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Abstract 
Blind steganalysis performance is influenced by several factors including the features used for classification. This 

paper investigates the suitability of using lacunarity measure as a potential feature vector for blind steganalysis. 

Differential Box Counting (DBC) based lacunarity measure has been employed using the traditional sequential 

grid (SG) and a new radial strip (RS) approach. The performance of the multi-class SVM based classifier was 

unfortunately not what was expected. However, the findings show that both the SG and RS lacunarity produce 

enough discriminating features that warrant further research. 
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INTRODUCTION 

Steganalysis deals with detecting content embedded covertly in digital media such as images, also known as 

steganography. There has been tremendous interest in the research of steganography and steganalysis over the 

past decade; hence many techniques have been developed in both areas, each trying to outdo the other in its own 

way. The goal of steganography is to avoid detection, and that of steganalysis is to defeat this purpose (Johnson 

& Jajodia, 1998b), thus making this the gist of all the techniques that have been developed in both these areas. 

This paper deals with ascertaining the suitability of using lacunarity measure as the features for the classification 

algorithm used in blind steganalysis. In doing so, this paper introduces two novel approaches; 1) using lacunarity 

for blind steganalysis, and 2) measuring lacunarity from the frequency domain, whereas in majority of published 

literature, it has been applied within the spatial domain (Barros Filho & Sobreira, 2008; Zeng, Zhang, Van 

Genderen & Wang, 2012). 

The two steganographic algorithms used to test the proposed approach are Outguess (Provos, 2001) and F5 

(Westfeld, 2001). They both embed the secret message within the frequency domain during the JPEG 

compression process. Similar to existing research (Lyu & Farid, 2003), Support Vector Machines (SVM) have 

been used as the classifier for the blind steganalysis. The features used to train the classifier are the lacunarity 

measure derived using Differential Box Counting (DBC). The reminder of the paper is organised as follows. The 

background provides a foundation about steganalysis, steganographic feature domain and lacunarity. This also 

includes the two approaches for lacunarity measure proposed. The methodology describes the sample images and 

the different parameters used for lacunarity estimation and classifier training. The results section presents the 

outcome of the classification and several visualisations followed by a detailed discussion. Finally conclusions 

are drawn and future research direction is presented in the last section. 

 

BACKGROUND 

Blind Steganalysis 

The different approaches used in steganalysis can be generally categorised into three; visual steganalysis, 

statistical steganalysis, and blind steganalysis. In visual steganalysis, the image is visually observed for any 

abnormal artefacts or obvious signs of being tempered, which can be caused due to the degradation incurred by 

certain types of steganography. Johnson and Jajodia's (1998a, 1998b) analysis of cover and stego image pair 

characteristics and Westfeld and Pfitzmann's (2000) approach for analysing the Least Significant Bit are two 

examples of visual steganalysis. Statistical steganalysis is highly effective compared to any other approach; 
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however, it can only be used only for specific types of steganography (Fridrich, 2005). The Chi-square attack by 

Westfeld and Pfitzmann (2000) and DCT coefficient histogram distortion detection by Zhang and Ping (2003) 

are such examples. 

Both the visual and statistical steganalysis suffer huge limitations. Visual steganalysis can only detect 

steganography performed within the spatial domain and not the frequency domain. Statistical steganalysis 

approaches have been thwarted by developing better versions of the same steganographic technique, or 

completely new algorithms, thereby rendering the initial statistical signatures useless.  

Blind steganalysis tries to overcome the static nature of the aforementioned steganalysis approaches by using 

classification techniques, allowing it to be more universally applicable for both known and unknown 

steganographic algorithms. 

Steganographic Feature Domain 

A key aspect of any steganalysis technique is the investigation of the steganographic feature domain (SFD). The 

SFD primarily depends on the type of steganography, i.e. depending on whether the message is hidden by 

manipulating the spatial or the frequency domain. The steganographic tools used for the purpose of this paper are 

Outguess (Provos, 2001) and F5 (Westfeld, 2001). Both these tools embed the message in lossy JPEG image 

files using the quantised DCT coefficients.  

DCT (Discrete Cosine Transform) is a process used by JPEG file format to transform successive 8 x 8 pixel 

blocks resulting in 64 DCT coefficients per block. The DCT coefficients F(u,v) of a single block of pixels f(x,y) 

can be represented by the following equation. 
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where:  C(u), C(v) =  1/√2 when u, v = 0 

C(u), C(v) = 1 otherwise 

The quantised DCT coefficients F
Q
(u,v) are then obtained by equation (2). 
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where:  Q(u,v) = 64 element (8 x 8) quantisation matrix 

 

(a) All rows of DCT array superimposed 

 

(b) First row DCT array 

Figure 1: DCT array of size 256 x 256, x-axis moved to show large value of DC coefficient 
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Both Outguess and F5 use the least significant bits (LSB) of these quantised DCT coefficients as the SFD. 

However, they differ in their embedding approach. Outguess first selects redundant bits to limit detectable 

degradation and uses a RC4 encrypted hidden message to derive a pseudo-random number generator (PSRNG) 

to make the final bit selection (Provos, 2001). F5 uses permutative straddling to scatter the embedding and 

matrix encoding to increase the embedding efficiency (Westfeld, 2001). Both algorithms use a user provided 

pass key for randomizing the bit selection process, which is also reversible during the decoding stage to extract 

the hidden message. 

Lacunarity 

Lacunarity is the analysis of distributions of gaps among a range of pixel values (either binary or greyscale) in 

different scales to distinguish between spatial patterns (Plotnick, Gardner, Hargrove, Prestegaard, & Perlmutter, 

1996).  The higher the lacunarity, the higher the variability of its gaps and heterogeneity of the texture. A texture 

is the spatial variability of pixel tones in a digital image. The multi-scaling fractal nature of natural textures have 

intrigued researchers to employ lacunarity to analyse patterns, especially in the fields of medical and biological 

research (Barros Filho & Sobreira, 2008). 

The term lacunarity was introduced by Mandelbrot (1982) to further describe different textures with the same 

fractal dimension. In addition to Mendelbrot's (1982) approach, there are different methods to calculate 

lacunarity.  Many algorithms (Dong, 2000; Allain & Cloitre, 1991; Sarkar & Chaudhuri, 1992) have been 

fundamentally derived from the original box-counting algorithm used to estimate the fractal dimension of an 

image. 

The two most commonly used lacunarity algorithms are the Gliding Box (GB) by Allain and Cloitre (1991) and 

Differential Box Counting (DBC) by Dong (2000). The GB algorithm is limited in capturing the complexity in 

certain types of images in contrast to the DBC algorithm. This is because it is applied to binary images, which 

only has two possible values per pixel. The DBC algorithm on the other hand can be applied to greyscale images 

with a wider range of 256 values per pixel. This makes it superior to its counter parts in revealing sharp grey 

level variations in the image intensity surface (Dong, 2000).  

Even though DCT is from the frequency domain, it can still be considered as a texture; because it too has varying 

ranges of values demonstrating gaps. This means that it can be treated similar to a problem in the spatial domain. 

Figure 1a shows a DCT values array superimposed with all the rows in an image. As it can be observed, there are 

extremely high values towards the origin and only small variations towards the tail section. A 3D visualisation 

can be seen in figure 6a and 6b. Thus, DBC is applicable to estimate the textural complexity of the DCT values, 

which is further discussed below. 

Differential Box Counting (DBC) Algorithm 

The DBC algorithm discussed here was proposed by Dong (2000), which is based on the GB algorithm by Allain 

and Cloitre (1991) and DBC algorithm by Sarkar and Chaudhuri (1992). According to the GB algorithm (Allain 

& Cloitre, 1991), consider a box that glides over a lattice overlaid on the image. The distribution of mass n(M,r) 

is defined as the number of gliding boxes with radius r and mass M. The probability distribution Q(M,r) is 

obtained by dividing n(M,r) by the total number of boxes. The lacunarity at scale r can then be obtained by 

dividing the mean-square deviation of variations of Q(M,r) by its square mean. 
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where: Λ(r) = lacunarity at box size r x r 

 M = mass or pixels of interest 

 Q(M,r) = probability of M in box size r x r 

The mass M required for equation (3) can be calculated based on DBC algorithm (Sarkar & Chaudhuri, 1992). A 

gliding box of size r x r is placed at the upper left corner of an image window of size W x W. The size of the 

window is such that r < W and an odd number to allow the computed value to be assigned to the centre pixel. 

The odd number size for W and assignment at the centre pixel was not necessary in this case as this paper only 
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deals with DCT values, which is further explained in the methodology section. The grey level intensities within 

the r x r gliding box is then covered by a column of cubes of size r x r x r and assigned the values 1,2,3,… 

starting from the bottom to the top. The relative height of the r x r gliding box column is calculated using the 

minimum and maximum box numbers u and v respectively using equation (4). 

 1),(  uvjinr  ( 4 ) 

where:  nr(i, j) = relative height at image coordinates i and j 

 v = cubic box with minimum pixel value 

 u = cubic box with maximum pixel value 

Equation (4) however, gives a negative value if both minimum and maximum values fall in the same box (Myint, 

Mesev, & Lam, 2006), instead, a positive one is used (Barros Filho & Sobreira, 2008) as shown below. 

 1),(  uvjinr  ( 5 ) 

The mass is then obtained by moving the r x r gliding box through the W x W image window by using 
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where:  Mr = mass of the greyscale image 

 nr(i, j) = relative height at image coordinates i and j 

The lacunarity can then be calculated by replacing M in equation (3) using Mr in equation (6). This gives the 

lacunarity of the W x W image window. Figure 2 illustrates the vertical boxes stacked based on the pixel values.  

 

Figure 2: DBC Method (source: Dong, 2000) 

Sequential Grid and Radial Strip Lacunarity 

For the purpose of the investigation, two separate approaches were taken to calculate the lacunarity measure. The 

two approaches only differ in the way in which W x W window is selected. The first approach uses the exact way 

explained above starting from the top left index (i=0,j=0) of the DCT array and proceeds sequentially in a fixed 

grid (figure 3a) with width W, hence the term sequential grid (SG). The second approach uses the same width W 

for the window but it advances radially as a strip (figure 3b), hence the term radial strip (RS). 
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(a) Sequential Grid (SG) 

 

(b) Radial Strip (RS) 

Figure 3: Windowing approach for lacunarity 

 

METHODOLOGY 

All images used were 256 x 256 greyscale images of JPEG format. To ensure all cover images were consistent 

and initially clean from any hidden messages, they were all acquired using an iPhone camera as opposed to 

obtaining from a third-party source. The images consisted of a mix of outdoor and indoor pictures with no 

particular preference. For the initial pre-processing, all images were cropped to size, colour converted to 

greyscale and all EXIF information removed. To create the stego images, all images were embedded with the 

same secret message and pass key for consistency. Thus creating three separate sets of images; Cover, Outguess, 

and F5. 

The steganographic features used for the classification is the lacunarity derived from the DCT coefficients using 

SG and RS approaches. The complete dataset consisted of 1,224 samples for the Cover, Outguess and F5 each 

with a total of 3,672 per lacunarity method. Since DCT is performed in 8 x 8 blocks, the lacunarity was localised 

based on this constraint. The window size was set at W=8 and the gliding box size was r=2. The DCT array was 

segmented to non-overlapping windows and the gliding box used a size of r_sigma=r to glide the boxes 

horizontally and vertically.  

From the complete dataset, half was used for training the classifier while the other half was used for testing and 

in both cases the classes were balanced. The classifier was trained using a Multi-Class Support Vector Machine 

(MC-SVM). The classifier was cross validated using a k-fold scheme with k=10 on the training dataset.  

In order to obtain the optimal parameters for the MC-SVM, an exhaustive grid search method was used with 

C={1, 10, 100, 1000}, using a LINEAR kernel and C={1, 10, 100, 1000} and gamma-value={0.001, 0.0001} 

using a RBF kernel. Once the optimal parameters were obtained, classifier performance was then measured using 

the test dataset. The results are presented in the next section. 

 

RESULTS 

The lacunarity calculation with the above parameters of a 2D DCT array of size 256 x 256 results in a 2D SG 

lacunarity array of size 32 x 32 (1,024 features per sample) and a 1D RS lacunarity array of size 1 x 32 (32 

features per sample). Figure 4 visualises the 2D SG lacunarity for Cover, Outguess and F5 images in the top row. 

It also shows the difference between the stego images and the cover images. (Cover-Cover) is blank because it is 

the same array and (Outguess-Cover) and (F5-Cover) differences can be clearly observed in the bottom row. 

Figure 5 shows the same for the RS lacunarity. However, because it is a 1D array, for the purpose of illustration, 

it has been visualised in a 2D format. 

The following are the optimal parameters and training results for the MC-SVM blind classifier using lacunarity 

measure. 
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Lacunarity Kernel C 
Gamma-

value 
Precession Recall F1-score 

Mean 

accuracy 

SG Linear 100 - 0.34 0.34 0.34 0.34 

RS RBF 1 0.001 0.36 0.33 0.18 0.33 

Table 1: MC-SVM classification results for lacunarity measure 

 

  Predicted 

  Cover Outguess F5 

A
ct

u
a

l Cover 221 198 193 

Outguess 213 212 187 

F5 231 192 189 

Table 2: Confusion Matrix for SG Lacunarity using 

test dataset 

 

  Predicted 

   Cover Outguess F5 

A
ct

u
a

l Cover 5 604 3 

Outguess 3 605 4 

F5 5 603 4 

Table 3: Confusion Matrix for RS Lacunarity using test 

dataset 

 

 

 

 

Figure 4: 2D visualisation of sequential grid (SG) lacunarity for Cover, Outguess, and F5 images (top row) and 

their differences with Cover image (bottom row) respectively 
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Figure 5: 2D visualisation of radial strip (RS) lacunarity for Cover, Outguess, and F5 images (top row) and their 

differences with Cover image (bottom row) respectively 

The following (figure 6) are the 3D illustrations for the DCT values and lacunarity datasets. 

 

(a) RAW DCT Values 

 

(b) ABS() of DCT Values 

 

(c) SG Lacunarity of ABS(DCT) 

 

(d) RS Lacunarity of ABS(DCT) 

Figure 6: 3D Visualisation for Cover Image 
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DISCUSSION 

The results of these experiments were certainly not what was expected. After a much closer look, certain things 

can be ascertained about the different factors that may have contributed to the outcome.  

Based on the visualisations in Figure 4 and 5, it can be observed that the Cover, Outguess and F5 images produce 

different features for both SG and RS lacunarity measures. The differences between the Cover and the stego-

images suggest that there possibly could be discriminating features to help classify each type of image 

respectively. However, the classification results in table 1 show very poor performance with respect to the F1 

score and mean accuracy. The confusion matrices presented in table 2 and 3 give more insight into how the 

classifier recognises each class after training. While both matrices are significantly different, both are 

unsatisfactory. Even though the blind steganalysis of SG lacunarity based features seemed very much random, 

one may lean towards suggesting that the RS lacunarity features produce very good results for classifying 

Outguess, but then again it also classifies everything else as Outguess. The following figure 7 encapsulates all 

this information visually. Since all the curves are almost exactly on the diagonal, it can be said that any 

classification done is as good as a random guess. 

 

(a) ROC curves for SG Lacunarity 

 

(b) ROC curves for RS Lacunarity 

Figure 7: ROC Curves for test dataset 

As there have been no previous studies done for blind steganalysis using lacunarity, it was important to 

investigate why the blind steganalysis performed so poorly. Thus, the trained classifier was retested using the 

same dataset used to train it in the first place. As expected, table 4 shows 100% accuracy for SG lacunarity, but, 

table 5 showed a very different outcome for RS lacunarity. This is in no way reflective of the classifiers’ ability 

to identify unknown cases, but it gives an insight into the actual dataset or features used for training. Based on 

this factor alone, two conclusions could be made. 

1. The dataset based on SG lacunarity features are more suitable for classification. The poor performance 

could be because the training data was insufficient with only 612 training samples per class.  

2. The RS lacunarity dataset is unsuitable for training the classifier. Apart from having just 612 samples 

per class, it is only made up of 32 features per sample in contrast to the 1,024 features in the SG 

lacunarity dataset. This could be the reason why it predicts most of the samples as Outguess due to lack 

of discriminating features between classes. 
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  Predicted 

  Cover Outguess F5 

A
ct

u
a

l Cover 612 0 0 

Outguess 0 612 0 

F5 0 0 612 

Table 4: Confusion Matrix for SG Lacunarity using 

training dataset 

 

  Predicted 

   Cover Outguess F5 

A
ct

u
a

l Cover 143 356 113 

Outguess 121 383 108 

F5 133 349 130 

Table 5: Confusion Matrix for RS Lacunarity using 

training dataset 

Furthermore, another factor consistently mentioned in literature is the steganographic capacity of the cover 

image. This certainly has a significant effect (Fridrich, Pevny & Kodovsky, 2007) on the ability for steganalysis 

detection.  

Even though all image samples used for training and testing were consistent in terms of dimension, colour map, 

and all three datasets; the file size of the image samples are dispersed (figure 9). This contributes to different 

embedding capacities as it can be observed in figure 8. It shows the file size against the embedding capacity for 

both Outguess and F5. The steganographic capacity tends to increase with the file size of the image file. This is 

because larger file size translates to more bits that can be potentially manipulated to hide the message. For 

consistency, the same secret message and pass key was used to embed throughout all image samples. However, 

because of different embedding capacity, the footprint left by the embedding process will also vary inconsistently 

making it difficult for the classifier to discriminate. 

 

Figure 8: Steganographic capacity VS file size for 

Outguess and F5 

 

 

Figure 9: File size distribution histogram for Outguess 

and F5 

 

 

CONCLUSION AND FUTURE RESEARCH 

The purpose of the research was to find out the suitability of using lacunarity measure as a suitable feature for 

blind steganalysis. The DBC lacunarity measure was extracted from the DCT values from the Cover images and 

Outguess and F5 stego-images. Two approaches were used to measure the lacunarity based on the traditional 

sequential grid (SG) method and a new approach, i.e. radial strip (RS), introduced based on the direction of the 

DCT values dispersion. The differences among the Cover and stego-images suggested potential discriminating 

features. However, test results showed very poor performance even after an exhaustive grid search for 

optimisation.  

Further investigation revealed that despite the poor results, the SG lacunarity dataset is more suitable compared 

to the RS lacunarity dataset. This however does not necessarily provide enough evidence to answer the initial 
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question of whether lacunarity is suitable for blind steganalysis. To answer this, the following are some 

alternative directions that can be taken to further the research. 

1. Further training need to be conducted with more samples for SG lacunarity dataset to see if it can 

actually classify unknown images. 

2. The dataset need to be reconstructed based on Cover images with a similar range of file size and 

embedding capacity to serve as a control. 

3. Some of the published literature (Lyu & Farid, 2004) has shown better classification performance for 

blind steganalysis by using two-class and one-class SVM instead of multi-class SVM. Thus, this is a 

potential alternative to investigate, even for RS lacunarity. 

In conclusion, the suitability of lacunarity measure for blind steganalysis is yet to be discovered as current results 

still pose more questions. The presence of discriminating features among Cover and stego-images in the SG and 

RS lacunarity datasets do however pose encouraging avenues to further investigation. 
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