
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

2014

Towards a set of metrics to guide the generation of fake Towards a set of metrics to guide the generation of fake

computer file systems computer file systems

Ben Whitham
University of New South Wales, Canberra, Australia

Follow this and additional works at: https://ro.ecu.edu.au/adf

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

DOI: 10.4225/75/57b3dc72fb878

12th Australian Digital Forensics Conference. Held on the 1-3 December, 2014 at Edith Cowan University, Joondalup
Campus, Perth, Western Australia.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/adf/130

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ro.ecu.edu.au%2Fadf%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fadf%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b3dc72fb878

TOWARDS A SET OF METRICS TO GUIDE THE GENERATION OF

FAKE COMPUTER FILE SYSTEMS

Ben Whitham

University of New South Wales, Canberra, Australia

b.whitham@student.adfa.edu.au

Abstract

Fake file systems are used in the field of cyber deception to bait intruders and fool forensic investigators. File

system researchers also frequently generate their own synthetic document repositories, due to data privacy and

copyright concerns associated with experimenting on real-world corpora. For both these fields, realism is

critical. Unfortunately, after creating a set of files and folders, there are no current testing standards that can be

applied to validate their authenticity, or conversely, reliably automate their detection. This paper reviews the

previous 30 years of file system surveys on real world corpora, to identify a set of discrete measures for

generating synthetic file systems. Statistical distributions, such as size, age and lifetime of files, common file

types, compression and duplication ratios, directory distribution and depth (and its relationship with numbers of

files and sub-directories) were identified and the respective merits discussed. Additionally, this paper highlights

notable absences in these surveys, which could be beneficial, such as analysing, on mass, the text content

distribution, file naming habits, and comparing file access times against traditional working hours.

Keywords

Fake files, fake file systems, cyber deception, honey-files, canary files, decoy documents

INTRODUCTION

Since the implementation of the Multics Operating System 40 years ago, most current operating system

software provides a facility to organise programs and data files in hierarchical structures (Henderson, 2004).

File systems can contain the base executable version of the operating system in additional to applications and

configuration data (Kim and Spafford, 1994). Users can also employ file systems as a central repository of their

collective knowledge, such as correspondence, study material, travel information, financial records and

inventions (Salminen, et al., 1997).

Fake file systems are a set of synthetic data files arranged in a manner to replicate real digital repositories.

While artificially created file systems are used in cyber deception to lure unauthorised users or to sustain a

falsehood, they also have other important benign applications, such as supporting research and development into

replication and archiving. The key limitation in their application is an absence of common or agreed baseline

metrics for building or evaluating these synthetic products. The consequence of this research gap is that fake file

systems can be produced that either lack realism, contain uniquely identifiable characteristics that can be

detected, or both. This paper presents the results of a literature review of the previous thirty years of published

file system surveys. The aim of the research is to extract metrics and identify common themes to improve the

realism and reduce detectability of synthetic file systems. These results are the first step in a multi-stage process.

The next stage of the research is to test these common statistical distributions by building replica file systems.

FILE ATTRIBUTES

Most modern operating systems provide users with visibility of characteristics of accessible files, such as

content, attributes and metadata (Carrier and Spafford, 2004). Characteristics such as file name, file size,

location, and file type or file-extension assist users to identify specific documents and navigate the file system

(Ritchie and Thompson, 1974). Time-based attributes can also be accessed by the user, such as: (1) atime -

updated when the file is read; (2) mtime - updated when the file contents change (the default file time in most

cases); and (3) ctime - updated when the file or certain file characteristics (owner, permissions) change (Daley

and Neumann, 1965). The user and group identifier were also introduced in Unix (and later adopted by

Microsoft's New Technology File System) providing information on who can read, write and execute the file

(Buchholz and Spafford, 2004). The owner of the file can also modify the filename, which can provide clues to

the purpose, version number and creation date (Anquetil and Lethbridge, 1997).

5

Additional information can also be obtained from documents with further analysis, such as inspecting the

content of the file to classify the type and whether or not the file is encrypted or compressed (Erbacher and

Mulholland, 2007; Li et al., 2005; McDaniel, M., & Heydari, 2003). Some file types also save additional

metadata in the contents, such as the author's name, initials, organisation name, computer's name, document

revisions and versions, template information and comments. Files can be differentiated through review of their

content's entropy (Shannon, 2001), word and character count, strings, language and writing style analysis

(Mosteller and Wallace, 1963; Somers and Tweedie, 2003; Abbasi and Chen, 2008) and cryptographic hash

(Kim, 1994).

Combinations of characteristics can be used to categorise and classify files (Goncalves and Jorge, 2003; Ellard,

et al., 2003), and unexpected combinations can be used to differentiate the real from the fake (Rowe, 2005).

FAKE FILE SYSTEMS

Individual fake files have been referred to as honeytokens (Spitzner, 2003), honeyfiles (Yuill et al., 2004),

digital decoys (Kushner, 2003), decoy files (Bowen et al., 2009), and canary files (Whitham, 2013a). Stoll

(2005) was the first to publicly discuss the use of fake files in cyber deception. He handcrafted several

documents to successfully track and identify an unauthorised user on his network. His work inspired several

others. Bowen, et al (2009) developed the Decoy Document Distributor System, which is a tool for generating

and monitoring individual fake files. Yuill, et al (2004) also proposed a fake file generation, distribution and

alert system to simplify the operation and management of individual fake files. Finally, Whitham (2013b)

proposed a method to automate the generation of fake files to perform a watermarking role, using content from

the local and nearby directories.

On a mass scale, Gerwehr and Glenn (2003), and Cohen (2003) independently noted that whole fake file

systems can be generated for honeypots to suggest that real users have been using the system in normal ways.

Garfinkel (2009) and Rowe (2006) both proposed generating a synthetic file system using publicly available

data, Internet searches or other random text. Assuming that there are no copyright concerns, these files can be

assembled into a hierarchical set of folders resembling a modern file repository.

RESEARCH APPLICATION

Realism is critically important for fake files deception (Whitham, 2014). The primary challenge with artificially

constructed datasets is that while the text content may be genuine, the document arrangements are rarely a true

representation of a real file system (Arnold and Bell, 1997; Ellard et al., 2003). File system corpora should

include corruptions, compressed files, duplications, previous versions of documents, natural modifications to

file characteristics due to operating system processes, and realistic distributions of time meta-data, directories

and files (Chow et al., 2007). Artificially generated corpora can also fail to mimic the diverse behaviours of

different users (Ellard et al., 2003) and human document management processes (Goncalves and Jorge, 2003).

Poor fake file system constructions can also introduce identifiable characteristics that allow a forensic examiner

or intruder to develop automated processes to counter the deception; a single test function would thus easily

distinguish the real from the fake (Bowen et al., 2009). Examples include: anomaly-based detection, which can

be employed against the fake file system, comparing a range of metrics against those of typical computer

systems (Rowe, 2006), inspecting randomly-chosen files or directories to see if they look ‘normal’ (Fu et al.,

2006), checking content against other nearby material to determine if it is out of place (Lavoie and

Krishnamoorthy, 2010), or looking at content to identify unusual languages, uncharacteristic formats or text that

comprise random words, rather than structured sentences (Voris et al., 2012).

Simulating realistic file repositories can be useful for a range of practical research purposes, such as generating

test data to improve the performance of compression and retrieval in electronic storage systems. Undertaking

research on genuine data is complicated by lack of access to real world corpora, primarily due to privacy or

copyright concerns (Ming et al., 2014; Tarasov et al., 2012). Synthetic data that is more aligned with real world

environments are likely to yield results that are more transferable to practical outcomes.

The research is also applicable to the forensic detection of fake files. The presence of fake files could indicate

malicious or unauthorised activity. Successful detection of fake files may trigger further analysis or allow an

examiner to discard these files as spurious.

6

METHOD

Rowe (2006) proposed an approach to detect fake file systems that is relevant to their construction. He believed

that they could be detected by calculating statistics on a candidate file system and its subdirectories, and

comparing these results with a typical real system; significant discrepancies suggest deception. This research

follows Rowe’s approach. The previous 30 years of published file system surveys were reviewed in order to

identify a set of important characteristics that could be used to either construct fake file systems, or detect their

presence. Only recognised peer-reviewed publications were included in the literature review.

PREVIOUSLY PUBLISHED FILE SYSTEM METRICS

There have been more than 15 published surveys of file systems since 1977. Table 1 summarises these major

file system surveys, in chronological order of publication. Five other notable studies were conducted on files

and documents, rather than file systems (Barford and Crovella, 1998; Bouayad-Agha and Kilgarriff, 1999;

Chow, 2007; Cunha, 1995; Rowe, 2010). The relevant findings are grouped by metrics below.

Distribution by File Size

Stritter’s (1977) initial observation was that the distribution of file sizes within his sample set could be

approximated by a Pareto distribution. Soon after, Satyanarayanan (1981) identified that his sample distribution

decreased nearly monotonically with increasing file size. He was able to use this result to approximate files by

size based on a hyper-exponential distribution, using Kolmogorov-Smirnov (Hájek, 1967), a common approach

to compare sample distributions against a reference probability. Nearly 20 years later, Barford and Crovella

(1998) refined Satyanarayanan’s results to create a hybrid model where the bulk of the file sizes were small,

with a long tail of much less frequently appearing larger files; Satyanarayanan’s approximation split the log-

normal distribution of the body (93% of the data) and a heavy tailed distribution of the larger files (above 133kB

in size), with a mean file size of 9.357 and standard deviation of 1.318. This result was supported by Douceur

and Bolosky (1999), who while noting that the previous hyper-exponential distribution was not as natural a fit

for their data, still preferred a log-normal distribution, with a Pareto tail.

Shortly after, Downey (2001) compared the performance of log-normal and hybrid Pareto distributions using

data from Irlam (1993), Arlitt and Jin (2000), Satyanarayanan (1981), and Douceur and Bolosky (1999), also

using Kolmogorov-Smirnov. He was unable to confirm that the previous distributions were long-tailed (i.e.

Pareto), but he still identified that the data could be approximated more accurately by either a single or two

mode log-normal with the distribution skewed towards smaller file sizes. He concluded that even if his model is

not entirely realistic, it is robust to violations of the assumptions.

While distribution by file size may appear to be a common measurement of file systems, there are limitations for

its application in generating synthetic content. Firstly, there is no consensus on a uniform model of distribution;

some researchers were unable to match previous published file size results (Evans and Kuenning 2002; Vogels,

1999). There does appear to be consensus on the overall characteristics.

Secondly, several researchers observed that the average file size increased over time (Agrawal et al., 2007;

Bennett, 1992; Douceur and Bolosky, 1999; Roselli et al., 2000; Sienknecht et al., 1994), which may account

for the variance between surveys. The latter may require the development of a generic generation or detection

metric, which can be adjusted periodically to account for technological change, such as the growth of virtual

machine snapshots and multimedia. This variation may focus on the tail of the distribution elongating, but with

the overall split between large and small file sizes remaining consistent.

Finally, file size metrics are heavily influenced by user activity; different file types exhibit divergent size

distributions (Evans and Kuenning 2002; Satyanarayanan, 1981). For instance, a file repository supporting a

graphics company is likely to have a different set of common file types compared with an elderly home user,

both legitimate real world data. File size models may also be heavily influenced by the inclusion of the

underlying operating system, rather than just user data. This might require the creation of multiple file size

models, which can be applied depending on the mix of content that is required, with the operating system

included as a constant.

7

8

Table 1 – Summary of Previous File System Surveys

9

Distribution by File Age

Stritter (1977) was the first to model the age distributions, discovering an exponential distribution. He defined

file age as the elapsed time since ctime. Douceur and Bolosky (1999) published the next significant distribution.

They discovered that the median file age on their sample set was 48 days, three times the values collected by

Stritter (1977), as reported by Smith (1981). Douceur and Bolosky (1999) were able to approximate their results

using a 2-stage hyper-exponential distribution.

Douceur and Bolosky (1999) quantified the fit according to the maximum displacement of the cumulative

curves. Unfortunately, this result failed both the Kolmogorov-Smirnov test and the chi-square test, which limits

their application as governing distributions, even for their own observations.

Agrawal, et al. (2007) and Meyer (2012) believed that Douceur and Bolosky’s (1999) previous results were still

valid. Agrawal, et al. went further to add that: “since the distribution of file age has not appreciably changed

across the years, we can expect that a prediction algorithm developed today based on the latest distribution will

apply for several years to come”. This is a promising result for synthetic file system generation.

There are, however, several limitations of employing previous file age distributions in a general theorem for

sythentic file system generation. Firstly, the metric relies on ctime. As previously discussed, most modern file

systems track three time fields for each file: (1) atime (2) mtime and (3) ctime. The latter can be confused with

‘creation’ time, but the ctime attribute can be modified other than at creation, such as a change in ownership

(Rowe, 2010).

Secondly, file time attributes are unreliable due to: (1) variances in the way in which time stamps attributes are

managed when copying files (Vogels, 1999); and (2) the file system routinely modifying these timestamps as

part of normal system processes (searching files, anti-virus, etc) (Chow, 2007).

Thirdly, the distribution of file ages varies significantly across file systems and user job function. For instance,

the results varied between files systems that provided collective repositories for academic research, as opposed

to individual engineers working for a commercial entity. Potentially separate algorithms may be required for

operating system files and those managed by users and organisations.

Finally, some researchers used trace data, allowing them to observe all file actions, whereas, the snapshot

process (commonly used) missed: (1) creation, modification and access in-between the periodic snapshots; and

(2) changes to the file system whilst scanning other parts of the file system.

Distribution by Functional Lifetime

Satyanarayanan (1981) was the first to introduce the concept of a file’s functional lifetime (f-lifetime). He

defined f-lifetime as the difference between the file’s mtime and atime. That is the difference between the last

access compared to the last modification of the file. He proposed that f-lifetime indicates the time span over

which the data in the file has been demonstrably useful. He discovered that the distribution of files decreases

nearly monotonically with increasing f-lifetime. This finding led him to find hyper-exponential distributions that

approximate these two distributions. Mullender and Tanenbaum (1984), Bennett, et al. (1992), and Douceur

(1999) also supported his findings.

Douceur and Bolosky (1999) noted a reduction in median f-lifetimes between their data set (12 days) and the

original study undertaken by Satyanarayanan (30 days). Both these figures are exclusive of zero f-lifetimes,

which can be the result of system processes, such as temporary Internet files (Rowe, 2010). They also observed

that the distribution of f-lifetimes varies widely. On 50% of file systems, the median f-lifetime ranges from zero

to 6 days, and on 90% of file systems, it ranges from zero to 97 days, reflecting the strong bi-modality. Douceur

and Bolosky (1999) were able to approximate their distribution with a mixture of a constant distribution for zero

f-lifetimes and a 3-stage hyper-exponential distribution. This result is similar in distribution to Satyanarayanan

(1981), but with different parameters, which exposes potential for a general theorem.

Analysing and collecting data on file times is limited by the same challenges previously discussed in the

distribution of files by age. In addition, the principle of locality may be important, which essentially states that

(1) information in recent use is likely to be reused, and (2) information logically adjacent to recently used

information is likely to be referenced soon (Denning, 1972).

10

Other Time-based Measurements:

Chow, et al. (2007) provided seven rules associated with attributes times, which are useful for individual file

classification during forensic analysis. These include: (1) when mtime = ctime, the file has neither been

modified since its creation, nor copied from another disk location; (2) when mtime < ctime, the file has been

copied or moved; and (3) when a large number of files with ‘close’ atimes are found inside the hard drive, those

files are likely to be scanned by some tool, e.g. anti-virus software.

Rowe and Garfinkel (2010) expanded on Chow’s results. They grouped documents into three categories: (1)

modified after creation (mtime > ctime), (2) accessed after creation (atime > ctime), and/or (3) accessed after

modification (atime > mtime). They concurred with previous findings from Agrawal, et al. (2007) that: (1) files

that were modified or accessed at least one day before creation (mtime < ctime or atime < ctime), suggest that

the files were downloaded or copied from an external location; (2) clusters of these files in a directory have

ctimes within a minute, suggest that they were downloaded or copied at the same time; and (3) the transfer of

data is actually very common in user controlled file systems. Real-world files systems could contain evidence of

all of the above cases.

Prior to publishing these results, Rowe (2006) suggested analysing file times to identify the mean within the

day, week, and year to see periodic patterns. Expanding on this observation, it might also be useful to compare

the file times against the normal working hours of the owner. For instance a commercial business might have

the majority of ctimes between 0730 and 1930 Monday to Friday, whereas an individual home user times might

primarily record activity in the evenings, after work.

Analysing and collecting data on file times is limited by the same challenges previously discussed in the

distribution of files by age. Moreover, user activity is likely to heavily influence these results. For instance,

individual users with a passion for collecting music or movie files may have a higher than average volume of

externally created files.

Directory Size Distribution

Rowe (2006) noted that statistics on directories are less variable than those relating to files, and therefore

present an important design consideration for fake file system generation. Several researchers (Agrawal et al.,

2007; Bennett et al., 1992; Douceur and Bolosky, 1999; Goncalves and Jorge, 2003; Henderson and Srinivasan,

2009; Meyer, 2012; Sienknecht et al., 1994) reported statistics on the count of files by directory. Douceur and

Bolosky (1999) were the first to present a distribution function for directory sizes. Their observations were

relatively consistent across their sample file systems. Douceur and Bolosky (1999) were able to demonstrate that

their directory size distribution fit offset inverse-polynomial distributions, which allowed them to develop an

approximation with a mixture of a constant distribution for zero-size directories and an inverse-square. These

results were supported by their extended study several years later (Agrawal et al., 2007).

Two interesting observations suggest that a general distribution function for directory sizes could be sustained.

Firstly, Agrawal, et al. (2007) noted that the directory size distribution didn’t change over their five-year

observation period. Secondly, Henderson and Srinivasan (2009) remarked that there was no correlation between

the number of files or folders a person manages and any of the demographic data collected (age, gender,

academic or general staff status, department, position and/or employment tenure).

Four challenges may limit the wider applicability of directory size measurements: (1) there was significant

variation between published means - results ranged from 2 to 13 files without a consistent value or pattern; (2)

there was potentially a growth over time of the number of reported directories that did not contain files (but

could contain directories). Agrawal, et al. (2007) reported that approximately 25% of directories were empty.

This figure is up from 18% recorded by Douceur and Bolosky (1999), who surveyed a similar data set five years

earlier. These results are higher than the 14% observed in large industry file servers by Sienknecht et al. (1994).

(3) Vogels (1999) reported that there was no uniformity in size or content of files between individual user

document repositories; and (4) Goncalves, et al. (2003) also observed that directories generated or managed

automatically by applications tend to have large numbers of files, whereas users tend to separate and classify

documents into sub-directories whenever possible. The latter result might be useful if a fake file system is

required to mimic applications in addition to user data.

Sub-directory Distribution

Sub-directory distribution is the count of sub-directories in each directory (Sienknecht et al., 1994). Henderson

and Srinivasan (2009) suggested a relationship between directory size and the depth. They observed that the

11

average number of files per folder is greatest at the top levels of the tree (up to a depth of five), and then drops

off sharply. Agrawal, et al. (2007) noted: “a slight downward trend in this ratio with increasing depth,

punctuated by three depths whose directories have greater-than-typical counts of files: at depth two are files in

the Windows and Program Files directories; at depth three are files in the System and System32 directories; and

at depth seven are files in the web cache directories”. This last result may not hold true for other operating

systems.

Henderson and Srinivasan (2009) also discovered that on average 74% of folders in their samples did not

contain any subfolders. They termed these directories ‘leaf folder’. They also found that there were a high

average number of subfolders at the root of the tree (~9), which sharply drops off (to < 2) by two or three

folders depth. Douceur and Bolosky (1999) also observed similar results. They found that 69% of all directories

contain no subdirectories, 16% contain one, and less than 0.5% contain more than 20. These percentages align

with those reported by Sienknecht et al. (1994), who found 74%, 11%, and 1%, respectively. Douceur and

Bolosky (1999) approximated their results using a mixture of constant distribution for zero-size directories and

an inverse-cube distribution.

Goncalves and Jorge (2003) remarked that their directory count data resembled a Poisson distribution. The

results from Agrawal, et al. (2007), the most comprehensive evaluation of directory distribution for individual

users, also matched a Poisson distribution. This is an notable result for fake file system creation, however, this

distribution is yet to be tested on organisational document repositories.

Other Noted Characteristics

Several researchers provided statistics on file type (including numbers of zip and gzip files), however; only

Goncalves and Jorge (2003) provided a compression ratio (7%). They defined compression ratio as the number

of text-based files with a corpus that have been processed by a compression algorithm within the file system

divided by the total files in the corpus. Their compression ratio excluded images, audio and video content. It is

possible that real-world file systems may contain a consistent data volume or number of compressed files within

their contents; however, more work is required to develop predictable algorithm.

Henderson and Srinivasan (2009) defined duplication ratio as the number of files with an exact replica copy

within the file system divided by the total files in the corpus. Bouayad-Agha and Kilgarriff (1999) reported that

15% of their documents had an exact replica copy in their corpus. Henderson and Srinivasan (2009) noted that

21.8% files had the same name as another file in their file system. While matching file name provides some

level of confidence that the file could contain identical or similar content, a more precise measure may assess

resemblance using such tools as fuzzy hashes.

Finally, there is a conspicuous absence of analysis on file content from the previous surveys. Partial text

duplication arises for many reasons, such as: popular templates, the compulsory application of warning

messages or classification banners, and organisational jargon (Bouayad-Agha and Kilgarriff, 1999). Plotting the

proximity of content reuse may also be important. Its distribution is unlikely to be random. Similar data is likely

to reside within the same or nearby directories, a characteristic of versioning and common users. It may be

possible to identify consistent patterns, such as clustering of frequency of word pairs (n-grams), file naming

conventions and common authorship identification through natural language processing that could assist in

detection and more realistic generations.

CONCLUSIONS AND FURTHER RESEARCH

Simulating realistic hierarchical file structures is important for research, testing and cyber deception. Currently,

there is an absence of metrics to guide the generation of synthetic file systems. This paper reviewed the previous

30 years of file system surveys in order to assess common metrics that could be applied to this problem. Ten

potential characteristics were discovered: (1) file size, (2) file age, (3) functional lifetime, (4) directory size, (5)

file origin analysis using time attributes, (6) file creation times against normal work hours, (7) directory size, (8)

sub-directory distribution, (9) duplication ratio, and (10) compression ratio. Of these, directory distributions

appear to provide the greatest potential, especially for individual file systems running Windows. There appear to

be established trends in age and size distributions, but the specifics are far too dependent on the situation for a

general theorem, without adjusting thresholds based on ownership (individual or collective), expected working

hours and roles of the file system, and the employed collection method. The final sets of measures involving

ratios are too immature without further experimentation.

12

Regardless of maturity, the composition of fake file systems should confirm with all identified real-world

characteristics. Failure to consider one or more attributes could result in a simple detection process exposing the

deception.

Future research should test these identified metrics against a range of individual and collective file systems to

confirm algorithms and determine acceptable tolerances, particularly with a view to assigning variable

thresholds for ownership and employment. Other algorithms could analyse file and folder names, and their

conventions. One notable in these surveys was content analysis. Metrics could be developed to identify

proximity and clustering of similar data content, authorship and vocabulary as a means of detecting data of

different origin placed randomly within folders.

REFERENCES

Abbasi, A., & Chen, H. (2008). Writeprints: A stylometric approach to identity-level identification and

similarity detection in cyberspace. ACM Transactions on Information Systems (TOIS), 26(2), 7.

Agrawal, N, Bolosky, W J, Douceur J R, and Lorch J R (2007). A five-year study of file-system metadata, in

ACM Transactions on Storage (TOS), vol. 3, no. 3, p. 9.

Anquetil, N., & Lethbridge, T. (1997, November). File clustering using naming conventions for legacy systems.

In Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research (p.

2). IBM Press. Arlitt M and Jin T (2000). A workload characterization study of the 1998 world cup web

site, in Network, IEEE, vol. 14, no. 3, pp. 30–37, 2000.

Arnold R and Bell T (1997). A corpus for the evaluation of lossless compression algorithms, in Data

Compression Conference, 1997. DCC’97. Proceedings. IEEE, pp. 201–210.

Baker M G, Hartman J H, Kupfer M D, Shirriff K W, and Ousterhout J K (1991). Measurements of a distributed

file system, in ACM SIGOPS Operating Systems Review, vol. 25, no. 5. ACM, pp. 198–212.

Barford P and Crovella M (1998). Generating representative web workloads for network and server

performance evaluation, in ACM SIGMETRICS Performance Evaluation Review, vol. 26, no. 1, pp. 151–

160.

Bennett, J M Bauer M A and Kinchlea D (1992). Characteristics of files in NFS environments, in ACM

SIGSMALL/PC Notes, vol. 18, no. 3-4, pp. 18–25.

Bouayad-Agha N and Kilgarriff A (1999). Duplication in corpora, in Proceedings of the Second CLUK

Colloquium.

Bowen B, Hershkop S, Keromytis A, and Stolfo S (2009). Baiting inside attackers using decoy documents, in

Conference on Security and Privacy in Communication Networks.

Buchholz, F., & Spafford, E. (2004). On the role of file system metadata in digital forensics. Digital

Investigation, 1(4), 298-309.

Carrier, B. D., & Spafford, E. H. (2004). Defining event reconstruction of digital crime scenes. Journal of

forensic sciences, 49(6), 1291-1298.

Chow K P, Law F Y, Kwan M Y, and Lai P K (2007). The rules of time on NTFS file system, in Systematic

Approaches to Digital Forensic Engineering, 2007. SADFE 2007. Second International Workshop on.

IEEE, 2007, pp. 71–85.

Cohen F (2000). A mathematical structure of simple defensive network deception, in Computers & Security,

vol. 19, no. 6, pp. 520–528.

Cohen F, and Thomas E (2001). Red teaming experiments with deception technologies, taken from

http://all.net/journal/deception/experiments/experiments.html.

Cohen F (2003). Leading attackers through attack graphs with deceptions, in Computers and Security, vol. 22,

no. 5, pp. 402–411.

Cunha C R, Bestavros A, and Crovella M. E (1995). Characteristics of www client-based traces. Boston

University Computer Science Department, Tech. Rep.

13

Daley R C and Neumann P G (1965). A general-purpose file system for secondary storage, in Proceedings of

the November 30–December 1, 1965, fall joint computer conference, part I. ACM, pp. 213–229.

Denning, P. J. (1972, May). On modeling program behavior. In Proceedings of the May 16-18, 1972, spring

joint computer conference (pp. 937-944). ACM.

Douceur J R and Bolosky W J (1999). A large-scale study of file-system contents, in Proc. of the ACM

International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS). ACM

Press, pp. 59–70.

Downey A. B (2001). The structural cause of file size distributions, in Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, 2001. Proceedings. Ninth International Symposium on. IEEE,

pp. 361–370.

Ellard D, Mesnier M, Thereska E, Ganger G. R., and Seltzer M (2003). Attribute-based prediction of file

properties, Harvard Computer Science Group Technical Report TR-14-03.

Erbacher, R. F., & Mulholland, J. (2007, April). Identification and localization of data types within large-scale

file systems. In Systematic Approaches to Digital Forensic Engineering, 2007. SADFE 2007. Second

International Workshop on (pp. 55-70). IEEE.

Evans K M and Kuenning G. H (2002). A study of irregularities in file-size distributions, in Proceedings of the

2002 International Symposium on Performance Evaluation of Computer and Telecommunication Systems

(SPECTS). Citeseer.

Fu X, Yu W, Cheng D, Tan X, Streff K and Graham S (2006). On recognizing virtual honeypots and

countermeasures, in Dependable, Autonomic and Secure Computing, 2nd IEEE International Symposium

on, IEEE, pp. 211–218.

Garfinkel S, Farrell P, Roussev V, and Dinolt G (2009). Bringing science to digital forensics with standardized

forensic corpora, digital investigation, vol. 6, pp. S2–S11.

Gerwehr, S., & Glenn, R. W. (2003). Unweaving the web: Deception and adaptation in future urban operations.

Rand Corporation.

Gerwehr S, Weissler R and Rothenberg J (2000). Employing deception in information systems to thwart

adversary reconnaissance-phase activities, in National Defense Research Institute Project Memorandum

PM-1124-NSA, RAND.

Goncalves D J and Jorge J A (2003). An empirical study of personal document spaces. Springer, pp. 46–60.

Hájek, J., Šidák, Z., & Sen, P. K. (1967). Theory of rank tests (p. 297). New York: Academic press.

Henderson S (2004). How do people organize their desktops? in CHI’04 Extended Abstracts on Human Factors

in Computing Systems. ACM, pp. 1047–1048.

Henderson S and Srinivasan A (2009). An empirical analysis of personal digital document structures. Springer,

pp. 394–403.

Irlam G (1993). Unix file size survey, available at http://www.base.com/gordoni/ufs93.html.

Kim, G. H., & Spafford, E. H. (1994, November). The design and implementation of tripwire: A file system

integrity checker. In Proceedings of the 2nd ACM Conference on Computer and Communications Security

(pp. 18-29). ACM.

Kushner D (2003). Digital decoys [fake MP3 song files to deter music pirating], Spectrum, IEEE 40(5), 27.

Lavoie A and Krishnamoorthy M (2010). Algorithmic detection of computer generated text, arXiv preprint

arXiv:1008.0706.

Leung A W, Pasupathy S, Goodson G R, and Miller E L (2008). Measurement and analysis of large-scale

network file system workloads, in USENIX Annual Technical Conference, vol. 1, no. 2, pp. 5–2.

Li, W. J., Wang, K., Stolfo, S. J., & Herzog, B. (2005, June). Fileprints: Identifying file types by n-gram

analysis. In Information Assurance Workshop, 2005. IAW'05. Proceedings from the Sixth Annual IEEE

SMC (pp. 64-71). IEEE.

14

McDaniel, M., & Heydari, M. H. (2003, January). Content based file type detection algorithms. In System

Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on (pp. 10-pp). IEEE.

Meyer D T and Bolosky W J (2012). A study of practical de-duplication, in ACM Transactions on Storage

(TOS), vol. 7, no. 4, p. 14.

Ming Z, Luo C, Gao W, Han R, Yang Q, Wang L, and Zhan J (2014). Bdgs: A scalable big data generator suite

in big data benchmarking, in arXiv preprint arXiv:1401.5465.

Mosteller, F., & Wallace, D. L. (1963). Inference in an authorship problem: A comparative study of

discrimination methods applied to the authorship of the disputed Federalist Papers. Journal of the

American Statistical Association, 58(302), 275-309.

Mullender S J and Tanenbaum A S (1984). Immediate files, in Software: Practice and Experience, vol. 14, no.

4, pp. 365–368.

Ousterhout J K (1985). Da Costa H., Harrison D., Kunze J. A., Kupfer M., and Thompson J. G., A trace-driven

analysis of the UNIX 4.2 BSD file system. ACM, vol. 19, no. 5.

Ritchie, O. M., & Thompson, K. (1978). The UNIX time-sharing system. Bell System Technical Journal, The,

57(6), 1905-1929.

Roselli D S, Lorch J R and Anderson T E (2000). A comparison of file system workloads. in USENIX Annual

Technical Conference, General Track, pp. 41–54.

Rowe N C (2005). Automatic detection of fake file systems, in International Conference on Intelligence

Analysis Methods and Tools.

Rowe N (2006). Measuring the effectiveness of honeypot counter-counterdeception, in 39th Hawaii

International Conference on Systems Sciences, Poipu, HI.

Rowe N C and Garfinkel S L (2010). Global analysis of drive file times, in Systematic Approaches to Digital

Forensic Engineering (SADFE), 2010 Fifth   IEEE International Workshop on. IEEE, pp. 97–108.

Salminen, A., Kauppinen, K., & Lehtovaara, M. (1997). Towards a methodology for document analysis.

Journal of the American Society for Information Science, 48(7), 644-655.

Satyanarayanan M (1981). A study of file sizes and functional lifetimes, in Proceedings of the 8th SOSP. ACM,

pp. 96–108.

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and

Communications Review, 5(1), 3-55.

Sienknecht T F, Friedrich R J, Martinka J J, and Friedenbach P M (1994). The implications of distributed data in

a commercial environment on the design   of hierarchical storage management, in Performance

Evaluation, vol. 20, no. 1, pp. 3–25.

Smith A J (1981). Long term file migration: development and evaluation of algorithms, in Communications of

the ACM, vol. 24, no. 8, pp. 521–532.

Somers, H., & Tweedie, F. (2003). Authorship attribution and pastiche. Computers and the Humanities, 37(4),

407-429.

Spitzner, L. (2003). Honeypots: Catching the insider threat. In Computer Security Applications Conference,

2003. Proceedings. 19th Annual (pp. 170-179). IEEE.

Stoll, C. (2005). The cuckoo's egg: tracking a spy through the maze of computer espionage. Simon and

Schuster.

Stritter E P (1977). File migration, Stanford Linear Accelerator Center, CA (USA), Tech. Rep.

Tarasov V, Mudrankit A, Buik W, Shilane P, Kuenning G, and Zadok E (2012). Generating realistic datasets for

de-duplication analysis, in Proceedings of the Annual USENIX Technical Conference, Boston, MA.

Vogels W (1999). File system usage in Windows NT 4.0, in ACM SIGOPS Operating Systems Review, vol. 33,

no. 5, pp. 93–109.

15

Voris J, Boggs N and Stolfo S J (2012). Lost in Translation: Improving Decoy Documents via Automated

Translation, in Security and Privacy Workshops (SPW), 2012 IEEE Symposium on, IEEE, pp. 129–133.

Whitham B (2013a). Canary Files: Generating Fake Files to Detect Critical Data Loss From Complex Computer

Networks, in The Second International Conference on Cyber Security, Cyber Warfare and Digital

Forensic (CyberSec2013), The Society of Digital Information and Wireless Communication, pp. 170–179.

Whitham B (2013b). Automating the Generation of Fake Documents to Detect Network Intruders, International

Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1), 103–118.

Whitham, B. (2014). Design Requirements for Generating Deceptive Content to Protect Document Repositories.

Proceedings in the 15th Australian Information Warfare Conference, Perth, Australia.

Yuill J, Zappe M, Denning D and Feer F (2004). Honeyfiles: deceptive files for intrusion detection, in

Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC, IEEE, pp. 116–

122.

16

	Towards a set of metrics to guide the generation of fake computer file systems
	TOWARDS A SET OF METRICS TO GUIDE THE GENERATION OF FAKE COMPUTER FILE SYSTEMS

