Edith Cowan University Research Online

Research outputs 2014 to 2021

5-14-2021

1H-cyclopropabenzene and 1H-cyclopropa[b]naphthalene fumigation suppresses climacteric ethylene and respiration rates and modulates fruit quality in long-term controlled atmospherestored 'gold rush' pear fruit

Vijay Yadav Tokala

Zora Singh Edith Cowan University

Poe Nandar Kyaw

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the Fruit Science Commons, and the Physical Sciences and Mathematics Commons

10.1007/s00344-021-10387-2

This is a post-peer-review, pre-copyedit version of an article published in Journal of Plant Growth Regulation. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00344-021-10387-2 Tokala, V. Y., Singh, Z., & Kyaw, P. N. (2021). 1H-cyclopropabenzene and 1H-cyclopropa[b]naphthalene fumigation suppresses climacteric ethylene and respiration rates and modulates fruit quality in long-term controlled atmosphere-stored 'gold rush' pear fruit. *Journal of Plant Growth Regulation, 40*(6), 2276-2285. https://doi.org/10.1007/s00344-021-10387-2

This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworkspost2013/10308

1	1H-cyclopropabenzene and $1H$ -cyclopropa $[b]$ naphthalene fumigation suppresses
2	climacteric ethylene and respiration rates and modulates fruit quality in longterm
3	controlled atmosphere stored 'Gold Rush' pear fruit
4	Vijay Yadav TOKALA* ^{a,b} , Zora SINGH ^{a,c} , Poe Nandar KYAW ^{a,d}
5	^a School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia.
6	^b Present address: Amity Institute of Horticulture Studies and Research, Amity University, Noida 201313, Uttar
7	Pradesh, India.
8	^c Present address: Horticulture, School of Science, Edith Cowan University, Joondalup 6027, Western Australia,
9	Australia.
10	^d Present address: Department of Horticulture, Yezin Agricultural University, Yezin 15013, Republic of the Union
11	of Myanmar.
12	*Corresponding author: vijayyadav.t@hotmail.com; Mobile: +91 9866473502
13	ORCID:
14	Vijay Yadav Tokala: 0000-0001-9500-7982
15	Zora Singh: 0000-0002-2946-172X
16	Poe Nandar Kyaw: 0000-0001-7825-1289

17 Abstract

18 'Gold Rush' pear (Pyrus communis L.) is a russet-coloured fruit with soft buttery textured flesh and is gaining 19 wide popularity in Australia and other countries along with other pear cultivars. The fruit are sensitive to ethylene, 20 and exposure even at very low concentrations significantly reduce the storage duration as well as fruit quality 21 during storage. The efficacy of two new ethylene antagonist compounds, namely 1H-cyclopropabenzene (BC) and 22 1*H*-cyclopropa[*b*]naphthalene (NC), as well as 1-methylcyclopropene (1-MCP) in regulating ethylene production, 23 respiration rates and maintaining the fruit quality of Gold Rush pear during 150 d and 200 d of controlled 24 atmosphere (CA) storage (2.3 \pm 0.5 % O₂ and 0.4 \pm 0.15 % CO₂ and 0.50 \pm 0.71 °C), was investigated. The pear 25 fruit were fumigated with 1 μ M BC (0.09 μ L.L⁻¹) or 1 μ M NC (0.14 μ L.L⁻¹) or 18 μ M (1 μ L.L⁻¹) 1-MCP for 18 h 26 at room temperature and the untreated fruit were considered as the control. Following 150 d and 200 d CA storage, 27 the fruit fumigated with BC and NC exhibited significantly reduced ethylene and respiratory climacteric peak 28 rates and were lowest in the fruit treated with 1-MCP. The pear fruit fumigated with ethylene antagonists (BC, NC

29 and 1-MCP) exhibited lower physiological loss of weight (PLW) (up to 2.06 times) and higher fruit firmness (up 30 to 1.07 times) throughout the CA storage period, compared to the control fruit. The fruit fumigated with BC and 31 NC had lower levels of SSC, glucose and sorbitol compared to other treatments. There was no significant effect 32 of ethylene antagonist treatments on levels of individual organic acids, total phenols, ascorbic acid and total 33 antioxidant capacity of the fruit. Therefore, new ethylene antagonist compounds, BC and NC, exhibit the potential 34 to act as ethylene antagonists in longterm CA stored 'Gold Rush' pears to retard the fruit ripening process, extend 35 storage life and maintain the fruit quality. The effectiveness of the different concentrations of BC and NC in 36 suppressing ethylene production in different cultivars of pears warrants further investigation.

37 Keywords:

38 Ethylene, ethylene antagonists, 1-methylcyclopropene, Gold Rush pear, climacteric fruit

Abbreviations: BC_1*H*-cyclopropabenzene, NC_1*H*-cyclopropa[*b*]naphthalene, 1-MCP_1-methylcyclopropene
Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.

42 **1. Introduction**

43 'Gold Rush' cultivar of European pear (Pyrus communis L.) possess attractive russet-coloured pericarp with crisp 44 and crunchy texture when not fully ripe. At the fully ripe stage, it turns to soft buttery textured flesh with high 45 sugar content. The European pear fruit exhibit a steep rise in postharvest ethylene production and respiration rates, 46 and therefore categorised as climacteric fruit (Biale and Young 1981). The climacteric fruits are sensitive to 47 internal ethylene and exposure to external ethylene, even at a minute concentration promotes fruit ripening and 48 also cause undesirable physical and physiological changes during storage (Iqbal et al. 2017). Ethylene accelerates 49 the fruit softening, hydrolysis of cell wall materials, depletion of bioactive compounds and increases decay as well 50 as the incidence of several postharvest physiological disorders (Tucker 2012: Iqbal et al. 2017). Several approaches 51 have been investigated to downregulate the fruit ripening process such as manipulating the storage environment 52 and regulating ethylene production and its action in the fruits (Gross et al. 2016). The controlled atmosphere (CA) 53 storage comprised of higher levels of carbon dioxide and reduced levels of oxygen extend the storage of the fruit, 54 due to reduced ethylene production as well as retarded respiration rate and the changes associated with the fruit 55 ripening process (Keller et al. 2013; Saquet and Streif. 2017). However, Bai et al. (2009) reported a sudden increase 56 in ethylene production in the pear fruit after removing them from the CA storage. Previously, Watkins (2006) and 57 Bai et al. (2009) reported that the pear fruit treated with ethylene antagonists such as 1-methylcyclopropene (1-58 MCP), reduced this sudden surge in rates of ethylene production. 1-MCP is a widely used ethylene antagonist and 59 inhibits ethylene production and its action by irreversibly blocking the ethylene receptor sites in the fruit (Sisler 60 2006). The efficacy of 1-MCP varied among genotypes, concentrations applied, storage temperature and treatment 61 duration (Zhang et al. 2020). Moreover, it is difficult to handle 1-MCP, as its boiling point is very low and readily 62 vaporises at room temperatures (Sisler et al. 2006). Several commercial products involving different delivery 63 methods of 1-MCP as fumigation have been developed by different companies such as AgroFresh (SmartFreshTM, 64 ProTabs, SmartFresh[™] InBox tablets, SmartFresh[™] SmartTabs[™]), Hazel®, Logfresh® etc (AgroFresh 2021; 65 Hazel Tech 2021; Logfresh 2021). Similarly, the liquid form of 1-MCP (HarvistaTM) has also been developed by 66 AgroFresh whilst, Logfresh® has developed 1-MCP in liquid as well as in dustable powder form (Logfresh 2021). 67 A pre-harvest spray application of HarvistaTM has exhibited positive responses in maintaining fruit quality in 68 different pear cultivars (Defilippi et al. 2010; Sakaldas et al. 2016; Villalobos-Acuna et al. 2017; Escribano et al. 69 2017; Li et al. 2020). Singh et al. (2018) discovered the capacity of 1H-cyclopropabenzene (BC) and 1H-70 cyclopropa[b]naphthalene (NC) to antagonize the ethylene action in a similar mechanism to that of 1-MCP. 71 Structurally these compounds are different from 1-MCP, making them more stable at room temperature than 1-72 MCP in natural form. Kyaw (2019) and Tokala et al. (2020) investigated different BC and NC formulations and 73 reported that the fumigation treatments were relatively more effective in retarding the postharvest ethylene 74 production and maintaining the postharvest quality of cold-stored fruit. Recently, Tokala et al. (2021 a, b) also 75 reported the beneficial effects of BC and NC fumigation on postharvest fruit quality of ozonized cold stored 76 'Cripps Pink' and 'Granny Smith' apples as well as in controlled atmosphere storage. Our preliminary research 77 findings claiming that BC and NC fumigation suppress climacteric ethylene production and maintain fruit quality 78 of CA stored 'Gold Rush' pear have been presented at the 2019 ASHS Conference in Las Vegas, USA (Tokala et 79 al. 2019). To the best of our knowledge, no detailed research work has been reported on the effects of BC, NC 80 and 1-MCP on the rates of respiration and ethylene production as well as on the fruit quality of long term CA 81 stored 'Gold Rush' pear. It was hypothesized that the fumigation treatment with ethylene antagonists (BC, NC and 82 1-MCP) may effectively reduce the rates of climacteric ethylene and respiration while maintaining optimum fruit quality of 'Gold Rush' pears following 150 d and 200 d of CA storage. The objective of this study is to investigate 83 84 the effects of BC and NC as well as 1-MCP in retarding the climacteric ethylene production, respiration rate and 85 maintaining fruit quality of long-term CA stored 'Gold Rush' pear fruit.

86 2. Materials and methods

87 2.1. Plant materials

Mature pear (*Pyrus communis* L. cv. Gold Rush) fruit (fruit firmness 82.03 ± 4.14 N; SSC 11.43 ± 0.05 %; TA 88 89 0.09 ± 0.01 %) were harvested from the commercial orchard in Beedelup, Western Australia (34°19' S, 116°00' 90 E) on 20th March 2018. A negligible amount of ethylene, undetectable by gas chromatograph (GC), was produced 91 by the fruit at this stage. The pear trees were 19 years old, grafted on *Pyrus calleryana* D6 (Callery Pear) rootstock 92 and trained to modified the central leader system. The trees were planted with a spacing of 5 m \times 1.5 m at North-93 South orientation and received uniform cultivation practices. The fruit were packed in corrugated cardboard boxes 94 and immediately transported to Curtin Horticulture Research Laboratory, Perth using an air-conditioned vehicle. 95 The pear fruit of relatively uniform size, free from mechanical injuries, bruises or any signs of pests or diseases, 96 were used for the experiment.

97 2.2. Chemicals

98 The ethylene antagonist compounds (1-MCP, BC and NC) used in the experiment were synthesised at Chemistry 99 Laboratory, Curtin University. The 1-MCP was synthesized following the procedure explained earlier by Fisher 100 and Applequist (1965). The BC was synthesised from 1,3-cyclohexadiene and NC was synthesised from naphthene 101 in anhydrous tetrahydrofuran, following the procedures explained previously by Davalian et al. (1980) and Billups 102 and Chow (1973), respectively.

103 *2.3. Fumigation treatments and CA storage conditions*

104 The pear fruit were fumigated with 1 μ M BC (0.09 μ L.L⁻¹) or 1 μ M NC (0.14 μ L.L⁻¹) or 18 μ M (1 μ L.L⁻¹) 1-MCP 105 for 18 h using 60 L plastic drums at room temperature (20 ± 2 °C and 65 ± 5 % RH). The fruit were arranged in 106 plastic drums and calculated volumes of respective ethylene antagonist solution dissolved in ethanol were poured 107 on to the filter paper in a Petri-plate. Granular soda lime (30 g) to absorb any excess carbon dioxide (CO₂) and a 108 battery-operated portable fan to uniformly distribute the ethylene antagonist vapours were placed inside the drum 109 before hermetically sealing it. No fumigation treatment was given to control fruit but were placed in the same 110 conditions as other treatments. The experiment was laid out by following a two-factor (ethylene antagonist treatments and CA storage times) factorial completely randomised design with four replications and fifteen fruit 111 112 per replication. On completion of 18 h of fumigation treatment, the drums were unsealed in an open-air environment and the fruit were immediately packed in corrugated cardboard boxes with softboard trays. All the boxes were labelled appropriately with respect to the treatment and transferred to CA storages at Carmel, Western Australia ($32^{\circ}00'$ S $116^{\circ}06'$ E) and stored for 150 d and 200 d. The gas concentrations in the CA storages comprised of $2.3 \pm 0.5 \%$ O₂ and $0.4 \pm 0.15 \%$ CO₂ and 0.50 ± 0.71 °C temperature. After completion of designated CA storage duration, the pear fruit were transferred to the laboratory, to determine the rates of ethylene production, respiration and fruit quality parameters analysis.

119 2.4. Determination of ethylene production and respiration rate

120 Two pear fruit were randomly selected from each replication to determine the ethylene production and respiration 121 rate. The chosen fruit were sealed in 1 L glass jars for 1 h and then the gas samples were drawn from the headspace, 122 through a rubber septum at the top. The 1 mL gas sample was injected into a gas chromatograph (Model 6890N, 123 Agilent Technology, CA, USA) to determine the ethylene production and 2 mL gas sample was injected into the 124 infrared gas analyser (Servomex Gas Analyser, 1450 Food Package Analyser, Servomex Limited, UK) to estimate 125 respiration rate, as the production of carbon dioxide. The complete details of the instruments and the procedure 126 have been earlier explained by Tokala (2019). The ethylene production and respiration rate were estimated daily 127 until a post climacteric stage. The ethylene production and respiration rate were calculated as µmol.kg⁻¹.h⁻¹ 128 ethylene and mmol.kg⁻¹.h⁻¹ CO₂, respectively.

129 2.5. Physiological loss of weight (PLW)

Fifteen fruit in each replication were weighed before transferring them into respective CA storage rooms and noted
as initial weight. On completion of the respective storage periods, the final weight was then recorded. The PLW
was calculated from initial and final weights using the following formula and expressed as %.

133
$$PLW (\%) = \frac{\text{Initial weight (kg) - Final weight (kg) \times 100}}{\text{Initial weight (kg)}}$$

134 2.6. Fruit firmness

The fruit firmness was determined from ten fruit per replication, by puncturing the peeled portion of pear fruit on opposite sites at the equatorial region. The Texture Analyser (TA Plus, Ametek Lloyd Instruments Limited, UK) fitted with an 8 mm (5/16") Magnus-Taylor probe was used to puncture the fruit at 7 mm sample depth with 100

138 mm s⁻¹ test speed and 5 N trigger force. The fruit firmness was calculated using Nexygen[®] v.4.6 software interface
139 and expressed as newtons (N).

140 2.7. Soluble solids content (SSC), titratable acidity (TA) and SSC: TA ratio

The pooled juice sample extracted from the slices cut from thirteen fruit per replication was used to determine
SSC, TA and SSC: TA ratio. SSC was determined using an infrared digital refractometer (Atago – Palette PR 101,
Atago Co., Tokyo, Japan) and expressed as %. The diluted fruit juice sample was titrated against the 0.01 N sodium
hydroxide (NaOH) with 2-3 drops of phenolphthalein indicator till pale pink colour endpoint, to determine TA.
The calculated TA was expressed as a percentage of malic acid. The SCC: TA ratio value was calculated by
dividing SSC by TA values.

147 2.8. Individual sugars and organic acids

148 The levels of individual sugars and organic acids in the fruit pulp samples, from thirteen fruit per replication, were 149 determined using the reverse-phase high-performance liquid chromatography (RP-HPLC) system (Waters 1525, 150 Milford Corporation, USA) following the method detailed earlier by Tokala (2019). The Dual λ UV absorbance 151 detector (Water 2487, Milford Corporation, USA) at 214 nm was used to determine the individual organic acids 152 (citric acid, tartaric acid, malic acid, succinic acid and fumaric acid). The Refractive Index (RI) detector (Water 153 2414, Milford Corporation, USA) was used to estimate the levels of individual sugars (sucrose, glucose, fructose 154 and sorbitol). The values of individual sugars and organic acids were calculated for the area of the chromatographic 155 peaks using Breeze®2 software version 6.20 (Waters, Milford Corporation, USA) and are expressed as g.kg⁻¹ fresh 156 weight basis.

157 2.9. Total phenols

The levels of total phenols in the fruit pulp samples were determined using the Folin-Ciocalteu reagent method and a UV/VIS spectrophotometer (Jenway spectrophotometer Model 6405, UK) using the procedure explained earlier by Robles-Sánchez et al. (2009), with some modifications as detailed earlier by Tokala (2019). The levels of total phenols were calculated from the standard curve drawn using pure gallic acid and were expressed as g Gallic Acid Equivalent (GAE) kg⁻¹ fresh weight basis.

163 *2.10. Ascorbic acid*

164 The ascorbic acid levels in the fruit pulp samples were determined using a UV/VIS spectrophotometer (Jenway 165 spectrophotometer Model 6405, UK) following the procedure earlier detailed by Tokala (2019). The standard L-166 ascorbic acid curve was used to calculate levels of ascorbic acid and expressed as g.kg⁻¹ fresh weight basis.

167 2.11. Total antioxidant capacity

168 The DPPH (2,2-diphenyl-1-picrylhydrazyl) assay explained by Brand-Williams et al. (1995) was used to determine 169 the total antioxidant capacity in the fruit pulp samples, following the procedure detailed by Tokala (2019). The 170 absorbance of the samples prepared was recorded at 515 nm using a UV/VIS spectrophotometer (Jenway 171 spectrophotometer Model 6405, UK). The levels of total antioxidant capacity were calculated using Trolox (6-172 hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) standard curve and expressed as μ M kg⁻¹ Trolox fresh 173 weight basis.

174 2.12. Statistical analysis

The data were analysed using a two-way analysis of variance (ANOVA) to evaluate the effects of ethylene antagonist treatments, CA storage duration and their interaction. The *GenStat* software version 14.0 (Lawes Agricultural Trust, Rothamsted Experimental Station, UK) was used to analyse all the experimental data. The least significant difference (LSD) at 5 % error probability was calculated by F-test and treatment means were compared using Duncan multiple comparison tests. The results in the tables are presented as means ± standard errors (SE) of the means.

181 **3. Results**

182 *3.1. Ethylene production and respiration rates*

The 'Gold Rush' pear fruit fumigated with BC, NC and 1-MCP exhibited reduced rates of ethylene climacteric peak by 28 %, 33 % and 99 % in 150 d CA stored and by 28 %, 17 % and 99 % in 200 d CA stored, respectively, when compared to the control fruit (Figure 1 and 2C). Similarly, when compared to control fruit, the rates of the respiratory climacteric peak were reduced by 20 %, 17 % and 43 % following 150 d and by 23 %, 13 % and 55 % following 200 d of CA storage in the fruit fumigated with BC, NC and 1-MCP, respectively (Figure 2D). When compared to the control fruit, the onset of ethylene climacteric peak was delayed by 1.25, 1.5 and 6.25 d following 150 d and by 2.5, 0.5 and 5 d following 200 d of CA storage in the fruit fumigated with BC, NC and 1-MCP, storage in the fruit fumigated with BC, NC and 1-MCP, respectively (Figure 2D). respectively (Figure 1 and 2A). However, the onset of the respiratory climacteric peak was not significantlyaffected by any of the ethylene antagonist treatments (Figure 2B).

192 3.2. PLW and fruit firmness

The PLW was significantly reduced by 34 %, 35 % and 52 % in the fruit fumigated with BC, NC and 1-MCP when compared to control fruit, respectively, irrespective of the CA storage period (Table 1). The firmness in the pear fruit fumigated with BC, NC and 1-MCP was maintained each 1.07 times higher than that of the firmness of control fruit, irrespective of the CA storage period (Table 1). There was no significant interaction effect between the ethylene antagonist treatment and the storage duration on the PLW and fruit firmness.

198 3.3. SSC, TA and SSC: TA ratio

The pear fruit fumigated with BC and NC exhibited significantly lower SSC values (11.61 % and 11.70 %, respectively) when compared to the fruit treated with 1-MCP and control fruit, irrespective of the CA storage period (Table 1). The SSC values increased by 1.04 folds with the extension of CA storage duration from 150 d to 200 d (Table 1). The pear fruit fumigated with BC and stored for 150 d exhibited significantly lowest SSC values (11.35 %) when compared to all other treatments and control (Table 1). The values of TA as well as SSC: TA ratio were not significantly affected by any of the treatments (Supplementary, Appendix 1, Table 1).

205 *3.4. Individual sugars and organic acids*

206 Glucose, fructose, sucrose and sorbitol were determined from the treated and control fruit following 150 d and 200 207 d CA storage, but fructose was the predominant sugar (Table 2). The pear fruit fumigated with 1-MCP exhibited 208 significantly highest levels of glucose (5.18 g.kg⁻¹) and sorbitol (11.86 g.kg⁻¹) but lowest levels of sucrose (6.68 209 g.kg⁻¹), when compared to all other treatments and control (Table 2). The levels of sucrose were significantly 210 higher (9.91 g.kg⁻¹) in 150 d CA stored fruit than those stored for 200 d (7.86 g.kg⁻¹). Whilst the levels of sorbitol 211 were higher (11.37 g.kg⁻¹) in the 200 d CA stored fruit than 150 d stored (10.27 g.kg⁻¹) (Table 2). BC, NC and 1-212 MCP fumigation did not significantly affect the levels of fructose as compared to the control in 150 d and 200 d 213 CA stored fruit. Malic acid, succinic acid and fumaric acid were quantified from the treated and control fruit 214 following 150 d and 200 d CA storage, but succinic acid was the predominant organic acid (Table 2). The levels 215 of malic acid, succinic acid and fumaric acid were also not significantly affected by BC, NC and 1-MCP fumigation 216 treatments or CA storage duration (Supplementary, Appendix 1, Table 2).

BC, NC and 1-MCP fumigation treatments did not significantly influence the levels of total phenols, ascorbic acid
and total antioxidant capacity as compared to the control in 150 and 200 d CA stored fruit. The levels of ascorbic
acid and total antioxidant capacity were reduced by 15 % and 30 %, respectively, with an extension of CA storage
duration from 150 d to 200 d. The interactions between BC, NC and 1-MCP fumigation treatments and CA storage
periods were non-significant for total phenols, ascorbic acid and total antioxidant capacity (Supplementary,
Appendix 1, Table 3).

224 4. Discussion

225 The efficacy of the two new ethylene antagonist compounds (BC and NC) and 1-MCP fumigation in 226 downregulating the climacteric ethylene production, respiration rate and maintaining postharvest fruit quality of 227 long-term CA stored 'Gold Rush' pear fruit has been investigated for the first time. BC, NC and 1-MCP fumigation 228 treatments have effectively reduced the rates of the ethylene and respiratory climacteric peak in the 'Gold Rush' 229 pear fruits during CA storage (Figure 1 and 2). The 1-MCP inhibits the ethylene action in the fruit at the cellular 230 level, by irreversibly blocking ethylene receptor sites and interfering with the expression of ethylene-responsive 231 genes (Sisler et al. 2003; Apelbaum et al. 2008). Pirrung et al. (2008) proposed a cyclopropene ring-opening 232 reaction mechanism forming a copper carbenoid intermediate to explain ethylene antagonistic action of 1-MCP. 233 The intermediate formed blocks the ethylene action by irreversibly reacting with amino acids of the ethylene 234 receptor protein domain. The BC and NC compounds also react with copper (I) cofactor situated with the ETR1 235 ethylene receptor to antagonize the ethylene action in fruit and thereby retard ethylene production and respiration 236 rates (Musa 2016; Singh et al. 2018; Tokala et al. 2020, 2021 a, b). BC and NC are structurally different from 1-237 MCP, but the proposed mode of antagonising ethylene action in the fruit is similar to 1-MCP (Musa 2016; Singh et al. 2018). The fruit fumigated with the 1-MCP exhibited very low levels of ethylene production ranging between 238 239 0 to 0.02 μ mol.kg⁻¹.h⁻¹ in both the storage durations studied. Xie et al. (2016) reported that European pear fruit 240 fumigated with 1-MCP exhibited an inability to produce ethylene and ripen normally after extended low-241 temperature storage. There is a scope to investigate the necessity of post-storage ethylene application in "Gold 242 Rush" pear fruit. Similar to ethylene production, when compared to control, the rates of the respiratory climacteric 243 peak in 200 d of CA stored fruit was suppressed in the fruit fumigated with BC, NC and 1-MCP (Figure 2D). The 244 ethylene antagonist action also inhibits or retard the respiration rates along with other ripening associated physiological changes in climacteric fruits (Zhang et al. 2020). This reduction implies that the ethylene antagonist
treatments effectively blocked the ethylene receptor sites and inhibited ethylene action in the fruit (Sisler 2006).

247 BC, NC and 1-MCP fumigation treatments have significantly reduced the PLW during CA storage (Table 1). The 248 loss of weight in the fruit during storage is primarily due to water loss through continuous physiological processes 249 such as respiration and transpiration (Becker and Fricke 1996). The rate of transpiration from the fruit surface 250 during storage increases with an increase in the rate of respiration (Dhillon and Mahajan 2011). The reduction in 251 PLW could be associated with decreasing trends of ethylene production and respiration in the fruit (Martínez-252 Romero et al. 2007). The maintenance of higher fruit firmness in BC, NC and 1-MCP fumigated pear fruit may be 253 attributed to the downregulation of ethylene production and its action, which consequently reduced fruit softening 254 and PLW (Giovannoni 2008). The phytohormone ethylene plays a key role in activating the cell wall hydrolysing 255 enzymes during the fruit ripening process (Giovannoni 2008). The fruit firmness in pear fruit is closely related to 256 the degree of ripeness, internal quality and possible shelf-life (Zhang et al. 2018).

257 The SSC values were maintained significantly lower in fruit fumigated with BC and NC, while the SSC was higher 258 in the 1-MCP treated fruit. Inconsistencies of the SSC values in the fruit treated with ethylene antagonists have 259 also been previously reported by Blankenship and Dole (2003). Fan et al. (1999) also indicated that the 260 accumulation of sugars in the fruit during storage is not essentially associated with ethylene perception. The levels 261 of individual sugars (glucose, fructose and sorbitol) in the fruit treated with 1-MCP were highest as compared to 262 those fumigated with BC or NC and control fruit (Table 2). Similarly, Mahajan et al. (2010) also reported that the 263 levels of sugars in 'Patharnakh' pear fruit treated with 1-MCP were higher than the control fruit. BC, NC and 1-264 MCP fumigation treatments did not significantly affect the levels of TA and individual organic acids in CA stored 265 fruit. Similarly, 1-MCP fumigation did not significantly regulate the levels of TA in different cultivars of pear such 266 as 'Blanquilla' (Larrigaudière et al. 2004), 'Red Clapp's (Calvo and Sozzi 2004), and 'Bartlett' (Trinchero et al. 267 2004).

268 5. Conclusions

The fumigation treatment with novel ethylene antagonists (BC and NC) as well as 1-MCP were effective in downregulating ethylene production and respiration rate in the long-term CA stored 'Gold Rush' pear fruit but 1-MCP was more efficient. The BC and NC fumigation were at par with 1-MCP treatment in reducing PLW and loss of fruit firmness. Therefore, BC and NC possess the potential to be used as an ethylene antagonist in 'Gold Rush' pear without causing any undesirable effects on the fruit quality during long-term CA storage. The effects
of the different concentrations of these new ethylene antagonists in comparison with 1-MCP on suppressing
ethylene production in different cultivars of Asian and European pears warrants further investigation.

276 Acknowledgements

V.Y. Tokala would like to thank the Australian Government and Curtin University for the Australian Government
Research Training Program Scholarship (formerly known as International Postgraduate Research Scholarship) to
pursue his PhD research program. Casuarina Valley Orchards, Beedelup, WA is gratefully acknowledged for
providing the experimental fruit and access to CA storage facilities at Carmel, WA. The authors are obliged to Dr
Alan D. Payne, for synthesizing the BC, NC and 1-MCP and Ms Susan Petersen for the technical support provided
during the experiment. The authors are thankful to Dr Satvinder Dhaliwal, Professor of Biostatistics, Curtin
University for providing insights into the statistical analysis.

284 Conflict of interest

285 The authors declare that they have no known competing financial interests or personal relationships that could286 have appeared to influence the work reported in this paper.

287 Credit authorship contribution statement:

Vijay Yadav Tokala: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing original draft.

- 290 Zora Singh: Conceptualization, Methodology, Supervision, Resources, Writing review and editing.
- 291 Poe Nandar Kyaw: Investigation, Methodology, Writing review and editing.

292 References

AgroFresh (2021) AgroFresh – We Grow Confidence. <u>https://www.agrofresh.com/technologies</u>. Accessed 1
 February 2021.

- Apelbaum A, Sisler EC, Feng X, Goren R (2008) Assessment of the potency of 1-substituted cyclopropenes to
 counteract ethylene-induced processes in plants. Plant Growth Regul 55(2): 101-113.
 https://doi.org/10.1007%2Fs10725-008-9264-9
- Bai J, Prange RK, Toivonen PA (2009) Pome fruits. In: Yahia EM (ed) Modified and controlled atmospheres for
 the storage, transportation, and packaging of horticultural commodities. CRC Press, Boca Raton, pp
 267-286.
- Becker BR, Fricke BA (1996) Transpiration and respiration of fruits and vegetables. In: New developments in
 refrigeration for food safety and quality (International Institute of Refrigeration, Paris, France, and
 American Society of Agricultural Engineers, St. Joseph, MI, 1996), pp 110-121.
- Biale JB, Young RE (1981) Respiration and ripening in fruits retrospect and prospect, In Friend J, Rhodes MJC
 (eds) Recent advances in the biochemistry of fruits and vegetables. Academic Press, London, UK, pp
 1–39.
- 307 Billups WE, Chow WY (1973). Naphtho [b] cyclopropene. J Am Chem Soc 95(12): 4099-4100.
 308 <u>https://doi.org/10.1021/ja00793a073</u>
- Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: A review. Postharvest Biol Technol 28(1): 1-25.
 https://doi.org/10.1016/S0925-5214(02)00246-6
- Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant
 activity. LWT-Food Sci Technol 28(1): 25-30. <u>https://doi.org/10.1016/S0023-6438(95)80008-5</u>
- Calvo G, Sozzi GO (2004) Improvement of postharvest storage quality of 'Red Clapp's' pears by treatment with
 1-methylcyclopropene at low temperature. J Hortic Sci Biotechnol 79(6): 930-934.
 <u>https://doi.org/10.1080/14620316.2004.11511868</u>
- Davalian D, Garratt PJ, Koller W, Mansuri MM (1980) Strained aromatic systems. Synthesis of
 cyclopropabenzocyclobutenes, cyclopropanaphthocylobutenes, and related compounds. J Org
 Chem 45(21): 4183-4193. <u>https://doi.org/10.1021/jo01309a024</u>

- 319 Defilippi BG, Manríquez D, Robledo P (2011) Use of 1-methylcyclopropene (1-MCP) as a strategy to improve
 320 post-harvest life of 'Abate Fetel' pears. Acta Hortic 909: 739-744.
 321 https://doi.org/10.17660/ActaHortic.2011.909.91
- 322 Dhillon WS, Mahajan BVC (2011) Ethylene and ethephon induced fruit ripening in pear. J Stored Products
 323 Postharvest Res 2(3): 45-51.
- 324 Escribano S, Sugimoto N, Macnish AJ, Biasi WV, Mitcham EJ (2017) Efficacy of liquid 1-methylcyclopropene 325 126: to delay ripening of 'Bartlett' pears. Postharvest Biol Technol 57-66. 326 https://doi.org/10.1016/j.postharvbio.2016.11.007
- Fan X, Blankenship SM, Mattheis JP (1999) 1-Methylcyclopropene inhibits apple ripening. J Am Soc Hortic
 Sci 124(6): 690-695. <u>https://doi.org/10.21273/JASHS.124.6.690</u>
- 329 Fisher F, Applequist DE (1965) Synthesis of 1-methylcyclopropene. J Org Chem 30(6): 2089-2090.
 330 <u>https://doi.org/10.1021/jo01017a531</u>
- Giovannoni JJ (2008) Fruit ripening and its manipulation, In: Gan S (ed.) Annual plant reviews (volume 26)
 senescence processes in plants. Blackwell Publishing Ltd., Oxford, UK, pp 278-303.
- Gross KC, Wang CY, Saltveit ME (2016) USDA Handbook 66: the commercial storage of fruits, vegetables, and
 florist and nursery stocks. pp 792.
- Hazel Tech (2021) Hazel technology inc. <u>https://www.hazeltechnologies.com/products</u>. Accessed 1 February
 2021.
- Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth,
 development and senescence: interaction with other phytohormones. Front Plant Sci 8: 475.
 <u>https://doi.org/10.3389/fpls.2017.00475</u>
- Keller N, Ducamp MN, Robert D, Keller V (2013). Ethylene removal and fresh product storage: a challenge at the
 frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chem Rev 113(7): 5029-5070.
 https://doi.org/10.1021/cr900398v

- 343 Kyaw PN (2019) Regulation of ethylene production and postharvest fruit quality of stone fruit using different
 344 formulations of new ethylene antagonists. Doctoral Dissertation. Curtin University, WA.
 345 http://hdl.handle.net/20.500.11937/78297
- Larrigaudière C, Vilaplana R, Soria Y, Recasens I (2004) Oxidative behaviour of Blanquilla pears treated with 1methylcyclopropene during cold storage. J Sci Food Agric 84(14): 1871-1877.
 https://doi.org/10.1002/jsfa.1850
- Li Y, Zhang S, Dong Y (2020) Improving storability, physiological disorders, and antioxidant properties of
 'Bartlett' and 'd'Anjou' pears (*Pyrus communis* L.) by pre-harvest 1-methylcyclopropene spraying. Int
 J Food Sci Technol 56(1): 14609. <u>https://doi.org/10.1111/ijfs.14609</u>
- 352 Logfresh (2021) Logfresh Shandong Aoweite Biotechnology Co. Ltd. https://www.chinesepost-

353 <u>harvest.com/1-methylcyclopropene</u>. Accessed 1 February 2021.

- Mahajan BVC, Singh K, Dhillon WS (2010) Effect of 1-methylcyclopropene (1-MCP) on storage life and quality
 of pear fruits. J Food Sci Technol 47(3): 351-354. <u>https://doi.org/10.1007/s13197-010-0058-5</u>
- Martínez-Romero D, Bailén G, Serrano M, Guillén F, Valverde JM, Zapata P, Castillo S, Valero D (2007) Tools
 to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review.
 Crit Rev Food Sci Nutr 47(6): 543-560. <u>https://doi.org/10.1080/10408390600846390</u>
- 359 Musa MMA (2016) Structure activity relationship studies of new ethylene antagonists. Doctoral Dissertation,
 360 Curtin University, WA.
- Pirrung MC, Bleecker AB, Inoue Y, Rodríguez FI, Sugawara N, Wada T, Zou Y, Binder BM (2008) Ethylene
 receptor antagonists: strained alkenes are necessary but not sufficient. Chem Biol 15(4): 313-321.
 <u>https://doi.org/10.1016/j.chembiol.2008.02.018</u>
- Robles-Sánchez RM, Islas-Osuna MA, Astiazarán-García H, Vazquez-Ortiz FA, Martín-Belloso O, Gorinstein S,
 González-Aguilar GA (2009) Quality index, consumer acceptability, bioactive compounds, and
 antioxidant activity of fresh-cut "Ataulfo" mangoes (*Mangifera indica* L.) as affected by low temperature storage. J Food Sci 74(3): S126-S134. <u>https://doi.org/10.1111/j.1750-3841.2009.01104.x</u>

- 368 Sakaldas M, Gundogdu MA, Gur E (2016) The effects of preharvest 1-methylcyclopropene (Harvista) treatments
 369 on harvest maturity of 'Santa Maria' pear cultivar. Acta Hortic 1242: 287-294.
 370 https://doi.org/10.17660/ActaHortic.2019.1242.40
- 371 Saquet AA, Streif J (2017) Respiration rate and ethylene metabolism of 'Jonagold' apple and 'Conference' pear
 372 under regular air and controlled atmosphere. Bragantia. 76(2): 335-344. <u>https://doi.org/10.1590/1678-</u>
 373 4499.189
- Singh Z, Payne AD, Khan SAKU, Musa MMA (2018) Method of retarding an ethylene response. U.S. Patent
 Application No. 15/772,324, filed November 15, 2018.
- 376 Sisler EC (2006) The discovery and development of compounds counteracting ethylene at the receptor
 377 level. Biotechnol Adv 24(4): 357-367. <u>https://doi.org/10.1016/j.biotechadv.2006.01.002</u>
- 378 Sisler EC, Alwan T, Goren R, Serek M, Apelbaum A (2003). 1-Substituted cyclopropenes: effective blocking
 379 agents for ethylene action in plants. Plant Growth Regul 40(3): 223-228.
 380 https://doi.org/10.1023/A:1025080420990
- 381 Sisler EC, Grichko VP, Serek M (2006) Interaction of ethylene and other compounds with the ethylene receptor:
 agonists and antagonists. In: Khan NA (ed) Ethylene action in plants. Springer, Berlin, Heidelberg, pp
 383 1-34. <u>https://doi.org/10.1007/978-3-540-32846-9_1</u>
- Tokala VY (2019) Postharvest interventions involving novel ethylene antagonists, ozone and Airofresh[®] in
 regulating ethylene and maintaining quality of apple and pear fruits. Doctoral Dissertation, Curtin
 University, WA. <u>https://doi.org/20.500.11937/77988</u>
- 387 Tokala VY, Singh Z, Kyaw PN (2020) Fumigation and dip treatments with 1*H*-cyclopropabenzene and 1*H*388 cyclopropa [*b*] naphthalene suppress ethylene production and maintain fruit quality of cold-stored
 389 'Cripps Pink' apple. Sci Hortic 272: 109597. <u>https://doi.org/10.1016/j.scienta.2020.109597</u>
- 390 Tokala VY, Singh Z, Kyaw PN (2021a) Postharvest fruit quality of apple influenced by ethylene antagonist
 391 fumigation and ozonized cold storage. Food Chem 341(2): 128293.
 392 <u>https://doi.org/10.1016/j.foodchem.2020.128293</u>.

- Tokala VY, Singh Z, Kyaw PN (2021b). 1*H*-cyclopropabenzene and 1*H*-cyclopropa[*b*]naphthalene fumigation
 downregulates ethylene production and maintains fruit quality of controlled atmosphere stored 'Granny
 Smith' apple. Postharvest Biol Technol 176: 111499. <u>https://doi.org/10.1016/j.postharvbio.2021.111499</u>
- 396 Tokala VY, Singh Z, Payne AD, Kyaw PN (2019) New ethylene antagonists regulate ethylene action and maintain fruit quality in long term-controlled atmosphere stored Gold Rush pear. 2019 American Society of 397 398 Horticultural Conference July 2019. Sciences (Las Vegas, USA) 21-25, https://ashs.confex.com/ashs/2019/meetingapp.cgi/Paper/30262 399
- 400 Trinchero GD, Sozzi GO, Covatta F, Fraschina AA (2004) Inhibition of ethylene action by 1-methylcyclopropene
 401 extends postharvest life of "Bartlett" pears. Postharvest Biol Technol 32(2): 193-204.
 402 <u>https://doi.org/10.1016/j.postharvbio.2003.11.009</u>
- 403 Tucker GA (2012) Introduction. In: Seymour G, Taylor J, Tucker G (eds) Biochemistry of fruit ripening. Springer,
 404 Dordrecht, Netherlands, pp 1-51.
- Villalobos-Acuna MG, Biasi WV, Flores S, Mitcham EJ, Elkins RB, Willits NH (2010) Preharvest application of
 1-methylcyclopropene influences fruit drop and storage potential of 'Bartlett' pears. HortScience 45(4):
 610-616. https://doi.org/10.21273/HORTSCI.45.4.610
- 408 Watkins CB (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24(4):
 409 389-409. https://doi.org/10.1016/j.biotechadv.2006.01.005
- 410 Xie X, Zhao J, Wang Y (2016). Initiation of ripening capacity in 1-MCP treated green and red 'Anjou' pears and 411 associated expression of genes related to ethylene biosynthesis and perception following cold storage 140-149. 412 post-storage ethylene conditioning. Postharvest Biol Technol 111: and 413 https://doi.org/10.1016/j.postharvbio.2015.08.010
- Zhang H, Wu J, Zhao Z, Wang Z (2018) Non-destructive firmness measurement of differently shaped pears with
 a dual-frequency index based on acoustic vibration. Postharvest Biol Technol 138: 11-18.
 https://doi.org/10.1016/j.postharvbio.2017.12.002

- 417 Zhang J, Ma Y, Dong C, Terry LA, Watkins CB, Yu Z, Cheng ZMM (2020) Meta-analysis of the effects of 1-
- 418 methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Hortic Res 7: 208.
 419 <u>https://doi.org/10.1038/s41438-020-00405-x</u>.

Figure 1. Effects of BC, NC and 1-MCP fumigation treatments (T) on ethylene production during ripening days (D) following 150 d and 200 d CA storage of 'Gold Rush' pear fruit. Vertical bars represent SE of mean values and are not visible when values are smaller than the symbol. n= 4 replicates (2 fruit per replication). LSD ($P \le 0.05$) T=0.11, D=0.17, TXD=0.35 for 150 d and T=0.06, D=0.10, TXD=0.19 for 200 d.

Figure 2. Effects of BC, NC and 1-MCP fumigation treatments on the climacteric peak onset (days) (A); peak rates of ethylene (μ mol.kg⁻¹.h⁻¹); (B) a peak rates ethylene (μ mol.kg⁻¹.h⁻¹) (C); climacteric respiration peak onset (days) (D) a peak rate (mmolCO₂.kg⁻¹.h⁻¹) in 150 and 200 d CA stored Gold Rush pear fruit. Vertical bars represent SE of mean values. n=4 replicates (2 fruit per replication). LSD ($P \le 0.05$): (A) 2.69 for 150 d and 2.47 for 200 d (B) non-significant for 150 d and 200 d (C) 0.41 for 150 d and 0.23 for 200 d (D) 0.14 for 150 d and 0.09 for 200 d

	CA storage perio	d (days)	
Treatment	150	200	Mean (T)
	PLW (%))	
Control	2.15±0.31	2.43±0.21	2.29 ^B
BC	1.34±0.19	1.71 ± 0.08	1.52 ^A
NC	1.32±0.40	1.67 ± 0.20	1.49 ^A
1-MCP	1.11±0.38	1.11±0.30	1.11 ^A
Mean (D)	1.48	1.73	
LSD ($P \le 0.05$)	T = 0.63	D = ns	TXD = ns
	Fruit firmness	s (N)	
Control	70.34±0.54	69.76±1.65	70.05 ^A
BC	77.70±2.14	72.17±1.24	74.94 ^B
NC	76.69±1.81	72.81±0.80	74.75 ^B
1-MCP	77.61±0.83	72.90±1.19	75.25 ^B
Mean (D)	75.58 ^B	71.91 ^A	
LSD ($P \le 0.05$)	T = 3.32	D = 2.35	TXD = ns
	SSC (%)		
Control	11.63±0.02 ^b	12.05±0.02 ^d	11.84 ^B
BC	11.35±0.02ª	11.88±0.02°	11.61 ^A
NC	11.58±0.02 ^b	11.83±0.02°	11.70 ^A
1-MCP	11.60 ± 0.09^{b}	12.05±0.02 ^d	11.83 ^B
Mean (D)	11.54 ^A	11.95 ^B	
LSD ($P \le 0.05$)	T = 0.10	D = 0.07	TXD = 0.14

Table 1. Effects of BC, NC and 1-MCP fumigation on the physiological loss of weight (PLW) (%), fruit firmness (N) and soluble solids concentration (SSC) (%) of the 'Gold Rush' pear fruit following 150 and 200 d CA storage.

ns = non-significant, T = treatments, D = CA storage period, n = 4 replicates (15 fruit (PLW), 10 fruit (fruit firmness), 13 fruit (SSC) per replication), mean \pm SE. Mean separation for significant analysis of variance within the columns and rows were tested by Duncan's multiple range tests at ($P \le 0.05$). Mean values followed by a similar letter are not significantly different within the columns or rows. The lower case was used for mean interactions and the upper case was used for treatment and storage period means. Mean values without letters within columns or rows are non-significant.

	CA storage	period (days)	
Treatment	150	200	Mean (T)
	Glucose	e (g.kg ⁻¹)	
Control	4.55±0.19 ^b	4.99±0.18 ^{bc}	4.77 ^B
BC	4.50 ± 0.06^{b}	4.53±0.11 ^b	4.54^{AB}
NC	4.80 ± 0.07^{b}	3.96 ± 0.15^{a}	4.38 ^A
1-MCP	5.05 ± 0.19^{bc}	5.32±0.01°	5.18 ^C
Mean (D)	4.73	4.70	
LSD ($P \le 0.05$)	T = 0.34	D = ns	TXD = 0.48
	Fructos	$e(g.kg^{-1})$	
Control	30.53±0.40	30.87±0.16	30.70
BC	31.39±0.21	30.20±0.49	30.80
NC	30.15±0.49	30.87±0.43	30.51
1-MCP	31.24±1.23	31.63±0.73	31.43
Mean (D)	30.83	30.89	
LSD ($P \le 0.05$)	T = ns	D = ns	TXD = ns
	Sucrose	$e(g.kg^{-1})$	
Control	$10.42 \pm 0.6.67$	8.71±0.69	9.56 ^B
BC	$11.22 \pm 0.5.75$	8.76±0.24	9.99 ^B
NC	9.95±0.1.76	8.66±0.24	9.31 ^B
1-MCP	8.04±0.7.24	5.31±0.20	6.68 ^A
Mean (D)	9.91 ^B	7.86 ^A	
LSD ($P \le 0.05$)	T = 1.2.04	D = 0.8.51	TXD = ns
	Sorbito	l (g.kg ⁻¹)	
Control	9.90±0.26	11.13±0.21	10.51 ^A
BC	9.84±0.12	10.94±0.21	10.39 ^A
NC	9.57±0.26	11.44±0.12	10.50 ^A
1-MCP	11.76±0.53	11.96±0.50	11.86 ^B
Mean (D)	10.27 ^A	11.37 ^B	
LSD ($P \le 0.05$)	T = 0.78	D = 0.55	TXD = ns

Table 2. Effects of BC, NC and 1-MCP fumigation on the levels of individual sugars (g kg⁻¹) in the pulp of 150 and 200 d CA stored 'Gold Rush' pear fruit.

ns = non-significant, T = treatments, D = CA storage period, n = 4 replicates (13 fruit per replication), mean \pm SE. The Duncan's multiple range tests at ($P \le 0.05$) was used the test the mean separation for significant analysis of variance within the columns and rows. Mean values followed by a similar letter are not significantly different within the columns or rows. The lower case was used for mean interactions and the upper case was used for treatment and storage period means. Mean values without letters within columns or rows are non-significant.

CA storage period (days)				
Treatment	150	200	Mean (T)	
	Titratable acidity (TA) (%)			
Control	0.06 ± 0.01	0.07±0.01	0.07	
BC	0.07 ± 0.01	0.09 ± 0.01	0.08	
NC	0.08 ± 0.00	0.09 ± 0.01	0.09	
1-MCP	0.08 ± 0.01	0.09 ± 0.01	0.08	
Mean (D)	0.07	0.08		
LSD ($P \le 0.05$)	T=ns	D=ns	TXD=ns	
	SSC: T	А		
Control	217.04±36.38	174.85 ± 12.50	195.95	
BC	176.31±30.25	132.96±7.53	154.63	
NC	143.97±0.27	132.40±7.50	138.18	
1-MCP	161.55 ± 17.48	142.41±6.65	151.98	
Mean (D)	174.71	145.66		
LSD ($P \le 0.05$)	T=ns	D=ns	TXD=ns	

Supplementary Table 1. Effects of BC, NC and 1-MCP fumigation on the changes in the titratable acidity (TA) (%) and SSC: TA ratio in the juice of 150 and 200 d CA stored 'Gold Rush' pear fruit.

ns = non-significant, T = treatments, D = CA storage period, n = 4 replicates (13 fruit per replication), mean \pm SE. The Duncan's multiple range tests at ($P \le 0.05$) was used the test the mean separation for significant analysis of variance within the columns and rows. Mean values without letters within columns or rows are non-significant.

CA storage period (days)			
Treatment	150	200	Mean (T)
	Malic acid (g	g.kg ⁻¹)	
Control	1.25±0.13	0.98 ± 0.06	1.11
BC	1.22 ± 0.08	1.25 ± 0.14	1.23
NC	1.31±0.30	1.35 ± 0.06	1.33
1-MCP	1.36±0.22	1.22 ± 0.38	1.29
Mean (D)	1.28	1.20	
LSD ($P \le 0.05$)	T=ns	D=ns	TXD=ns
	Succinic acid	$(g.kg^{-1})$	
Control	4.30±0.20	2.66±0.60	3.48
BC	4.52±0.26	3.55 ± 0.32	4.03
NC	4.13±0.52	2.83±0.33	3.48
1-MCP	3.33±0.55	3.93±0.26	3.63
Mean (D)	4.07B	3.24A	
LSD ($P \le 0.05$)	T=ns	D=0.73	TXD=ns
	Fumaric acid	(g.kg ⁻¹)	
Control	0.29±0.04	0.28±0.05	0.29
BC	0.19±0.00	0.21±0.02	0.20
NC	0.24±0.01	0.26±0.03	0.25
1-MCP	0.20±0.01	0.23 ± 0.04	0.22
Mean (D)	0.23	0.25	
LSD $(P \le 0.05)$	T=ns	D=ns	TXD=ns

Supplementary Table 2 Effects of BC, NC and 1-MCP fumigation on the levels of individual organic acids (g.kg⁻¹) in the pulp of 150 and 200 d CA stored 'Gold Rush' pear fruit.

ns = non-significant, T = treatments, D = CA storage period, n = 4 replicates (13 fruit per replication), mean \pm SE. The Duncan's multiple range tests at ($P \le 0.05$) was used the test the mean separation for significant analysis of variance within the columns and rows. Mean values without letters within columns or rows are non-significant.

	CA storag	e period (days)	
Treatment	150	200	Mean (T)
	Total pher	nols (g.GAEkg ⁻¹)	
Control	11.41±0.73	12.16±1.23	11.79
BC	12.16±0.82	12.82 ± 2.58	12.49
NC	11.04±0.49	10.20 ± 0.87	10.62
1-MCP	10.29±0.82	10.29±0.50	10.29
Mean (D)	11.23	11.37	
LSD ($P \le 0.05$)	T=ns	D=ns	TXD=ns
	Ascorb	ic acid (g.kg ⁻¹)	
Control	5.26±0.18	4.56 ± 0.44	4.91
BC	5.12±0.29	4.88±0.34	5.00
NC	4.81±0.24	4.14 ± 0.05	4.48
1-MCP	5.47±0.19	3.97±0.25	4.72
Mean (D)	5.17B	4.39A	
LSD ($P \le 0.05$)	T=ns	D=0.44	TXD=ns
	Total antioxidant	capacity (µM.kg ⁻¹ Trolox)	
Control	5.31±0.46	3.95±0.19	4.63
BC	5.72±0.33	3.76±0.22	4.74
NC	4.68±0.22	3.60±0.13	4.14
1-MCP	5.50±0.28	3.65±0.10	4.57
Mean (D)	5.31B	3.74A	
LSD ($P \le 0.05$)	T=ns	D=0.45	TXD=ns

Supplementary Table 3. Effects of BC, NC and 1-MCP on the levels of total phenols, ascorbic acid and total antioxidant capacity in the pulp of 150 and 200 d CA stored 'Gold Rush' pear fruit.

ns = non-significant, T = treatments, D = CA storage period, n = 4 replicates (13 fruit per replication), mean \pm SE. The Duncan's multiple range tests at ($P \le 0.05$) was used the test the mean separation for significant analysis of variance within the columns and rows. Mean values without letters within columns or rows are non-significant.