SHS to fight delayed 20 

diagnosis, untargeted prevention, and ineffective intervention of chronic disease. 21 

 22 
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Abbreviations 1 

ABC ATP-binding cassette 

AUC Area under the curve 

BMPs Bone morphogenetic proteins 

BP Biological process 

CC Cellular component 

cDNA Complementary DNA 

CI Confidence interval 

CVD Cardiovascular disease 

DEGs Differentially expressed genes 

ERK1 Extracellular signal-regulated kinase-1 

FDR False discovery rate 

GO Gene ontology 

IQR Interquartile ranges 

KEGG Kyoto encyclopedia of genes and genomes 

MF Molecular function 

NAFLD Nonalcoholic fatty liver disease 

PPI Protein-protein Interaction 

PPPM Preventive, predictive and personalised medicine 

RNA-Seq RNA sequencing 

ROC Receiver operating characteristic 

SD Standard deviation 



SHS Suboptimal health status 

SHSQ-25 Suboptimal health status questionnaire-25 

STRING Search tool for the retrieval of interacting genes 

T2DM Type 2 diabetes mellitus 

Abbreviations for all particular genes can be found at the following 

link: www.ncbi.nlm.nih.gov/gene/ 
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Table 1. Diagnostic accuracy of candidate transcripts 1 

Gene Symbol Sensitivity Specificity AUC 95% CI P value 

Proposed Predictive Model 83.3% 90.0% 0.938 (0.882 – 0.994) <0.001 

ABCA4 50.0% 83.3% 0.667 (0.528 - 0.806) 0.026 

AMHR2 60.0% 83.3% 0.703 (0.569 - 0.838) 0.007 

BMPER 50.0% 90.0% 0.705 (0.572 - 0.838) 0.006 

CAMK2B 56.7% 76.7% 0.682 (0.545 - 0.819) 0.016 

CCL3 73.3% 56.7% 0.660 (0.520 - 0.800) 0.033 

CYP2W1 63.3% 73.3% 0.691 (0.555 - 0.828) 0.011 

DNAJC12 73.3% 70.0% 0.740 (0.612 - 0.868) 0.001 

EMX1 56.7% 70.0% 0.649 (0.510 - 0.789) 0.047 

EPGN 33.3% 96.7% 0.662 (0.523 - 0.801) 0.031 

GCKR 50.0% 86.7% 0.693 (0.558 - 0.828) 0.010 

HJV 50.0% 80.0% 0.657 (0.518 - 0.796) 0.036 

HRNR 73.3% 33.3% 0.711 (0.580 - 0.842) 0.005 

LCN8 83.3% 50.0% 0.683 (0.549 - 0.818) 0.015 

NKAIN4 43.3% 90.0% 0.650 (0.510 - 0.790) 0.046 

NPW 50.0% 86.7% 0.674 (0.537 - 0.812) 0.020 

OR10AD1 73.3% 60.0% 0.687 (0.551 - 0.822) 0.013 

PCDHGB4 73.3% 53.3% 0.678 (0.542 - 0.814) 0.018 

RANBP17 66.7% 73.3% 0.709 (0.575 - 0.842) 0.005 

SLC12A1 60.0% 63.3% 0.652 (0.513 - 0.792) 0.043 

TBC1D3 70.0% 70.0% 0.697 (0.562 - 0.831) 0.009 

TMEM211 53.3% 83.3% 0.653 (0.513 - 0.793) 0.041 

TUBB3 60.0% 70.0% 0.679 (0.543 - 0.815) 0.017 

TWIST2 76.7% 56.7% 0.695 (0.561 - 0.829) 0.009 

AUC, area under the receiver operating characteristic curves; CI, confidence interval. The 2 

full names of all particular genes are presented in Supplementary Table 2. Abbreviations for 3 

all particular genes can be found at the following link: www.ncbi.nlm.nih.gov/gene. P < 0.05 4 

is considered statistically significant. 5 
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Figure legends 1 

 2 

 3 

Fig. 1 Volcano plot of DEGs 4 

DEGs (P value < 0.05 and Log2 (fold change) > 1.0) between SHS and control 5 

groups are presented using a volcano plot. The upregulated genes are 6 

presented by red color, while the downregulated genes are presented by blue 7 

color; The detailed information of DEGs are presented in Supplementary Table 8 

2. DEGs. differential expressed genes. 9 

  10 
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 1 

Fig. 2 GO enrichment analysis of DEGs. 2 

GO enrichment analysis was performed to investigate the biological functions 3 

related to SHS based on 46 DEGs. The y-axis represents GO enriched terms. 4 

The x-axis represents the gene ratio under specific GO terms. The color of the 5 

bar represents the P value. BP, biological process; CC, cellular component; MF 6 

molecular function; GO, Gene ontology; DEGs, differentially expressed genes. 7 
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 1 

Fig. 3 KEGG enrichment analysis of DGEs 2 

KEGG enrichment analysis was performed to investigate the biological 3 

pathways related to SHS based on 46 DEGs. The y-axis represents KEGG 4 

enriched terms. The x-axis represents the gene ratio under a specific KEGG 5 

terms. The color of the bar represents the P value. The size of dot represents 6 

the count of genes under specific KEGG terms. KEGG, Kyoto Encyclopedia of 7 

Genes and Genomes; DEGs, differentially expressed genes.  8 
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 1 

Fig. 4 PPI network of DEGs 2 

The PPI network was mapped to show the potential functional relationships of 3 

DEGs. The nodes represent the significantly upregulated/downregulated genes. 4 

The edges represent the interaction of proteins coded by DEGs. The resource 5 

for the abbreviations of the protein names is from the STRING database. DEGs, 6 

differentially expressed genes. PPI, protein-protein interaction; STRING, 7 

Search Tool for the Retrieval of Interacting Genes. 8 
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 1 

Fig. 5 Hub genes identified in PPI network 2 

The top 10 genes of 46 DEGs with the highest degree of connectivity 3 

(combination score > 0.15) were defined as critical hub genes. The nodes 4 

represent the significantly upregulated/downregulated genes. The edges 5 

represent the interaction of proteins coded by DEGs. The node color changes 6 

gradually from yellow to red in ascending order according to the degree of the 7 

genes. The resource for the abbreviations of the protein names is form the 8 

STRING database. PPI, protein-protein interaction; STRING, Search Tool for 9 

the Retrieval of Interacting Genes. 10 
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 1 

Fig. 6 ROC curve for transcriptome predictive model 2 

Proposed predictive model：Logit (p = SHS) = 0.137 - 66.878 × (BMPER mRNA) 3 

+ 29.328 × (AMHR2 mRNA). AUC, area under the curve; CI, confidence interval; 4 

ROC, receiver operating characteristic. 5 
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