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ABSTRACT

Effects of pH and heating on deamidation of whegtgin concentrate (WPC) solution and
functional properties of resultant spray-dried Wt@vder were investigated. Temperature
and heating time affected deamidation rates wighhtighest reactivities for WPC solutions
heated at 120 °C for 15 min and 145 °C for 120e;arbidation sites were pH dependent: pH
3 induced more glutamine deamidation; pH 10 indunede asparagine deamidation. The
functional properties of spray-dried WPC powdersensdso pH dependent. WPC solution
adjusted to pH 3 and heated at 145 °C for 120isr(fwr spray drying) exhibited a reduction
in solubility and foamability, but markedly imprayéoam stability of the resultant powders;
meanwhile, the properties of powders were not fnitly impacted by pH adjustment to
10.0 and heating at 145 °C for 120 s. However, @@ 10 with and without heating

significantly improved emulsifying properties ofrag-dried WPC.
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1. Introduction

Whey powder is mainly derived from whey producedryicheese manufacture;
therefore, its main components are water (moistlaejose and whey proteins. Although
whey is a co-product, it has been used in many mdithe food industry because of its low
price, and desirable functional and nutritionalgeies (Khaire & Gogate, 2019). For
example, whey protein concentrate (WPC) powder,afriiee major types of dried whey
products, is used to fortify cereals, beveragdaninformulae and sports supplements. It is
also used to improve functional properties suctraslsifying, foaming, thickening and
water-binding in a range of food products (Lizaeragicin, Gonzalez, Rubiolo, & Santiago,
2006; Ramos et al., 2016). The functionality of wpewder is generally attributed to whey
proteins. In addition, WPC contains 35-80% (w/wewlproteins (Guo & Wang, 2019),
thus, any changes or modifications to the wheyganstmay influence the quality of WPC
powder.

Previous studies have shown that deamidation ukmg@rotein-glutaminases
improves functionalities (e.g., solubility, viscysand emulsifying properties) of skim milk
as well as producing a more coherent and thickghyd gel (Miwa, Nio, & Sonomoto,
2014). Enzymatic deamidation has also been appliedreals to counter their poor solubility
in water due to the high proportion of non-polar@oracid residues in the cereal proteins
resulting in high surface hydrophobicity (e.g.,3and rice) (Jiang et al., 2015). The
improved solubility of cereal proteins is the resilan increased net negative charge of
proteins, because deamidation converts the amalggrof the glutamine (Q) and asparagine
(N) residues in proteins to carboxyl groups.

Moreover, deamidation via heat treatment or pH stdjent has been reported; this

non-enzymatic approach can prevent the occurrelhgid@reactions such as proteolysis and
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cross-linking due to the presence of impuritiethmenzyme used in the enzymatic
deamidation. Heat-induced deamidation has beetestud soy protein, egg white lysozyme,
casein and gliadin in a restricted water environnfhang, Lee, & Ho, 1993), caseinate
(Metwalli & Van Boekel, 1998), and canine milk Iygaone under mild conditions (Nonaka et
al., 2008). In addition, deamidated wheat and gateteins obtained through pH adjustment
(e.q., citric and hydrochloric acids) displayedm@erease in water solubility, emulsifying
properties and stability of emulsion (Qiu, ZhaonStihou, & Cui, 2013; Zhao, Tian, &
Chen, 2011). The degree of deamidation was repadéle ratio of ammonia released from
the deamidated (treated) sample to that of thee@étintreated) sample; however, a direct
measurement of deamidated proteins and charadienisd deamidation sites have not been
carried out in these food applications. To the béghe authors’ knowledge, and following a
literature search, pH and heat-induced deamidatnahits potential influences on functional
properties have not been explored for milk proteins

This study investigated the effect of both pH atipent and heat treatment on
deamidation of whey protein and the subsequentatgaprotein functionality including

solubility, emulsifying and foaming properties.

2. Materials and methods

2.1. Materials

Commercially manufactured WPC powder was purch&sed Maxum Foods Pty.

Ltd. (Victoria, Australia). According to the spdcttion provided by the supplier, WPC

powder is produced from fresh cheese whey by ittatfon and spray drying, and contains

76.8% (w/w) protein, 8.9% (w/w) lactose, 3.5 mgeaah ' powder and 4.5 mg potassium
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g* powder Triethylammonium bicarbonate (TEAB), dithiothrei(®TT), iodoacetamide
(IA) and all other chemicals used in this studyevanalytical grade and were purchased

from Sigma Aldrich (New South Wales, Australia).

2.2.  pH adjustment and heat treatment of WPC solutions

WPC powder was dissolved in distilled water to prep/% (w/w) WPC solution
under continuous stirring conditions (400 rpm fOrmin, overhead stirrer, Heidolph RZR
2050, Kelheim, Germany). The pH of the prepared VgBIGtion was measured at 6.2 and
then adjusted to 3 and 10 by & HCl and 0.2\ KOH, respectively. The preliminary
experiments were done to estimate the volume ofah@IKOH that would need to be added
to the WPC solutions (e.g., 7.5 rilCl and 10 mL KOH added to 500 mL of WPC solution
to achieve pH 3.0 and 10, respectively), and theduat was subtracted to the amount of
distilled water used to prepare 7% (w/w) WPC solutiThe resulting pH-adjusted solutions
were decanted into 10 mL vials, and 20 vials wereidaneously heated in an oil bath at 95
°C and 120 °C with total heating times of 3 andif. As a large volume of WPC solution
(> 500 mL) was required for spray drying, multipletches (20 vials/batch) of the same pH
and heat treatment were combined. Treatment at@4#&ith total heating time of 30, 60, 90,
and 120 s was also carried out in a similar mankiésample solutions were kept at 4 °C for

18 h before deamidation analysis and spray drying.

2.3. Deamidation analysis

The degree of deamidation in pH- and heat-treat®C\&olutions was measured by

liquid chromatography coupled to a high resolutigiixactive Focus Hybrid Quadrupole-
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Orbitrap mass spectrometer (Thermo Fisher ScienBiiemen, Germany). The major protein
componentp-lactoglobulin $-Lg) (55-65% of whey protein content) was quandifissing a
targeted peptide approach. Thirteen deamidateddespfTable 1) obtained from trypsin
digestion off-Lg in WPC solutions were selected and quantiftieed on full scan MS/MS
experimental data from the QExactive. These salgutptides cover 9 out of 14 deamidated
sites which are at N and Q in thé.g sequence.

Briefly, a 5 pL aliquot of WPC solutions (7%, w/wgs diluted with 95 pL of 40 mn
TEAB, pH 8, to obtain an approximate 2.7 mghyirotein solution. The protein solution
(100 pL) was reduced with 5 puL of DTT (20 mg Mland alkylated with 5 pL of 1A (50 mg
mL™) before digested with 100 pL of trypsin (10 pg it 37 °C for 16 h. The solution
digests were spiked with 1 ppm of*@nd N phenylalanine labelled dermorphin (Auspep
Pty Ltd., Victoria, Australia) (used as internarstlard). The digests were analysed by ultra-
performance liquid chromatography coupled with inylogjuadrupole Orbitrap mass
spectrometry (UPLC Orbitrap MS/MS) in a full scalsMS mode with an inclusion list of
targeted peptides (Table 1). The data was analysiad TraceFinder™ 5.1 SP1 software
(Thermo Fisher Scientific, Bremen, Germany). Thel®f deamidation was normalised by
multiplying peak areas of precursor ions by 100 dirdling them by the corresponding peak

areas of non-deamidated peptides as in eq. 1.

Peak areas ofdeamidated peptides

Normalised deamidation level = 100 (1)

Peak areas of nondeamidated peptides

24. Soray drying of WPC solutions

Seven percent of non-treated WPC solution (costoiple), pH-treated WPC
solutions (pH 3 and 10), and pH and heat-treate€\&$tutions (pH 3 and 10, 145 °C/120 s)

were prepared and stored at 4 °C for 18 h befaysrying. The heating condition (e.g.,



141 145 °C/120 s) was selected for the powder prodndigcause it exhibited the highest level
142  of deamidation (more details in Section 3.1). Sghayng was carried out at inlet and outlet
143 air temperature of 180 °C and 70 °C, respectiviglyni( Spray Dryer B-290, Buchi

144  Corporation, New Castle, USA). The collected pow@stimated yield of 60-70% of solid
145  content) was kept at —18 °C in airtight contairferdurther analyses of physiochemical and
146  functional properties. The powders used for theststwere commercial WPC powder

147  (WPC), spray-dried WPC solution (WPC-SD), sprayd®PC solution subjected to pH
148  adjustment to 3.0 (WPC-pH3-SD), or 10.0 (WPC-pHI®)-8nd spray-dried WPC solution
149  subjected to pH adjustment to 3 or 10, and heatirigl5 °C/120 s (WPC-pH3-H-SD and
150 WPC-pH10-H-SD, respectively).

151

152 2.5, Determination of physiochemical properties of spray dried WPC powders

153

154 Moisture content of spray-dried WPC powders wasrdeined by following the

155  method reported by AOAC 925.45 (AOAC, 1996). Watetivity (a,) of samples was

156 measured using an AqualLab 3 Water Activity Metez¢@gon Devices Inc., Pullman, USA)
157 at 25 °C. True density of samples was determinedyusnitrogen pycnometer

158  (Multipycnometer, MVP-6DC, Scientific Solutions, WeSouth Wales, Australia).he colour
159  of samples was measured for L*, a* and b* usingheo@a meter (CR-400, Konica Minolta,
160  New Jersey, USA). Whiteness of WPC powders wasitzkd from the LAB colour system

161  (Ho & Noomhorm, 2011) as in eq. 2.

1
162  Whiteness = 100 — [(100 — L)% + a*?* + b*?*]z (2)
163 The conformational changes of protein in sprayedPC powders were analysed by
164  Fourier-transform infrared (FTIR) spectroscopy gsanFTIR Spectrometer Attenuated Total

165 Reflectance (ATR) Spectrum 100 (PerkinElmer Ltda&msfield, UK), over a scan range of
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4000 to 700 crwith 32 scans per spectrum, and 4’cspectral resolution, as previously
described by Ho et al. (2019). The obtained FTI&ct@ were deconvoluted at amide | band
(1700-1600 cr), as the most intense absorption band in protein&ooyier self-
deconvolution program (OriginPro 2018 Software, tHeaScientific Software Pty Ltd,
Victoria, Australia). The secondary structure cosipons or the percentages (%) of
secondary structures of proteins were determineddan the area under each deconvoluted

peak against the total area.

2.6. Determination of functional properties of spray-dried WPC powders

Solubility, foaming and emulsifying properties off@ powders were determined.
From the preliminary experiment, WPC solutions pred from non-treated WPC powder
(WPC and WPC-SD), pH-treated WPC powder (WPC-pH3a8®WPC-pH10-SD) and pH
and heat-treated powders (WPC-pH3-H-SD and WPC-ghHtBD) showed different pH
levels (Table S1), which might contribute to diffaces in functional properties of the
powders. Therefore, the pH of all WPC solutions stasndardised to 6.20, which was the
same pH as the commercial WPC powder solutiongugiaN HCl and 0.2y KOH before all

the functionality measurements.

2.6.1. Solubility

Solubility of WPC powders at 25 °C was determingdddlowing the method of Ho
et al. (2019) with a slight modification. Aqueowsgions of WPC powders (5.5%, w/w)
were stirred using an overhead stirrer (400 rpmgélph RZR 2050, Kelheim, Germany) for
30 min to completely disperse the powders into watee dispersions were adjusted to pH

6.2 and distilled water was added to make a finatentration of 5% (w/w). The dispersions
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were stirred for another 30 min before being céuged at 1000 g for 15 min at 20 °C

using an Eppendorf Centrifuge 5702 (Eppendorf Seuattific Pty. Ltd., New South Wales,
Australia). During stirring, temperature of thelgans was maintained at 25 °C in a water
bath. The insoluble solids were flushed with 5 nidtitled water and transferred to pre-
weighed moisture pans which were then dried in@rfioline vacuum oven (Scientific
Equipment, New South Wales, Australia) at 105 °Cl#®h (absolute pressure 80 kPa). The
increase in the weight of the moisture pan wastmtent of insoluble solids. Total solids in
the dispersion before centrifugation were deterchiinem the precisely-measured amount of
whey powder and water initially used to preparedispersion. The solubility (S, %) of WPC
powders was calculated using following eqg. 3.

S (%) = w*

ts

100 (3)

where,W; is the weight of total solids (soluble and insdé&)bn the solution (g)Ws is the

weight of insoluble solids (g).

2.6.2. Foaming properties

The foaming properties of WPC powders were evatubefollowing the method
reported by Liao et al. (2016b) using 5% (w/w) W&lution. WPC powders were dissolved
into distilled water (5.5%, w/w) under stirring B&®PM) for 30 min. The solutions were
equilibrated at 4 °C for 18 h, and then subjectegH standardisation (~ pH 6.2) and water
addition to make a final concentration of 5% (wfwipr to foaming. A hundred mL of WPC
solution was poured into a graduated plastic ji@ (@L, polypropylene, Genetics Australia
Co-operative Ltd., Victoria, Australia) and wasnhemogenised via a T25 digital Ultra-
Turrax® (IKA, Bio-Strategy Pty Ltd., Victoria, Australigt 10,000 rpm for 1 min at 25 °C.

Foamability was determined as the percentage iseneavolume of WPC solution upon



214  mixing. Foam stability was expressed as the peagendf foam volume that remained after
215 30 min.

216

217  2.6.3. Emulsifying properties

218 The emulsifying activity and stability of WPC powdevere determined using the
219 method of Shilpashree, Arora, Chawla, VakkalagadahSharma (2005) with a minor

220 adjustment. About 40 mL WPC solution (1%, w/w), efhivas initially standardised to pH
221  6.2. was sonicated with 20 mL soybean oil (Colagépnsland, Australia) using a 24 KHz
222 sonicator (Model UP 400S, Hielscher Ultrasonics GIimbeltow, Germany). Sonication was
223 performed with 95% amplitude for 30 s. About 10 oflthe sonicated solution was

224  centrifuged at 1100 x g for 5 min at 20 °C usingegpendorf Centrifuge 5702 (Eppendorf
225  South Pacific Pty. Ltd.). The height of the emudsiflayer and that of the total contents in the
226  tube were measured. The emulsifying activity (EAswealculated as eq. 4.

Height of emulsified layer in the tube (mm)
*
Height of the total content in the tube (mm)

EA (%) = 100 (4)

227 Emulsion stability (ES) was determined by heathmgémulsion at 80 °C for 30 min
228 before being centrifuged at 1100 x g for 5 min@f€ using an Eppendorf Centrifuge 5702
229  (Eppendorf South Pacific Pty. Ltd.) and calculasdequation (5).

Height of emulsified layer after heating (mm)
ES (%) = —— — : * 100 (eq.5)
Height of emulsified layer before heating (mm)

230

231 2.7. Experimental design and statistical analysis

232

233 The experiments were performed following a fullpdamised design with three
234  replications. Statistical analysis of the data w@sducted using the Minitab Express

235  statistical program (Minitab Inc., State Collegd, RISA). A one-way analysis of variance

10



236  (ANOVA) was used. Tukey’s multiple comparison tests employed to determine

237  significant differences in treatment meang &t0.05.

238

239 3. Results and discussion

240

241 3.1, Deamidation degree

242

243 The effects of pH and heat treatment on deamidatiavhey protein were

244  investigated in WPC solutions adjusted to pH 3 Hidand heated at 95 and 120 °C for 3 and
245 15 min. The degree of deamidation in whey proteas wetermined by quantifying

246  deamidateds-Lg as the most abundant protein in WPC. Fig. Wshoormalised deamidation
247  of four representative deamidated peptide$-bfj, WENDECAQK, WENDECAQgK,

248 IDALNENK and LIVTqQTMK, with small letters n and aqudicating the deamidation sites. Of
249  the 14 available deamidation sites (N and (@-Lg, 9 sites (present in 13 deamidated

250 peptides) were characterised and quantified instudy. Two obvious trends can be

251  observed with N and Q deamidation in WPC solutidinste was a preference for Q

252 deamidation sites at pH 3 and N deamidation sitp$lal0, and this preference was

253  statistically significant (Fig. 1). The rapid ocoemce of N deamidation under the mild

254  conditions has been reported as analytical artifdating sample preparation of protein

255  digest; shortened digestion time and digestioowet temperature and at lower pH were
256  suggested to reduce the N deamidation (Liu, WangNay & Richardson, 2013). This

257  earlier hypothesis is supported by our findingdwiicreased N deamidation at pH 10 and
258  significantly reduced deamidation at pH 3. It casken that N site is more predominant
259 than Q site under non-enzymatic conditions; fomeple, the highest normalised deamidation

260 was 16.2% for the peptide WENDECAQK deamidated ahiN 0.86% for deamidation at Q

11
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site. Q deamidation is known to happen at a mumhesi rate than N (Bischoff & Kolbe,
1994), however, as peptides respond differentM$) an absolute quantification approach
would be more accurate to determine the differebeeseen N and Q deamidation.

In addition, heating time and temperature influehite reactivity of deamidation, as
can be seen in Fig. 1; higher temperatures supjpgter reactivity at both Q and N sites. In
fact, the treatment condition pH 3, 120 °C and 1% imduced the most deamidation at Q,
while treatment conditions pH 10, 120 °C and 15 mduced the most deamidation at N
(Fig. 1). However, pH or heat alone had little effen the normalised deamidation level of
these peptides. The results are similar for alhi8stigated peptides (Fig. 1; Supplementary
material Fig. S1). Hence, the combination of piypgerature, and heating time may have a
synergistic effect on the deamidation reaction ewproteins, particularlfy-Lg. It can be
noted that the rate of deamidation also dependsemhbouring amino acid residues (e.g., N-
Glycine > N-Serine > N-Alanine) and the higher arsiieucture of the unfolded protein
(Wright, 1991). The rate of deamidationdactalbumin ¢-La) might be different from that
in B-Lg due to the variation in their amino acid seques) particularly those around N and Q,
for example, neighbouring serine (S) and threofillencrease deamidation, however, the
known deamidation motifs (N-S and N-T) are not @nééna-La as can be found firLg.
Importantly, the unfolding of whey protein (e.genaturation) as well as other chemical
reaction (e.g., Maillard reaction) could take plaoeler heating and high pH treatment.
Miwa, Yokoyama, Wakabayashi, and Nio (2010) obsgav@artial disruption of the tertiary
structures of proteins, mainyLg anda-La in whey protein isolate resulted from
deamidation; they also noted that deamidation caless severe denaturation compared with
heat denaturation. Further studies are requiréobloat the effects of protein structure and/or
relative impact of chemical reactions (e.g., derston, Maillard reaction) on deamidation or

vice versa of whey protein induced by heat and pH.

12



286 As N and Q reacted differently at two pH conditiobsth pH 3 and 10 were chosen
287  for a follow-up experiment where a higher tempa&{d45 °C) and shorter heating times
288 (30, 60, 90 and 120 s) were used to reflect thestséhl method of powder production and to
289 investigate the effects of heat and pH on the faonet properties of WPC powders. The four
290 representative peptides, WENDECAQK, WENDECAQK, IDANK and LIVTQTMK,

291  showed comparable results with the initial expenta€Supplementary material Fig. S2),
292 where the longer heating time (e.g., 120 s) at°ClEesulted in the greatest amount of

293  deamidation. Therefore, 145 °C and 120 s were chase¢he optimal conditions to produce
294  powders for a test of functional properties.

295

296 3.2, Physiochemical properties

297

298 3.2.1. Moisture content, water activity, true density and colour

299 As shown in Table 2, WPC-pH3-SD and WPC-pH3-H-Sin@as had slightly lower
300 moisture content (4.75-5.89%, w/w) than the otlaem@es which had similar values in

301  moisture content (6.39—-7.01%, w/w). A similar tremals also observed for water activity.
302  Similar spray drying conditions were employed fbM#PC powders; thus, the differences in
303 moisture content and water activity among theseguesresulted from the changes in sample
304 compositions during pH adjustment and heating, @bbblactose degradation. It is known
305 that treating of whey solutions at low pH and higimperature induces lactose hydrolysis
306 (Zadow, 1992). Hence, lactose hydrolysis could jpbgssccur in WPC solutions heated at
307 145 °C/120 s and/or spray dried (e.g., 180 °C iaet 70 °C outlet) and adjusted to pH 3.0
308 (e.g., WPC-pH3-SD and WPC-pH3-H-SD), reducing tlaen-holding capacity of resultant

309 WPC powders.

13
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332

333

334

The true density of WPC powders was 0.883—1.08# evhich was highly
comparable with values reported by de CarvalhoaSMissotto, and Amaya-Farfan (2013).
Although all spray-dried WPC powders had lower weasity than commercial WPC
powder p < 0.05), the comparison can only be relative axcttimmercial WPC powder was
produced from a large-scale dryer which is difféfeom the small Buchi dryer used in this
study. The lower true density in all spray-dried @/gowders could also possibly be due to
the lower feed solids concentration (7%, w/w) afs@ powders before spray drying as
compared with approximately 10% used to producetimemercial ones. As reported by
Nguyen, Nguyen, Mounir, and Allaf (2018), an in@ean feed solids concentration of
soymilk during spray drying increased the true dgrod the powders produced. Another
possibility is that other components in WPC powderg., lactose) could change from a
crystalline to an amorphous structure during spirging, which could affect the true density
of the powder. Unlike the production of commerddPC in which lactose is crystallised
prior to spray drying, direct spray drying of WRCthis study led to the presence of
amorphous lactose in the final product. A loweetdensity in amorphous solids than
crystalline counterparts was also reported by Ba&yDeBoyace, Buckner, and Wildfong
(2020). Among spray-dried WPC powders, samplesséehjito pH 3 (e.g., WPC-pH3-SD
and WPC-pH3-H-SD) had lowest true density valuéss €ould be because of lactose
hydrolysis occurring in these samples. Aguilar Zreyler (1994) reported that true density
of whole milk powder gradually increased as lactosecentration in the powders was
increased. In any case, since WPC-pH3-SD and WPEHM3ID had lowest not only true
density but also moisture content and water agtiitiis necessary to analyse and confirm
whether these are caused by lactose degradattbe fture.

For colour, it is noted that in the LAB colour sst, L* indicates the

lightness/darkness coordinate, a* is the red/goeendinate, and b* is the yellow/blue
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coordinate. Whiteness values account for all L*aatl b*, which correlates the visual
ratings of whiteness for certain white and neartevBurfaces. For instance, the powders with
high L* do not necessarily have high whitenesst akso depends on a* and b* values. As
indicated in Table 2, all spray-dried WPC powdead much more lightness and whiteness,
but less yellowness than commercial WPC. Thesereifices could be observed from images
of WPC powders shown in Supplementary material $8y.Compared with WPC-SD, WPC-
pH10-SD and WPC-pH10-H-SD were lower in lightnesd whiteness.

Overall, the application of pH (3.0 and 10) andtimgptreatment (145 °C/120 s) to
WPC solutions prior to spray drying did not caussekad effects on physiochemical
properties (e.g., moisture content, water activitye density and colour) of spray-dried WPC
powdersNotably, the unchanged colour could also imply thatbrowning was not
developed in these powders during pH and heantiezgt Browning is one of the common
ways to investigate progression of the Maillarcctiean, especially the advanced or late stage
of the reaction, and the b* values were used asdicator for browning in all types of milk
powders upon storage (Le, Bhandari, Holland, & Be2011). Although WPC solutions
were treated at high temperature (145 °C) and loavlagh pH (3 and 10), the short heating

time (120 s) might not be enough to cause browning.

3.22. FTIR

FTIR spectra of WPC powders, and a list of FTIRdassignments are shown in
Supplementary material Fig. S4 and Table S2, réiseée Secondary structure of proteins
includinga-helix, unordered3-sheet-turn and loop structures can be studied in thelami
region of the FTIR spectrum, particularly amideaht (1700—-1600 ¢ due to its high
sensitivity to infrared spectroscopy (Barth, 209@zdanpanah & Langrish, 2013). However,

due to overlapping signala;helix and unordered structures could not be welingd,
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regardless of multiple attemptscitanging deconvolution and peak fitting. Some stsidin
secondary structure of proteins showed that, irdamivibration fora-helical and random-
coil structure occurred at about the same frequéAnglerle & Mendelsohn, 1987) and that
the band linked to random structure is too smatldseparated from tliehelix structure
(Dong, Huang, & Caughey, 1990). The analytical itssaf secondary structure of proteins in
WPC powders are shown in Fig. 2; it can be integarérom Fig. 2 that peaks @609-1620
cm* represent adsorption of amino acid side chairskgat11625-1635 cil represenp-
sheets, those al642-1652 cil representi-helices and/or unordered, and the remaining
peaks represefitturns (Barth, 2007; Yang, Yang, Kong, Dong, & Y015).

The percentages (%) of protein secondary structar@8”C powders are shown in
Table 3. Spray drying of reconstituted WPC powesulted in changes in the secondary
structure of proteins, as the WPC-SD sample hagn#isantly higher percentage of
helix/unordered, but markedly lower percentag@-eheet an@-turn than the WPC sample.
The protein secondary structure in the powdersuymred by spray drying is known to exhibit
more percentages afhelix and lesg-turn than that in the powders produced from freeze
drying and that in liquid samples (Hou, Wang, Soig, & Zhang, 2019). A comparison
among spray-dried WPC powders revealed that pHhaating had a great impact on the
secondary structure of proteins. All spray-dried@jsdwders subjected to pH adjustment
and heating exhibited a marked reduction in peeggd of-helix/unordered structure, or a
high portion off-sheet an@-turn structure altogether was present, as compaited/VPC-
SD powder (Table 3). This indicates that pH andihgdreatment induced the unfolding of
proteins and pH 10 had a more profound effect gtd3.0. The result is consistent with the
study ofTomczynska-Mleko et al. (2014) where, at pH 3,4beondary structure of whey
protein based on circular dichroism (CD) spectra lithe change between non-heated and

heated whey protein isolate solutions, while ameased pH caused a loss in the helical
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structure of protein in heated samples. Heatingaed percentages afhelix, f-sheet ang-
turn structures and increased percentages of ureatdéructures of whey protein isolate
solutions; this suggests the results were linkgarddein aggregation. These changes were
more pronounced with increased pH, with highestgm@iages of unordered structure
obtained at pH 10 (Tomczynska-Mleko et al., 2014}his study, the pH and heat-treated
WPC powder showed the opposite trend, such ascagase in percentagesBsheet
(except WPC-pH3-SD) arttturn (except for WPC-pH3-H-SD) as compared with@VED.
This could be due to differences in e.g., techrsqueed (CDrss. FTIR), physical state
(solution vs. power) and heating temperature and tbetween the two studies (145 °C/2 min
versus 80 °C/30 min). However, both studies in@iddahe highest unordered structure
obtained at pH 10.

Similar results were also reported by Liao et2016a) for wheat gluten deamidated
by a carboxylic acid/heat water solution, and byrg/et al. (2012) for wheat gliadin
deamidated by HCI. Both studies found that deanadaif proteins resulted in increased
percentages ¢f-sheet-turn and decreased percentages-bé€lix. In addition, it was
reported that the ratio ofhelix to-sheet ¢/p) represents the molecular flexibility of
proteins by which proteins with the smaller ratieresthe more flexible and more open
conformation (Liao et al., 2016a). From Table 3caspared with the WPC-SD sampief}
~1.7), pH 10 and heating treated samples had a tougr ratio ¢/p ~ 0.3—0.5) whilghe
ratio of pH 3.0 and heating treated samples wghthji smaller ¢/p = 1.2—1.6). Higher
flexibility of proteins in pH and heat-treated sdayg especially for those at pH 10, could
result from deamidation of whey proteins inducegblyand heating (Fig. 1, Supplementary
material Figs. S1 and S2), or protein denaturatioiolding. In the study of Tomczynska-
Mleko et al. (2014)¢/B = 0.6 was calculated from the reported values oB@thd 10 of heat-

treated whey protein isolate dispersions.
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3.3.  Functional properties

3.3.1. Solubility

The solubility of WPC powders is presented in B@g. As can be seen, commercial
WPC powder dissolved almost completely in watehwiblubility about 99.01%, and
concurs with the solubility values reported by Latkal. (2013). Interestingly, the solubility
of WPC powder in this study is approximately 10%har than that shown by Tunick et al.
(2016). These differences could be explained biatian in WPC sources or measurement
technique of solubility.

Overall, the solubility of all WPC powders in tlsgudy is high (above 97%). WPC
and WPC-SD had similar solubilities (Fig. 3a), eaonfng further spray drying did not affect
the solubility of whey powder. Among WPC powder géas subjected to pH and heating
treatment, only the WPC-pH3-H-SD sample exhibiteeine in solubility p < 0.05). The
reduction in the solubility of the WPC-pH3-H-SD gampossibly could be due to the
powder characteristics (e.g., the lowest moistorgent and true density). Among them,
there is a possibility of lactose hydrolysis asvjrasly mentioned. It has been reported that
rehydration and solubility of milk powder were gitgaffected by the degree of lactose
hydrolysis prior to spray drying. The higher degoééactose hydrolysis led to the greater
decrease in solubility of milk powders (Torreslet2017). As previously mentioned, lactose
hydrolysis possibly occurred in the WPC-pH3-H-Sinpée, reducing its solubility.

In addition, the factors of the reduction in théubdity of the WPC-pH3-H-SD
sample are considered in terms of protein unfolditnyas found that changes in the
secondary structure of proteins in milk powderg.(grotein unfolding) are detrimental to

their solubility (Pugliese et al., 2017). In thtady, as indicated in Table 3 and discussed in

18



435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

the FTIR results, pH adjustment and heat treatmeot to spray drying induced the

unfolding of proteins. Compared with WPC-SD, thecpatages odi-helix in WPC-pH3-SD,
WPC-pH3-H-SD, WPC-pH10-SD and WPC-pH10-H-SD dewdashile percentages ff
sheetp-turn increased. A greater alteration in samplggal0 than those at pH 3.0 was also
observed. These results indicated that the changesondary structure of proteins could not
be the reason for the lowest solubility of the WpIE3-H-SD sample. In other words, the
degree of protein denaturation is not a decisieefan the solubility of spray-dried WPC
powder. A comparison of the FTIR results (Tabl&ig;, 2) between WPC and WPC-SD
indicates that spray drying changed the secondargtsre of proteins, but this change did
not cause solubility reduction. Oldfield, TaylondaSingh (2005) reported that
denaturation/unfolding of whey protein componeetg.(f-Lg, a-La, bovine serum albumin
and immunoglobulin) in skim milk occurred mostlythé preheating stage, and spray drying
conditions (160—-200 °C and 89-101 °C inlet andet#ir drying temperature, respectively)
did not significantly denature whey proteins. Thihg, effect of spray drying on the
denaturation of whey protein is not consistent yiist findings. This could be because of the
difference in spray drying conditions which posgitlduces different degrees of structural
changes. This study showed that spray drying psesesithout pH or preheating have little
effect on the solubility of WPC, but a more detdilsvestigation is needed on the association

between protein structure and solubility.

3.3.2. Foaming properties

The foaming properties of WPC solutions (5%, w/wgpared from various WPC
powders were tested and the results are preseantad.i3b. WPC-pH3-H-SD samples
possess significantly lower foamability than WP @ &PC-pH10-SDf < 0.05). The result

indicated that spray drying and pH treatment (@ld.3 and 10) did not affect foamability,
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but heating in combination with pH 3 treatment gigantly reduced foamability. Regarding
foam stability, the spray-dried WPC sample (WPC-8bégn treated at pH 3 (WPC-pH3-SD)
did not show any improvement of foam stability, hwas doubled when heating was
applied (WPC-pH3-H-SD)(< 0.05). The opposite trend was seen for WPC sssriptated

at pH 10. Foam produced from WPC samples treatpHi 410 alone (WPC-pH10-SD) was
much more stable than that prepared from WPC-Spkanp < 0.05), while foam stability

of WPC samples subjected to both heating and pinrent (WPC-pH10-H-SD) was not
different to that of WPC-SD. It was found that faagproperties of WPC solutions were
affected by the solubility of WPC, and removal axige insoluble particles improved foaming
properties of WPC solutions (Hawks, Phillips, Rasean, Barbano & Kinsella, 1993;
Onwulata, Konstance, & Tomasula, 2004). These rigslagree with our study results in
which the WPC-pH3-H-SD sample had the lowest sbtyland foamability.

Foaming properties of proteins are greatly affettgg@rotein deamination. Liao et al.
(2016b) found that while foaming properties of wihglaten were dependent on the degree of
deamidation, an excessive increase in deamidatid®%) did not result in a further increase
in foaming properties. Also, it was reported thaashidation of oat protein isolate in acidic
condition (0.5v HCI), in combination with heating at 70 °C for 2ilhcreased foaming
capacity as solubility increased, but depressenh fet@bility, because deamidation increases
protein net charges which reduce the intermoleagataraction of proteins (Mirmoghtadaie,
Kadivar, & Shahedi, 2009). Along with the effectootein deamidation, protein
conformational changes (e.g., the unfolding of @) induced by pH and heating of whey
proteins markedly improves foaming properties. Heosvein this study, foaming properties
of WPC powders were not well correlated with thefoomational changes of proteihased
on the FTIR results (Table 3). Compared with WPG-&ily WPC-pH3-H-SD and WPC-

pH10-SD exhibited changes in foaming propertiedentie structural changes of proteins
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occurred in all samples to different extents. Fownmroperties might depend on the level of
protein secondary structural alteration. Howeveanfing is a very complicated process,
depending on multiple factors (Huppertz, 2010). titgpof protein solutions at low and high
pH levels affected not only lactose hydrolysis &lsb the mineral equilibrium state,
particularly C&" ions (Zadow, 1992), leading to changes in foanpiraperties of protein
solutions. Thus, the interesting correlation betwiaming properties, the degree of
deamidation and solubility of whey protein undeath@nd pH treatment requires further

studies.

3.3.3. Emulsifying properties

The impact of pH and heat on emulsion propertiespody dried WPC was
investigated. As shown in Fig. 3c, spray dryinghalalid not affect emulsion ability (EA) and
emulsion stability (ES) of WPC powdersX 0.05) as both EA and ES of WPC and WPC-
SD were similar. pH treatment or pH treatment feka by heating significantly improved
emulsion ability and emulsion stability of WPC pawsl p < 0.05). The improvement of
emulsifying properties is due to the net resuld@amidation extent, peptide bond cleavage,
and protein unfolding that took place during thardalation process caused by pH and
heating. Similarly, Fachin and Viotto (2005) rearthat the emulsifying properties of WPC
produced by ultrafiltration were greatly affecteddiH and heat treatments (prior to
ultrafiltration), which determined the degree obtein denaturation. A slight degree of whey
protein denaturation (e.g., pH 6.0-7.0 and 75 1@if® enhanced the emulsifying properties,
due to an exposure of hidden hydrophobic grougkeflobular proteins, while excessive
protein denaturation (e.g., pH 7.0 and 80 °C/2 rdavlined emulsifying properties because
of the decrease in surface hydrophobicity. Improsedaisifying properties due to

deamidation have been reported for different pnsteuch as barley glutelin (Zhao et al.,
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2011), rice proteins (Paraman, Hettiarachchy & 8t#1a2007) and skim milk (Miwa et al.,
2010). There might be a combination effect of pid heat-induced denaturation and
deamidation on emulsifying properties of whey pirofpwder. However, whether
denaturation comes first and influences deamidatronce versa is a challenging question

and requires a model study to follow up.

4. Conclusion

This study presents the first investigation of mmzymatic deamidation in whey
protein powder using high resolution mass specttgmé&he degree of deamidation of WPC
was dependent on temperatures, heating time and pHich N deamidation increased
significantly at pH 10 compared with pH 3. The @Hafd 10) and heating (145 °C/120 s) did
not influence marked physical properties (colounjsture content, water activity, and true
density) of spray-dried WPC powders, but causeteprainfolding. In terms of functional
properties (solubility, foaming properties and esifying properties), while the samples
treated at pH 10 did not show any effect in soltybdnd foaming properties, those treated at
pH 3 exhibited a reduction in solubility and foantiéobut markedly improved foam
stability. Interestingly, the emulsifying propesgief spray-dried WPC powders were
significantly improved under all pH and heat treatrinconditions. It is noteworthy that the
results imply that pH treatment and spray dryingldde an effective way to improve
functional properties of whey powders. Therefarés considered that WPC having the
intended functional characteristics can be prephyeaptimising the treatment conditions
(e.q., pH, temperatures and possibly protein canagon).

Further research is needed on the structural clsasfgaoteins on the functional

properties of spray-dried WPC. In particular, inecessary to analyse the effect of the degree
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of non-enzymatic deamidation and hydrolysis oncétn@al changes and functional
characteristics. It has also been suggested ttiatréaother than proteins in WPC such as
lactose and salts may also affect functional priig®rso comparative studies using desalted
whey ingredient may also be useful. To developiagpbns to food, it is helpful to evaluate
the effects on various functional properties suelyel formation and thermal stability in
addition to solubility, foaming, and emulsificatidfurthermore, by conducting comparative
studies with past studies on enzymatic deamidatiavhey proteins (e.g., measurement of
ammonia release, analysis of circular dichlorisag sxclusion chromatography and gel
electrophoresis), it can be considered the sigmfie of non-enzymatic deamidation in more
depth.

In summary, deamidation and structural changeshefwproteins by pH and heat
treatment were confirmed in this study, nevertlgetbese changes did not have any
correlation with the functional characteristicadPC. In fact, the WPC sample such as
WPC-pH10-H-SD, which had the greatest degree afighan FTIR, had no significant
difference in functional characteristics (solulyilitoaming, emulsification) with other
samples. It is inferred that the preparation coois of spray dried WPC samples in this
study did not bring about sufficient non-enzymatg@amidation to significantly improve the
functional properties of WPC. In the future, queative analysis is necessary to determine
the extent to which non-enzymatic deamidation &féwe functional properties of whey

protein powders.
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Figurelegends

Fig. 1. Normalised deamidation (%) @fLg in WPC solutions (7%, w/w) subjected to pH
adjustment to 3.0 and 10.0 and heating at 95 a@d@Zor 3 and 15 min. Four deamidated
peptides represented N (A, C) and Q deamidatio®}BIn x-axis, C6.2, C3 and C10:
control samples at pH 6.2, 3.0 and 10, respectivaghout heating; 95 and 120: heating

temperatures’C); 3 and 15: heating time (min).

Fig. 2. Deconvolution of the amide | band in the FTIR gmeof WPC powders. WPC,
commercial WPC powder; WPC_SD, powder producedobgysdrying of WPC solution
(7.0%, w/w); WPC_pH3_SD, powder produced by sprgind of WPC solution (7.0%,

w/w) subjected to pH adjustment to 3.0; WPC_pH3.0SH, powder produced by spray
drying of WPC solution (7.0%, w/w) subjected to atjustment to 3.0 and heating at 145
°C/120 s; WPC_pH10_SD, powder produced by spraypmgrgf WPC solution (7.0%. w/w)
subjected to pH adjustment to 10.0; WPC_pH10_H @inder produced by spray drying

of WPC solution (7.0%, w/w) subjected to pH adjustinto 10 and heating at 145 °C/120 s.
The back continuous curves (almost overlapped reihdashed curves) are FTIR spectra of
amide I. The deconvolution and peak fitting resdiitesum (red dashed curves) and

individual peaks (blue continuous curves).

Fig. 3. Solubility (a), foaming properties (b: hatched b&mamability; solid bars, foam
stability) and emulsifying properties (c: hatchedd) emulsion ability; solid bars, emulsion
stability) of WPC powders. WPC, commercial WPC pewdWPC_SD, powder produced
by spray drying of WPC solution (7.0%, w/w); WPC 3D, powder produced by spray

drying of WPC solution (7.0%, w/w) subjected to atjustment to 3.0;



WPC_pH3.0_H_SD, powder produced by spray drying/&iC solution (7.0%, w/w)
subjected to pH adjustment to 3.0 and heating at’C4120 s; WPC_pH10_SD, powder
produced by spray drying of WPC solution (7.0%, \wwbjected to pH adjustment to 10.0;
WPC_pH10 H_SD, powder produced by spray drying &GAsolution (7.0%, w/w)

subjected to pH adjustment to 10 and heating atC4520 s.



Tablel

Deamidated peptides identified and quantifiefi-ing from WPC solutions’

Sequence Residues Charge m/z RT (min)
LIVTgTMK 17-24 2 467.7675 8.39
LIVTgTmK 17-24 2 475.7650 6.95
WENDECAQK 77-85 2 590.7324  5.89
WENDECAgK 77-85 2 590.7324 5.68
WENGECAQK 77-85* 2 561.7297 5.60
WENGECAgK 77-85* 2 562.2217 5.93
IDALNENK 100-107 2 459.2324 6.62
IDALNENK 100-107 2 459.7244  6.89
CMENSAEPEQSLVCQCLVR 122-140 3 770.9989 11.05
CMENSAEPEQSLVCQCLVR 122-140 3 770.9989 11.23
LSFNPTQLEEQCHI 165-178 2 858.8985 12.46
LSFNPTQLEEQCHI 165-178 2 858.8985 12.18
LSFNPTQLEEQCHI 165-178 2 859.3905 12.74

%n, g, deamidation; m, oxidation; RT, retentiongir, carbamidomethylated cysteine. An
asterisk indicates variant B pfLg.



Table?2

Moisture content (MC), water activity{g true density and colour of WPC powdérs.

Samples MC, % ay True density (g L* a* b* Whiteness
(wiw) cm’)

WPC 6.46+0.19 0.33+002 1.084+0.008 90.29+0.0%4 -0.70+0.0¥ 1588+0.09 81.38+0.08
WPC-SD 6.39+032 026+0.02 0976+000%9 96.48+0.08 -054+00% 572+0.28 93.26+0.2%
WPC-pH3-SD 589+09¢ 029+0.08 0883+0029 9752+005 -083+002 544+0.19 93.96+0.17
WPC-pH3-H-SD 475%0.34 021001  0873+0.002 9740011 -112+011 6.08+0.38 93.29+0.38
WPC-pH10-SD  7-63%*151 031+008 0955+0.019 96.24%03% -047+002 667+029 92.33+0.33
WPC-pH10-H-sp 7:01£09% 027+008 0969+0.032 95.97£019 -0.68+00% 580+0.35 92.90+0.3¢

& Superscript lowercase letters indicate statigticagnificant differences between samples in

a column p < 0.05). WPC, commercial WPC powder; WPC-SD, pavmieduced by spray
drying of WPC solution (7.0%, w/w); WPC-pH3-SD, paev produced by spray drying of
WPC solution (7.0%, w/w) subjected to pH adjustnter.0; WPC-pH3-H-SD, powder
produced by spray drying of WPC solution (7.0%, )wwbjected to pH adjustment to 3.0
and heating at 145 °C/120 s; WPC-pH10-SD, powdadyced by spray drying of WPC
solution (7.0%, w/w) subjected to pH adjustment®0; WPC-pH10-H-SD, powder

produced by spray drying of WPC solution (7.0%, )wwbjected to pH adjustment to 10 and

heating at 145 °C/120 s.



Table3

The percentages (%) of protein secondary structofe8VPC powders produced from

different treatment condition8.

Samples B-sheet a-helix/unordered  B-turn Side chain
WPC 38.08+1.14 32.59+0.99 25.52+1.70 3.82 +0.48
WPC-SD 30.22+1.51 51.76 +0.39 13.50 +1.73 4.52+0.14
WPC-pH3-SD  25.84+1.48 41.36+0.56 27.38+2.22 5.42+0.58
WPC-pH3-H-SD 39.27 £0.82 47.65+ 0.44 11.68 +0.47 1.40+0.29
WPC-pH10-SD  42.21+228 21.61+0.47 23.83+2.47 12.35+1.28
WPC-pH10-H-SD 52.95+3.08 16.49 +0.62 26.40+3.01 4.16 +1.08

2 Protein secondary structures determined from aifddR peak, 1700—-1600 ¢

Different letters superscript lowercase letterthim same column indicate significant

differences between samplgs< 0.05). WPC, commercial WPC powder; WPC-SD, pawde
produced by spray drying of WPC solution (7.0%, yyWPC-pH3-SD, powder produced by
spray drying of WPC solution (7.0%, w/w) subjecte¢H adjustment to 3.0; WPC-pH3-H-

SD, powder produced by spray drying of WPC soluic0%, w/w) subjected to pH
adjustment to 3.0 and heating at 145 °C/120 s; WWATO-SD, powder produced by spray
drying of WPC solution (7.0%, w/w) subjected to atjustment to 10.0; WPC-pH10-H-SD:
powder produced by spray drying of WPC solutio®%a, w/w) subjected to pH adjustment

to 10 and heating at 145 °C/120 s.
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