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Accounting for the influence of temperature and location when predicting 
seagrass (Halophila ovalis) photosynthetic performance 

Nicole E. Said *, Kathryn McMahon, Paul S. Lavery 
Centre for Marine Ecosystems Research and School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia   

A R T I C L E  I N F O   
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A B S T R A C T   

We show that the effect of temperature on photosynthesis of a widely distributed and ecological important 
seagrass species was not consistent among locations, with some evidence of acclimation to the local temperature 
range. This has important implications for modelling seagrass productivity and the impacts of light reduction on 
seagrass ecosystems. Reduced light availability is one of the main pressures negatively impacting on seagrass 
meadows worldwide. Our knowledge of seagrass photosynthetic characteristics is critical to predicting and 
managing impacts of light reducing activities but suffers from two critical information gaps: first, data is over
whelmingly derived from studies of leaf tissue and not for whole plants, and is unlikely to reflect whole plant 
performance under light reduction stress; and second, few studies have looked at spatial and temporal variability 
in photosynthetic performance of whole seagrasses. We investigated temporal and spatial variation at a range of 
temperatures for whole plants of Halophila ovalis, a widely distributed species, by measuring oxygen exchange of 
intact plants collected from four locations across a latitudinal gradient (10◦) at three temperatures (17 ◦C, 23 ◦C, 
28 ◦C). For all locations, temperature affected all photosynthetic parameters, with some parameters (NPmax, R, Ik) 
showing a distinct difference between tropical and temperate locations. For example, NPmax ranged from 1.35 ±
0.12 to 5 ± 0.16 mg O₂. g DW− 1. hr− 1 in temperate locations and from 4 ± 0.3 to 12 ± 0.68 mg O₂. g DW− 1. hr− 1 

in the tropical location. However, the effect of temperature on photosynthesis was not consistent among loca
tions, and often the rate of photosynthesis was greatest at temperatures approaching the mean month maximum 
temperature for the location, suggestive of acclimation. Time of year also affected photosynthetic rates and how 
temperature influenced those rates. We conclude that the application of P–I parameters to model, predict or 
manage the effect of light reduction of H. ovalis, and likely other seagrass species, may require site- and time- 
specific knowledge of P–I relationships.   

1. Introduction 

Seagrasses are marine angiosperms, highly valued for their produc
tivity and the range of ecological functions and ecosystem services they 
provide (Orth et al., 2006). Despite their recognised importance, sea
grass meadows are among the most threatened ecosystems worldwide. 
By 1980 anthropogenic activity had resulted in the loss of 35% of the 
world’s seagrass area, and between 1980 and the early 2000s it was 
declining at a median rate of 5–7% yr− 1, comparable to losses reported 
for coral reefs (27% of world’s loss) and tropical rainforests (since 1990 
6.4% yr− 1) (Achard et al., 2002; Cesar et al., 2003; Waycott et al., 2009). 
Factors contributing to ongoing seagrass loss are, therefore, of critical 
concern to the sustainability of seagrass meadows and the communities 
and industries supported by them (Collier et al., 2011). 

The major cause of seagrass decline is reduced availability of light 
driven by eutrophication, dredging and other anthropogenic activities 
(Orth et al., 2006; Waycott et al., 2009; Collier et al., 2016). Even small 
reductions in light can cause decline in seagrass growth and distribution 
(Ralph et al., 2007). Temperature changes can also have a profound 
impact on seagrasses (Collier and Waycott, 2014). Globally, sea surface 
temperatures are projected to increase by 2 ◦C or more by 2100 in many 
parts of the world (IPCC, 2014), while sporadic ocean warming events, 
such as the 2010/2011 marine heatwave (which in some areas increased 
the sea surface temperature by 5 ◦C) will also become more frequent 
(Oliver et al., 2018; Pearce and Feng, 2013). These human-induced 
impacts on temperature and light do not necessarily occur in isolation. 
Reduced light availability from activities such as dredging coupled with 
ocean warming is predicted to result in major reductions in the quality 
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and quantity of ecosystem services seagrass meadows provide (Hyndes 
et al., 2016). 

Seagrasses have relatively high light requirements due to the respi
ratory demand of large amounts of non-photosynthetic tissues, including 
roots, rhizomes and above-ground structural tissue (Beer et al., 2014; 
Collier et al., 2008). The ratio of carbon fixed in photosynthesis to that 
consumed through respiration determines the plant’s carbon balance 
(Touchette and Burkholder, 2000), with growth and reproduction 
requiring a net positive carbon balance. Under reduced light conditions, 
seagrasses make adjustments to maintain a positive carbon balance, 
with physiological changes usually the first to occur (Ralph et al., 2007). 
For example, plants can increase their photosynthetic efficiency (α), 
reducing the amount of light needed to reach the saturating intensity 
(Ik), or reallocate carbohydrate reserves to maintain metabolic pro
cesses, which can also modify photosynthetic characteristics (Collier 
et al., 2011). Under persistent stress, morphological changes to leaves 
and meadow structure allow seagrasses to optimise photosynthesis 
(Lavery et al., 2009). Most efforts to predict the response of seagrasses to 
reduced light rely, in some way, on estimates of one or more key 
photosynthetic parameters, including α and Ik, defined above, as well as 
Pmax (the maximum rate of photosynthesis), Ic (the compensation irra
diance; that required to balance respiratory carbon losses with carbon 
fixation) and R (the rate of respiration). 

Understanding a seagrass species’ carbon balance requires knowl
edge of its photosynthesis-irradiance (P–I) relationship, which relates 
the rate of photosynthesis to the intensity of irradiance (Pollard and 
Greenway, 1993). However, a major limitation of most P–I relationships 
is that they are determined only for the photosynthetic tissues of the 
plant (leaves and sheaths) and ignore the non-photosynthetic organs, 
such as rhizomes and roots. This makes them useful for defining the 
photosynthetic response to light or other environmental parameters, but 
they do not reflect the whole plant metabolism and the true light 
requirement to maintain a positive C balance of the whole plant. Olesen 
and Sand-Jensen (1993) found a considerably higher Ic for whole plants 
of Zostera marina in comparison to leaf tissue alone. This is because 
below-ground tissue can make up more than 50% of seagrass biomass, 
thus whole plants have a greater respiratory demand than leaves alone 
(Lee et al., 2007). Therefore, measurements of only leaf segments may 
have limited application in predicting the carbon balance of whole 
plants. To confidently apply seagrass physiological data to management 
situations, it is important to know how the P–I relationship is affected by 
the ratio of photosynthetic to non-photosynthetic material. Collier et al. 
(2017) found a 34% lower net productivity of whole plants compared to 
leaves alone, highlighting the importance of accounting for 
below-ground respiration in seagrass productivity estimates. Using 
leaf-generated P–I parameters to estimate whole plant or seagrass 
meadow responses to altered light availability requires assumptions to 
be made about the respiratory rate of the non-photosynthetic tissue 
under those conditions. Whole plant P–I curves are more likely to reflect 
the performance of whole seagrass meadows when scaled up to total 
biomass, though of course these may be less useful for detailed physio
logical studies of photosynthesis itself. 

A second limitation of most existing seagrass P–I relationships is that 
they are generalised models determined under a limited set of condi
tions, and in reality, these models may not be generalisable across a 
species. Many seagrass species have broad distributions and survive 
under wide ranges of temperature and light conditions (Hemminga and 
Duarte, 2000). P–I relationships are particularly sensitive to changes in 
temperature, and we can assume that adaptation to the temperature 
regime of their local environment may have led to spatial variation in 
seagrass P–I relationship (Masini and Manning, 1997; Beer et al., 2014). 
Further, literature shows that even in the same location the P–I rela
tionship can vary throughout the year (Masini and Manning, 1997), 
which is likely due to seasonal temperature fluctuations (Staehr and 
Borum, 2011). Thus, any effort to model the photosynthetic perfor
mance of seagrasses under altered light conditions would need to factor 

in the temperature regime the plant is likely to be growing under in that 
place and time, and whether this will affect the P–I relationship. 

In this study we aimed to determine whether the whole plant P–I 
relationship for a widely distributed and ecologically important seagrass 
species, Halophila ovalis, is affected by temperature and whether any 
effect is consistent among different locations along a latitudinal gradient 
(~1200 km) and at different times of year. We hypothesised that: (1) 
temperature will alter the P–I relationship of H. ovalis; (2) the P–I re
lationships of plants will demonstrate acclimation to the ambient tem
peratures of the location in which they occur and different seasons; but 
(3) plants at different sites within the same locations would have the 
same thermal acclimation pattern. 

2. Materials and methods 

2.1. Plant collection and acclimation 

To test for effects of temperature on the P–I relationship within and 
across locations, ramets of Halophila ovalis were collected between 
February and May 2016 from four ‘Locations’ in Western Australia 
(Table 1; Fig. 1): ‘Jurien Bay’ ‘Perth’ and ‘South-West’ are temperate 
locations of increasing latitude while ‘Coral Bay’ is tropical. In each 
location, plants were collected from two ‘Sites’ separated by a minimum 
of 2 km. South-west sites (Cowaramup and Cosy Corner) are small 
protected embayment’s, where seagrass grows in sandy patches inter
spersed by reef. At the Perth location, Woodman Point is located in a 
larger embayment, and the Marmion site is protected by reef structure. 
Seagrass sites in both Jurien and Coral Bay are in larger embayment’s, 
with seagrass growing in sandy patches. 

P–I relationships of the plants were determined at three temperatures 
(17 ◦C, 23 ◦C, and 28 ◦C). The lowest temperature, 17 ◦C was within the 
range of the three most southerly locations (South-West to Jurien Bay), 
23 ◦C was within the range of all locations, whereas the upper temper
ature treatment, 28 ◦C was the upper range of the Coral Bay location 
only. Therefore, at the three temperate locations the highest tempera
ture treatment represents conditions plants are not normally exposed to 
and may be more representative of future conditions under climate 
change. For the two most southern temperate locations the plants were 
collected at a temperature within 2 ◦C of the monthly maximum (20 and 
22 ◦C), but for the most northern, tropical location, it was within 3 ◦C of 
the maximum (25 ◦C). At the temperate location of Jurien Bay plants 
were collected at 19 ◦C, which was closer to the monthly minimum. To 
test for any effect of time of year on either the P–I relationship of Hal
ophila ovalis plants or the effect of temperature on the P–I relationship, 
plants were collected from the same two sites in Perth (Woodman Point 
and Marmion) on a second collection date, July 2016, and the P–I re
lationships determined under the same set of temperature treatments as 
above. 

Whole plants were collected by gently fanning sediment away to 
expose the rhizome, extracting the ramet with at least 4 leaf pairs and 
placed in a cooler box filled with seawater and aeration for trans
portation to the laboratory. At each collection time, temperature and 
salinity were recorded, to determine initial laboratory acclimation 
conditions. Dark adapted yields were measured on randomly chosen 
leaves from five different plants at each site using a Waltz™ diving pulse 
amplitude modulation (PAM) fluorometer. These yield measurements 
were later used as a reference against dark adapted yields of plants 
returned to the laboratory to confirm that they had acclimated to the in 
vitro conditions. 

In the laboratory, the experimental plants were gently cleaned to 
remove epiphytes, and each ramet standardised to four leaf pairs pre
ceding an apical meristem. Plants were then planted into plastic con
tainers containing a 7 cm layer of unsorted, washed, quartz river sand 
overlaid by aerated seawater. Water temperature and salinity (36) 
emulated field collection conditions. Water temperature was controlled 
using aquarium heaters. Plants were provided with 180 μmol photons 
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m− 2 s− 1 (approximating saturating irradiance; Strydom et al., 2017) 
using marine aquarium Light Emitting Diode (LED) modules with a full 
spectrum light (MarinTech™ Pty Ltd) on a 12/12 light: dark cycle. Light 
intensity at the base of the canopy was measured using a micro-PAR 
sensor (In-Situ Marine Optics™). Plants were left for two days before 
increasing or decreasing temperatures at 1 ◦C per day until the experi
mental temperature (17 ◦C, 23 ◦C, or 28 ◦C) was reached, after which 
they were left for 24 h before taking dark adapted maximum quantum 
yields on five separate plants to assess their acclimation. Plants were 
considered healthy and acclimated if they had a dark adapted yield of 
0.73–0.75 (Ralph and Burchett, 1995) or yields higher than those taken 
in the field at the time of collection. 

2.2. Photosynthetic-irradiance determinations 

Seagrass respiration and photosynthesis were measured via the 

consumption or production of O2. Plants were incubated in sealed, 
transparent, acrylic chambers, (diameter 52 mm, length 150 mm; vol
ume 318 ml). Water within the chambers was circulated using small 
submersible pumps with a flow rate of 7000 ml h− 1. Dissolved oxygen 
concentrations within the chambers were measured using FireSting™ 3 
mm robust REDFLASH technology sensors (Pyroscience) inserted 
through the chamber wall and connected through a 4-channel meter to a 
computer recording mg of O2. To maintain a stable temperature 
(±0.25 ◦C), chambers were submerged in a 300 L tank containing 150 L 
of seawater, which was circulated through a chiller-heater unit set to the 
appropriate experimental temperature. The internal temperature of the 
chamber was also measured using a submersible temperature sensor 
connected to the FireSting O2 meter. Light was provided by full spec
trum LED light units (GrowPro 320; MarinTechTM Pty Ltd) suspended 
above the chambers, providing intensities from 30 to 300 μmol photons 
m− 2 s− 1. Prior to each incubation, the oxygen electrodes were calibrated 
using the manufacturer’s 2-point method (0% and 100% air saturated 
water). Five replicate plant chambers, each containing four Halophila 
ovalis ramets, and a sixth ‘blank’ chamber (containing no plant material) 
were established and placed into the temperature-controlled tank. The 
chambers were then covered in aluminium foil to exclude light and the 
inlet of each chamber was connected to its individual pump, to allow the 
chamber to be flushed whilst the plant material was left to dark adapt for 
30 min. Once dark adapted, the chamber outlet was connected to the 
pump to create a sealed system and the dissolved oxygen concentration 
monitored every second. Monitoring continued in the dark for at least 
20 min after the slope of dissolved oxygen vs time stabilised. The foil was 
then removed, and photosynthetic rates were measured for 10 min (once 
the slope had stabilised) at each of 7 light intensities (30, 60, 90, 120, 
180, 240, and 300 μmol photons m− 2 s− 1). At the end of the experiment 
the plants were removed from the chambers and separated into above- 
ground (leaves) and below-ground (roots and rhizomes) tissue. Fresh 
weight was recorded before drying the plants (48 h at 60 ◦C) and 
reweighing for dry weight determination. 

2.3. Photosynthetic-irradiance curve fitting 

For each replicate incubation (and control) at all unique 
temperature-light intensity combinations, oxygen concentration was 
plotted against time after discarding the first 2 min of data, which was 
considered a stabilisation period. The portion of the remaining data used 
to determine the rate was confined to that where the R2 value was 
greater than 0.9. At the two lowest light intensities, due to noise, a lower 
R2 value of 0.5 was used. Rates of oxygen exchange were normalised to 
g− 1 DW hr− 1 of whole plant material. Oxygen concentrations within the 
control chamber (containing no seagrass) were measured throughout 

Table 1 
Summary of site data for all locations, including; GPS coordinates, plant collection month, water temperature range for each location, field conditions at time of plant 
collection, water depth and tidal range. Plants from the Perth location were collected in both summer and winter, with collection month and water temp at time of 
collection denoted as summer/winter respectively. Biomass data for each site in Fig. S1.  

Location Site Latitude Longitude Collection month Water temp range (◦C) Water temp at time of collection (◦C) Water Depth (m) Tidal range (m) 

Coral Bay Five Finger Reef − 23.168 113.762 Apr 21–28 25 1.9–2.5 2.4 
The Ridge − 23.121 113.750 1.9–2.9 

Jurien Bay Jurien Jetty − 30.299 115.039 May 17–24 19 2–3.1 0.79 
Jurien Harbour − 30.288 115.042 2–3.5 

Perth Woodman Point − 32.137 115.746 Feb/Jun 16–23 22/16 2 0.86 
Marmion − 31.839 115.749 1.8–2.4 

South-West Cosy Corner − 34.257 115.028 Mar 16–22 20 2.4 0.9 
Cowaramup − 33.859 114.987 2 

*Water depth based on bathymetry maps. 
*Tidal range data extracted from Bureau of Meteorology (2020) to nearest location; Coral Bay (Exmouth), Jurien Bay (Geraldton), Perth (Fremantle), South-West 
(Bunbury). 
*Water temperature data from the Department of Biodiversity and Conservation (DBCA; pers. comm). 

Fig. 1. Study Locations within Western Australia where Halophila ovalis was 
collected for P–I determinations. At each Location, plants were collected from 
two Sites, more than 2 km apart. 
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the experiment and experimental units were only used if there was no 
significant change in control chamber oxygen concentrations. 

Photosynthetic parameters were extracted from the P–I curves using 
the least-squares method. For each incubation, P–I curves were fitted to 
the data using the hyperbolic tangent model equation of Chalker (1981): 

P ​ = ​ GPmax × tanh ​
(

α × I
GPmax

)

​ + ​ R,

where P is the rate of photosynthesis (mg O2. g DW− 1. hr− 1), GPmax is the 
maximum Gross photosynthesis (mg O2. g DW− 1. hr− 1), α (mg O2. g 
DW− 1. hr− 1/(μmol m− 2 s− 1)) is the photosynthetic efficiency estimated 
as the slope for the linear portion (light-limited portion) of the PI curve, I 
is irradiance (μmol photons m− 2 s− 1), and R (mg O2. g DW− 1. hr− 1) is the 
rate of oxygen consumption in the dark. 

NPmax, the maximum net rate of photosynthesis (mg O2. g DW− 1. 
hr− 1) was calculated as:  

NPmax = GPmax + R                                                                              

The saturating irradiance (Ik; μmol photons m− 2 s− 1) was calculated 
as:  

Ik = GPmax/ α                                                                                       

The compensation irradiance (Ic; μmol photons m− 2 s− 1) was 
calculated via a mathematical approximation that assumes Ic is much 
smaller than Ik:  

Ic = (0 – R) / α                                                                                      

2.4. Statistical analysis 

Because we did not have data for all locations and sites at both times 
of year, two separate statistical tests were performed to test for: 1) the 
effects of temperature on the P–I relationship of H. ovalis within and 
across locations; and 2) the effect of time of year on the P–I relationship 
of H. ovalis plants and how temperature affected the relationships. 

To test for significant effects of Temperature, Location or Site nested 
in Location on each P–I parameter, 3-way PERMANOVAs were per
formed, based on Euclidian distances with 9999 permutations using the 
PRIMER™ software (Anderson et al., 2008). If the number of unique 
permutations was less than 100, then a Monte Carlo (MC) simulation 
was run, and data interpreted in accordance to the MC P-value 
(Anderson et al., 2008). Temperature and Location were treated as fixed 
effects, whereas Site(Location) was random. 

Because above-ground (leaf; AG) plant tissue has different rates of 
photosynthesis and respiration, and below-ground (roots and rhizome; 
BG) tissue has different rates of respiration, the P–I relationships of each 
replicate might have been affected by the ratio AG:BG biomass. To test 
for this, a covariate correlation was performed on AG:BG against each 
P–I variable (α, GPmax, NPmax, Ik, Ic, and R) in SPSS. The parameters α, 
GPmax, NPmax, and R were significantly correlated with AG:BG and in 
those cases, this was accounted for in subsequent statistical testing by 
including the ratio in the PERMANOVA as a co-variate. PERMDISP was 
used to test for homogeneity of variance and a square root or fourth root 
transformation used where this assumption was not met. Square root 
transformations of P–I variables were also used when there was a sig
nificant correlation with AG:BG ratio, as per Anderson et al. (2008). The 
Sums of Squares was set to Type III (Partial) SS, however if the co-variate 
was included in the analyses the Sums of Squares was set to Type I 
(sequential) SS. Where the PERMANOVA main test indicated a signifi
cant main effect or interaction (p < 0.05), pair-wise comparisons were 
performed to understand the nature of the effect or interaction. 

To test for any significant effect of Time (of year), Site, or Temper
ature on P–I parameters, a 3-way PERMANOVA was performed on each 

parameter, based on Euclidian distances, and 9999 permutations using 
the PRIMER™ software. Time and Temperature were treated as fixed 
effects, whereas site was a random effect. Treatment of the AG:BG ratio 
was as above; only α, Ic, and Ik were significantly correlated with AB:BG. 
PERMDISP was used to check for homogeneity of variance, with a square 
root transformation used when PERMANOVA assumptions were not 
met. Where the PERMANOVA main test indicated a significant main 
effect or interaction (p < 0.05), pair-wise comparisons were performed 
to explore the differences among the treatments. 

3. Results 

3.1. Effect of Temperature and location 

At all temperatures and for all sites nested in locations Halophila 
ovalis exhibited the typical relationship between photosynthesis and 
light, without any photoinhibition (Fig. 2, Table S3). The P–I relation
ships varied among temperatures, and these differences were not 
consistent across locations, and in some cases not consistent among sites 
(Table S1). 

Across all sites and temperatures, the maximum net photosynthesis 
rate (NPmax) ranged from 1.35 ± 0.12 to 12 ± 0.68 mg O₂. g DW− 1. hr− 1 

(Fig. 3a), with rates for tropical Coral Bay plants approximately two-to 
three-fold higher than any of the temperate locations. NPmax was 
significantly affected by temperature, but the effect varied spatially with 
a significant Temperature X Site(Location) interaction (p ≤ 0.05), as 
well as a significant interaction with the leaf to rhizome covariate (AG: 
BG). At Coral Bay, both sites showed an increase in NPmax as tempera
ture increased, and at Jurien Bay both sites had a significantly higher 
NPmax at 23 ◦C than either of the other temperatures. At the other lo
cations (South-West and Perth) the effect of temperature on NPmax 
differed between sites within the location. Overall, at the most southern 
temperate location and the tropical location, NPmax was highest or equal 
highest at the highest temperature (28 ◦C), which for the tropical loca
tion aligns with summer in-situ ambient water temperatures, while at 
Jurien Bay it was highest at ambient summer water temperature (23 ◦C), 
and the Perth location showed no clear trend. 

The rate of respiration (R) ranged from − 0.74 ± 0.068 to − 4.4 ±
0.28 mg O₂. g DW− 1. hr− 1 and generally increased with temperature 
(Fig. 3b). Respiration was significantly affected by temperature, but the 
effect varied within and across locations (Temperature X Site(Location) 
p ≤ 0.05), as well as a significant main effect of the covariate AG:BG on 
R. The most temperate sites (in South-west location) and the tropical 
sites in the Coral Bay location had similar rates of R, which were higher 
than the other temperate locations (Perth & Jurien Bay). Despite the 
effect of temperature on R varying among sites within each location, R 
was generally highest or equal highest at 28 ◦C. 

The saturating irradiance (Ik) ranged from 85 ± 5.9 to 156 ± 3.6 
μmol photons m− 2 s− 1 (Fig. 3c). Ik was significantly affected by an 
interaction of Temperature and Location (p ≤ 0.05); in tropical Coral 
Bay, Ik increased with temperature while in the three temperate loca
tions Ik decreased with increasing temperature. There was no significant 
correlation between Ik and AG:BG covariate. 

The light compensation point (Ic) ranged from 23 ± 1.4 to 60 ± 6.8 
μmol photons m− 2 s− 1 (Fig. 3d). There was a significant Temperature X 
Site(Location) effect on Ic (p ≤ 0.05), with no significant effect of the AG: 
BG covariate. At some sites (Cosy Corner, Marmion, Jurien Jetty and The 
Ridge) as temperature increased Ic generally increased, while at Cow
aramup, Woodman Point, Jurien Harbour, and Five Finger Reef there 
was no significant effect of temperature on Ic. 

Photosynthetic efficiency (α) ranged from 0.022 ± 0.001 to 0.10 ±
0.0039 mg O₂. g DW− 1. hr− 1/(μmol m− 2 s− 1) (Fig. 3e). There was a 
significant interactive effect of temperature and Site(Location) on α, 
which varied among locations and sometimes sites, but with α always 
greatest or equal greatest at 28 ◦C (Temperature X Site(Location); p ≤
0.05). At Coral Bay and Jurien Bay, the two sites within each location 
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Fig. 2. Photosynthetic-irradiance curves at three temperatures (17 ◦C, 23 ◦C, 28 ◦C) for 8 sites, within four locations for H. ovalis. Coral Bay: a) Five Finger Reef b) 
The Ridge, Jurien Bay: c) Jurien Jetty d) Jurien Harbour, Perth: e) Woodman Point, f) Marmion, South-west: g) Cosy Corner, h) Cowaramup. Means and SE. n = 5. 
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Fig. 3. Effect of temperature on photosynthetic parameters of H. ovalis collected from two sites in each of four locations across a latitudinal gradient off the coast of 
Western Australia. NPmax (a), R (b), Ik (c), Ic (d) and α (e). Letters on graphs represent the outcome of pairwise PERMANOVA tests for differences between Tem
perature within each Site nested in Location (shared letters indicate no significant difference; refer to S1 for main statistical results). Means and SE. n = 5. 

N.E. Said et al.                                                                                                                                                                                                                                  



Estuarine, Coastal and Shelf Science 257 (2021) 107414

7

showed consistent effects of temperature on α. Plants collected from 
Coral Bay had a greater photosynthetic efficiency at 28 ◦C than at 23 ◦C 
and 17 ◦C, and plants collected from Jurien Bay had a higher photo
synthetic efficiency at 28 ◦C and 23 ◦C than plants exposed to 17 ◦C. 
However, sites within the South-west and Perth locations showed 
different responses, although α generally increased with temperature. 

3.2. Time of year 

For both sites, in both seasons and at all temperature’s plants 
exhibited the typical relationship between photosynthesis and light, 
without any photoinhibition (Fig. 4, Table S3). The effect of temperature 
on photosynthesis significantly differed between time of year and sites 
(Table S2). 

Time of Year significantly affected NPmax (Site X TimeofYear X 
Temperature; p ≤ 0.05), though the effect of temperature at different 
times of year varied among the two sites tested. NPmax ranged from 1.17 
± 0.044 mg O₂. g DW− 1. hr− 1 (Marmion, in winter at 17 ◦C) to 4.09 ±
0.19 mg O₂. g DW− 1. hr− 1 (Woodman Point, in summer at 17 ◦C; Fig. 5a). 
At Marmion, NPmax was highest and not significantly different at 17 ◦C 
and 28 ◦C in winter, but in summer was significantly higher at 17 ◦C than 
at 23 ◦C and 28 ◦C. At Woodman Point, the same effects of temperature 
were observed but in the opposite seasons to Marmion. 

Photosynthetic efficiencies (α) ranged from 0.022 ± 0.001 mg O₂. g 
DW− 1. hr− 1/(μmol m− 2 s− 1) at Woodman Point in summer for 17 ◦C, to 
0.075 ± 0.004 mg O₂. g DW− 1. hr− 1/μmol m− 2 s− 1 at Marmion in winter 
for 28 ◦C (Fig. 5e). The effect of temperature on α varied across sites and 
time of year (Site X TimeofYear X Temperature; p ≤ 0.05), though at 
both sites and times α was greatest or equal greatest at 28 ◦C. At 
Woodman Point, α increased with temperature in summer, however in 
winter there was no statistically significant effect of temperature, 

though the general trend was similar to summer. In contrast, at Marmion 
there was no effect of temperature in summer but in winter α was 
greatest at 28 ◦C, with no significant difference between the other two 
temperatures. 

For all other variables, there was no significant TimeofYear X Tem
perature interaction, though for Ik there was a significant Site X Tem
perature effect, with Ik generally decreasing with an increase in 
temperature (Fig. 5c). Ic had a significant TimeofYear effect, with plants 
in summer having a greater Ic than plants in winter (Fig. 5d), and R had a 
Temperature effect, displaying an increase in R as temperature increased 
(Fig. 5b). 

4. Discussion 

This study has quantified the effects of both temperature and loca
tion on the photosynthesis irradiance (P–I) relationship of Halophila 
ovalis. The P–I relationship was strongly affected by water temperature, 
however this effect varied spatially over a latitudinal gradient of 1200 
km, between sites separated by 2–50 km, and with time of year. Below, 
we discuss these findings in the context of plant physiology, dredging 
management and a warming ocean. 

4.1. Spatial and temporal variation in photo-physiology 

The P–I relationships of H. ovalis across locations varies, most 
notably with higher NPmax and respiration rates in plants from the 
tropical sites. Halophila ovalis has one of the widest distributions of all 
seagrasses species, occurring in temperate and tropical regions and in
habits a diverse range of environmental conditions (Waycott et al. 2004, 
2014). Both irradiance and temperature change across the latitudinal 
gradient studied here, especially between the Temperate (16–24 ◦C) and 

Fig. 4. Photosynthetic-irradiance curves at three temperatures (17 ◦C, 23 ◦C, 28 ◦C) over 2 time periods (austral summer & winter) at 2 sites. a) Woodman Point 
summer, b) Woodman Point winter, c) Marmion summer, d) Marmion winter. Means and SE. n = 5. 
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Tropical locations (23–28 ◦C). While there are no published studies 
reporting photosynthetic rates for any other seagrass species across both 
temperate and tropical regions, tropical species (e.g. Halodule wrightii, 
Syringodium filiforme) generally have a higher NPmax and thermal optima 
for photosynthesis than temperate species (Amphibolis antartica, Pos
idonia australis, Posidonia sinuosa) (Beer and Waisel, 1982; Masini et al., 
1995; Masini and Manning, 1997; Major and Dunton, 2000). These 
climatic zone differences, either among species or, in the case of our 
study, among populations within the same species, may reflect 

adaptation or acclimation of the plants to the different temperature re
gimes. If populations are adapted/acclimated to their local temperature 
range, then we might expect NPmax to occur at or near the highest 
temperature they usually grow under (Collier et al., 2011). This local 
adaptation/acclimation appears to hold for H. ovalis in this study. Plants 
growing at Coral Bay, the most northern site, experience temperatures 
from 23 to 28 ◦C (DBCA; pers. comm) and displayed maximum NPmax 
rates at 28 ◦C. Similarly, at Jurien Bay, H. ovalis populations had the 
highest NPmax at 23 ◦C, which is consistent with the highest water 

Fig. 5. Effect of time of year and temperature on the P–I characteristics of Halophila ovalis. NPmax (a), R (b), Ik (c), Ic (d) and α (e) for Halophila ovalis collected over 
two time periods (austral summer & winter) from two sites in Perth. Shared letters on graphs represent no significant difference between temperature treatments at 
each site and time period (pairwise tests, PERMANOVA; refer to S2 for main statistical results). Means and SE. n = 5. 
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temperature in Jurien Bay, despite the fact that the plants were collected 
at a time when the water temperature was closer to the minimum 
monthly temperature (DBCA; pers. comm). Similar findings have been 
observed for other angiosperms occupying thermally different habitats 
(Berry and Bjorkman, 1980). Based on our findings, it cannot be 
assumed that all H. ovalis populations will display the same P–I re
lationships and, therefore, efforts to model the productivity of this 
species under changing light and temperature conditions will be 
improved by taking into account the location-specific difference in 
physiology. 

While plant population adaption/acclimation to local temperature 
regimes may be the case for the Coral Bay and Jurien Bay locations, it 
may not be in effect in the Perth and South-west locations. Both Perth 
sites had highest NPmax at 17 ◦C while both South-west sites showed no 
decrease in NPmax at 28 ◦C, which far surpasses the normal temperature 
range plants experience in these regions, 16–23 ◦C and 16–22 ◦C 
respectively (DBCA: pers. comm). This could be due to plants being 
acclimated to other local conditions such as light and nutrient avail
ability, depth distribution or fine spatial-scale differences in tempera
ture, all of which play a role in controlling photosynthesis (Lee et al., 
2007). Although the average sea surface temperature is lower at the 
South-West sites, H. ovalis was collected from small protected embay
ment’s, therefore the plants may be inhabiting an area with less flushing 
(than a well-mixed ocean) and higher localised warming. Further both 
seagrass sites in the Perth and South-west locations are shallower 
(1.8–2.4 m) than the sites in the north-most locations (Jurien Bay and 
Coral Bay; 1.9–3.5m), which may also have an impact on flushing, 
impacting localised temperature (Lee et al., 2007). However, there are 
other plausible reasons for these locations not having maximum net 
productivity at the local maximum temperature regimes, including an 
insufficient acclimation period during our experiments. Collier et al. 
(2011) examined two different species occurring in different climatic 
regions, Halodule uninervis (predominantly a tropical species) and Zos
tera muelleri (a temperate species, but range expanding into tropics for 
this study). They found that Z. muelleri initially (over 5 days) showed no 
response in leaf photosynthesis to increasing temperature but after 30 
days showed a decline with increasing temperature. In our study, the 
experimental acclimation period was 5–13 days, and based on the 
findings of Collier et al. (2011) it is possible that if the experiments had 
been run for longer, a more consistent, and possibly negative, effect 
could have been observed on plants exposed to temperatures outside of 
their in situ thermal range. Nonetheless, on the basis of our finding, it 
cannot be assumed that all locations seagrass will have an optimum 
temperature for NPmax at temperatures approaching the maxima expe
rienced at the sites and, therefore, to err on the side of caution local 
physiological data is most appropriate when modelling responses of 
H. ovalis to different temperature-light regimes. 

Plants from temperate and tropical regions showed vast differences 
in their response to temperature for NPmax, and therefore it was expected 
that other P–I parameters would also respond in the same way. This was 
true for Ik and Ic. In temperate locations, Ik decreased as temperature 
increased, contrasting the tropical location where Ik increased with 
increasing water temperature. This response in the temperate region is 
consistent with Masini and Manning’s (1997) findings for Posidonia and 
Amphibolis species, working within the plants’ in situ water temperature 
range. However, our study on H. ovalis pushed the plants beyond their 
normal temperature range, resulting in a significant decrease in Ik from 
the lowest (17 ◦C) to the highest temperature treatment (28 ◦C). Ic also 
had an inconsistent response to temperature across locations, though 
there was no latitudinal trend. Despite this, the general trend, and in 
some cases significant effect, was for Ic to increase with temperature. 
This is, again, consistent with the findings of Masini and Manning 
(1997) that Ic was less affected by water temperature than Ik, but 
generally increased with increased water temperature; likely due to 
greater respiration at higher temperatures. 

Our findings indicate that the effect of temperature on the P–I 

relationship of H. ovalis varies between times of year, but the nature of 
this variation is not consistent among sites. Collier et al. (2017) looked at 
time of year and found differences in photosynthetic rates among sea
sons for C. serrulata, but no evidence of this in H. uninervis, albeit that 
this was only done at one site (Morton Bay). Other studies measuring 
seagrass oxygen evolution have also looked at the effect of time of year 
on photosynthesis at a single temperature and in those cases time of year 
affected the P–I relationship (Pollard and Greenway, 1993; Masini and 
Manning, 1997). The finding that NPmax was highest at 17 ◦C in winter 
likely reflects acclimation to winter temperatures. Bulthuis (1987) found 
that the optimum temperature for photosynthesis decreased as irradi
ance decreased, implying that seagrasses growing in lower light, as is 
expected in winter, have lower optimum temperatures for photosyn
thesis than plants growing in the higher light conditions typical of 
summer. This is also reflected in the photosynthetic efficiencies (α), 
where generally the plants were more photosynthetically efficient at all 
temperatures in winter than in summer, exhibiting the typical dark 
adaptation response to lower light conditions in winter months. It re
mains unclear why plants at Marmion did not show differences in pro
ductivity between winter and summer. In any case, our findings clearly 
indicate that it is not valid to assume the effects of temperature on P–I 
relationships will be consistent across different times of the year, nor 
will any temporal variation necessarily be consistent among different 
sites. This all points to strong local influences on the P–I characteristics 
of the plants, and to the effects of temperature on those characteristics. 
The effect of temperature was not the same for all of the P–I parameters. 
Ik for example did not show an effect of time of year, and therefore data 
generated at one time of year for a given temperature may be transfer
able to other times of year. 

4.2. Interpreting photo-physiology data for management criteria 

Whilst there are a number of complex approaches to help predict the 
effects of reduced light on seagrasses, including numerical modelling, 
most require knowledge of the P–I relationship (Erftemeijer and Robin 
Lewis, 2006). Our finding that the P–I relationship of Halophila ovalis 
varied spatially, and most dramatically between temperate and tropical 
locations, argues for the need to apply different P–I parameters or light 
requirement criteria depending on the location of the plant populations 
being considered. For example, Ik was significantly higher at the tropical 
location than those at the temperate locations. In the absence of 
location-specific data, we recommend that the next most appropriate 
option would be to use P–I data generated from the same climatic region 
(temperate, tropical) to model productivity. 

Temporal variability in plant pressure-response relationships is also 
important to consider when developing light requirement criteria for 
dredging management. Management of dredging regularly incorporates 
“Environmental Windows”, specific time periods when dredging activ
ities are allowed (Suedel et al., 2008; Fraser et al., 2017). Environmental 
windows should be location specific, minimising the impacts on bio
logical events such as coral spawning (Fraser et al., 2017). Increasingly, 
environmental windows are being considered to align with the resilience 
of habitats and the impacts of dredging (Wu et al. 2015, 2017). If sea
grass light requirements, as reflected, for example by Ic and Ik, vary with 
time of year within a location, then this variability could be incorpo
rated into modelling to assess the time of year that is likely to have the 
least impact on seagrass habitat. There were no time-of-year effects on 
Ik, however there was a temperature effect and, as temperature varies 
with time of year, environmental windows may be appropriate. In 
contrast, if dredging management criteria are based on maintaining a 
certain level of productivity, based on estimated NPmax, then temporal 
considerations would be required, because time of year affected NPmax. 
These findings indicate two important points to consider when devel
oping light criteria for management. First, location specific P–I data are 
recommended, although in absence of location specific data, climatic 
region P–I data may be appropriate. Secondly, it is important to use P–I 
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data generated at an appropriate temperature (which can have an effect 
on Ik, Ic and NPmax), which coincides with time of year that light 
reduction impacts are expected to occur. In the case of Ik it may be 
applicable to use the P–I data with the temperature most relevant to that 
time of year, however in the case of NPmax seasonal temperature specific 
data should be utilised. 

4.3. Ocean warming 

This study was not specifically designed to look at climate change 
impacts, however the findings provide insight into possible impacts of 
future sea surface temperatures (SST) for Halophila ovalis along the coast 
of Western Australia, particularly in the temperate locations where P–I 
curves were calculated at temperatures the plants are not currently 
exposed to. Near Perth (31.5◦S), SST rose by approximately 0.13 ◦C each 
decade from 1951 to 2002 (Pearce and Feng, 2007) and by about 0.3 ◦C 
each decade from 1985 to 2004, leading Lough (2008) to predict an 
increase of up to 2 ◦C in southwestern Australian waters by 2100. Across 
the latitudinal gradient of Western Australia H. ovalis maintained pro
ductivity at all temperature treatments we exposed it to in all locations, 
indicating that it is unlikely there will be complete loss of current 
H. ovalis populations in any location due to SST increase alone. 
Furthermore, there is no evidence in our findings to suggest potential 
negative effects of projected SST increases on productivity. In fact, in all 
regions, productivity at the highest temperature (28 ◦C) was comparable 
to, or greater than, at lower temperatures which, in the temperate zone 
locations are more typical of current conditions. However, we need to 
acknowledge two important qualifiers to this finding. First, our findings 
relate to plants under laboratory conditions and might not reflect how 
plants respond to multiple stressors, such as increasing SST and the 
added pressure of increased herbivory due to the poleward movement of 
macro-grazers (Hyndes et al., 2016). Second, H. ovalis is widely 
distributed across both tropical and temperate regions. It might, there
fore, be expected to display strong physiological plasticity, as would 
other seagrasses with distributions extending into the temperate zone, 
such as Syringodium isoetifolium and Halodule uninervis. However, it re
mains unclear whether we can expect similar plasticity among the truly 
temperate species, such as Amphibolis antarctica and Posidonia sinuosa, 
which occur on the west coast and are foundational species. Improving 
our understanding of the ability of these foundation species to acclimate 
to future temperature changes is critical to understanding the outlook 
for seagrasses over the remainder of this century. 

We conclude that temperature affects the P–I relationship of Hal
ophila ovalis, but that the effect is not consistent among climatic regions 
or, in some cases, among sites within locations. Based on our findings, it 
is appropriate to use site-specific P–I parameters when modelling sea
grass productivity and attempting to predict impacts of reduced light. 
Our findings also provide insights into possible seagrass response to 
future climate change scenarios, and we suggest that temperate 
meadows of H. ovalis are likely to be more negatively affected by pre
dicted increases in sea temperature than tropical meadows, though the 
projected temperature increases are unlikely by themselves to cause the 
loss of meadows. 
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