
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

2015

Comparison of Live Response, Linux Memory Extractor (LiME) Comparison of Live Response, Linux Memory Extractor (LiME)

and Mem tool for acquiring android’s volatile memory in the and Mem tool for acquiring android’s volatile memory in the

malware incident malware incident

Andri Heriyanto
Security Research Institute, Edith Cowan University

Craig Valli
Security Research Institute, Edith Cowan University

Peter Hannay
Security Research Institute, Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/adf

 Part of the Information Security Commons

DOI: 10.4225/75/57b3f143fb884
13th Australian Digital Forensics Conference, held from the 30 November – 2 December, 2015 (pp. 5-14), Edith
Cowan University Joondalup Campus, Perth, Western Australia.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/adf/144

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fadf%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b3f143fb884

COMPARISON OF LIVE RESPONSE, LINUX MEMORY EXTRACTOR

(LIME) AND MEM TOOL FOR ACQUIRING ANDROID’S VOLATILE

MEMORY IN THE MALWARE INCIDENT

Andri Heriyanto
1,2

, Craig Valli
2
, Peter Hannay

1,2

1
School of Computing and Security Science,

2
Security Research Institute

Edith Cowan University, Perth, Australia

aheriyan@our.ecu.edu.au, c.valli@ecu.edu.au, p.hannay@ecu.edu.au

Abstract
The increasing use of encryption and obfuscation within the malware development arena has necessitated the use

of volatile memory acquisition on smartphone platforms. Current smartphone forensics research lacks a well-

formulated process for the acquisition of volatile memory. This research evaluates and contrasts three differing

tools for acquisition of volatile memory from the Android platform: Live Response, Linux Memory Extractor

(LiME) and Mem Tool. Evaluation is conducted through practical examination during the analysis of an infected

device. The results demonstrate a combination of LiME and the Volatility Framework provides the most robust

findings. Complexities due to the nature of LiME prevent it from being a feasible tool for real-world use. In

contrast, Live Response is found to be reliable and applicable to real-world scenarios. In all evaluations, it was

found that the forensic practitioner must take care to understand and be aware of the impact to data stored

within volatile memory caused by the acquisition process.

Keywords

Android, Smartphone Forensics, Live Response, Linux Memory Extractor (LiME), Mem tool, Volatility

Framework, Volatile memory, Backdoor.AndroidOS.Obad

INTRODUCTION

According to Hoog (2011), there are two classifications for storing the data on an Android device: data at rest

and data in transit. Data at rest is stored data in several storage media such as internal flash memory (NAND-

flash or NOR-flash Memory), memory card (SD card), embedded multimedia card (eMMC), Universal

Integrated Circuit Card (UICC), and data backups. Furthermore, data on Android devices can be classified as

data in transit if it is stored in a Network Service Provider (NSP) and as Random Access Memory (RAM) as a

store of volatile memory.

Many well-known computer forensic guidelines such as Justice (2008), Group (2002) and Cichonski, Millar,

TimGrance, and Scarfone (2012) propose the importance of prioritising the acquisition of memory based on its

volatility. In contrast, a few well-known of the mobile phone forensics guidance such as (SWGDE) (2013) and

Ayers, Brothers, and Jansen (2014) do not state the same approach. As a consequence, many smartphone

forensics workflows or approaches are still focusing on non-volatile memory acquisition.

As the Android smartphone become ubiquitous, there is an immense growth of the malware that mainly targeted

the Android devices. According to Cisco (2014), ninety-nine percent of all mobile malware in 2013 targeted

Android devices. Android users also have the highest encounter rate (71%) with all form of web-delivered

malware. On the other hand, there is another perspective for the forensic community in regards with advanced

malware. Nasim, Aslam, Ahmed, and Naeem (2015) reveals one code obfuscation technique called packing that

enables a malware author to mangle an executable is such a way that it becomes difficult for an analyst to

reverse engineer. In addition, Burdach (2006) reveals rootkits and worms that store their code only in volatile

memory. This obfuscation technique has rendered the traditional forensics approach of offline analysis

insufficient. Thus, volatile memory acquisition in Android devices suspected to be infected with malware is

highly recommended.

The paper aims to address the following research questions:

 What are the proper forensics approaches for acquisition and analysis of volatile memory on Android

devices in exposed with Malware incidents?

 What is the advantages and disadvantages of three different approaches: Live Response, Mem Tool,

and LiME/Volatility for memory forensics on Android devices?

 What is the final result from comparison of the analysis’ output from the three different approaches?

5

 How is the feasibility evaluation for each approach in real case scenario?

RELATED WORKS

Aljaedi et al. (2011) have performed comparative analysis in Live Response and memory imaging on Linux

desktop environment. The research reveals the advancement of memory imaging in comparison with a Live

Response. It stated that Live Response approach does not include hidden and terminated processes. Moreover,

the average percentage of changed pages during Live Response is higher than memory imaging as shown in

Figure 1. This data suggests memory imaging had less of an impact on volatile data.

Figure 1: Comparison of pages changed during Live Response and memory imaging (Aljaedi et al., 2011)

Sylve, Case, Marziale, and Richard (2012) presented Linux Memory Extractor (LiME) as a means to obtain

complete captures of volatile memory along with a subsequent analysis of that data in both userland and the

kernel. The tool offers two significant advancements: forensic soundness of acquisition approach and the

completeness of pages acquisition in comparison with other tools. Wächter (2015) concluded that memory

forensics with LiME is not feasible for law enforcement purposes. He found seven factors that might deter the

usage of LiME: identifying the model, identifying Operating System (OS), root exploit, lock screen, availability

or sources, kernel configuration and evidence erosion.

LIVE RESPONSE, LINUX MEMORY EXTRACTOR (LiME) AND MEM TOOL

Live Response

Live Response is a method of acquiring volatile data, whereby the suspect operating system is acquired for

potential evidence such as the status of open network connections, the status of open files, the system's

conception of the current date and time, and any other forensically relevant volatile data. However, it is well

understood that acquiring volatile data is inherently problematic because it relies on a potentially compromised,

and thus untrusted OS and that therefore the acquired evidence could be contaminated during this information

gathering process, and because it is not a repeatable process (Nagy et al., 2014).

According to Case (2012a), malware can trivially default live analysis, because it is running tools built into the

OS to gather volatile data. Hence, it is possible that malware can hide its presence to any and all userland tools

and even in-kernel monitors. Moreover, many advanced malware only operates in the volatile memory; they

might never touch the non-volatile memory, and all their network traffic has been encrypted. As a conclusion,

the memory acquisition becomes the need and critical for handling the malware incident.

Linux Memory Extractor (LiME)

Some researchers have proposed tools and procedures to acquire volatile memory to overcome the limitations on

the Live Response. Leppert (2012) proposes using Dalvik Debug Monitor Service (DDMS) in the Android

Software Development Kit (SDK) for acquiring the heap dump as a dumping file of the volatile memory in

Android devices. However, according to Macht (2013), Leppert’s approach contains some flaws. At first, the

approach only feasible for the debugging application process. Hence, it only feasible for an application that has

been prepared for debugging. Secondly, the acquisition process cannot obtain comprehensive artefacts such as

complete class objects or binary data. As a conclusion, the following analysis will be limited since it came from

the limited data acquisition.

6

Thing, Ng, and Chang (2010) develop the acquisition tool called memgrab. It aims to dump the process’

memory in the Android devices. A workflow of the tools consists of two consecutive steps. First, the tool will

trace the process memory and acquire it based on the /proc/pid/maps and /proc/pid/mem files. Second, the tool

deploys the Process Trace (ptrace) system call, which enable the locating of the process by monitoring its

execution, as well as gaining access to its address space. Furthermore, the researchers investigated the cached

data and the volatile memory persistence in Android smartphone.

Sylve et al. (2012) reveal several issues with Thing’s research. First, significant information such as in-kernel

structures, networking information, and others are not analysed. Second, the memgrab requires many

interactions with the live system that potentially change the data. This last issue creates a significant concern

regarding with forensically sound process requirement. Hence, they propose Android memory acquisition

module called Droid Mobile Dumpster (DMD) or known as Linux Memory Extractor (LiME) to overcome all

the limitations. The research claimed that LiME can dump the address memory over TCP and to an Android

device’s SD card. Moreover, it offers thoughts on the forensic soundness of the approach. LiME works in three

consecutive steps. First is parsing the kernel’s iomem_resource structure to learn the physical memory address

ranges of system RAM. Second is performing physical to virtual address translation for each page of memory.

Third is reading all pages in each range and writing them to either a file (typically on device’s SD card) or a

TCP socket.

There is a significant challenge on LiME especially for loading the module into the kernel. There is a security

mechanism for the kernel in the Android OS that preventing incompatible module or suspected malicious code

to be loaded into the OS. Although there were attempts to bypass the security mechanism, none of the attempts

is perfect. Also, there is no research for creating a module in a kernel-agnostic feature (Sylve et al., 2012).

Mem Tool

Tamma and Tindall (2015) propose the use of Mem Tool as an alternative tool to dump the process files on the

RAM. Mem tool is an executable binary that needs to push to the device and with netcat tool-the mem is used to

dump the selected processes based on its PID. Moreover, it claimed has the capability to read the entire RAM or

target specific. There is no current research or discussion that shown the risk and benefit that might occur from

the Mem tool. Based on the experiment, the Mem tool is relied on the current processes similar with the Live

Response and has many interactions with the live data. Therefore, it depends on the running OS and potentially

can change the data on the RAM. However, the tool offers a repeatability function by dumping the running

processes.

RESUME OF ADVANTAGES AND DISADVANTAGES

Based on the related research as described above, the research resumes the requirement including the advantages

and disadvantages of each approach. Every examiner should understand this conditions to justify their selected

procedure and finally can minimise the risk that might occur from a selected approach.

Table 1: Advantages and Disadvantages of Live Response, LiME and Mem tool

No Variables Live Response LiME Mem Tool

1 USB debugging requirement Yes Yes Yes

2 Root access requirement No Yes Yes

3 Kernel agnostic Yes No Yes

4 Forensically soundness Low High Medium

5 Detection ability for cached

and terminated process

No Yes No

6 Impact on current Live

Memory

High Low Medium

7 Implementation complexity Low High Medium

8 Completeness (Pages

Acquired)

~ High ~

9 Analysis result Limited Robust Limited on Strings

Output

10 Repeatability No Yes Yes

7

RESEARCH METHOD

The research conducted an experiment for supporting the comparison analysis of the three approaches. The

research method for the experiment shown in Figure 2. There are two scenarios for the experiment. The first

scenario uses LiME as the first tool to acquire the RAM and followed by Live Response to acquire the volatile

data based on the running OS. The second scenario uses Mem tool as the initial tool to acquire the running

processes and followed by Live Response. There is an additional procedure for comparing two output of the

Live Response: before and after the malware infection. The purpose of this comparison is acquiring the detail

information of all changes that have been made on the device by the malware.

Live Response
Before

Infection

LiME

Comparison of Live Response

1st Scenario

Live
Response

mem

Live
Response

Live Response
After Infection

2nd Scenario

ACQUISITION

Live Response
Comparison

Data Analysis

Volatility

Live Response
1st Scenario

Data Analysis

Volatility
Output
Analysis

Strings

Live Response
2nd Scenario

Data Analysis

Strings
Output Data

Analysis

ANALYSIS

PREPARATION

END

REPORT

FINAL OUTPUT
ANALYSIS

Figure 2: Research Method

Forensic Workstation: Linux Ubuntu 14.04 LTS 64-bit, RAM: 8 GB, CPU: Intel Core i7 CPU Q720 @

1.60GHz x 8. Testbeds: Android Virtual Device/AVD with the configuration: CPU:armeabi-v7a, Target:

Android 5.0.1(API level 2), Device Name: Google Nexus S with skin 480x800, SDCard: 2GB, RAM:1024MB,

VM heap size: 64, Data Partition size: 512MB. The research used the AVD with the same configuration for all

examination’s scenario.

Forensic tools:

a. Android Debug Bridge (ADB) for the Live Response acquisition;

b. Linux Memory Extractor (LiME) for memory acquisition and Volatility for analysing the acquired

memory;

c. Mem tool for dumping the processes and Autopsy 3.1.0 for analysing the dumped files;

d. Kdiff3 for comparing Live Response acquisition before and after infection.

8

Malware Sample

Overview

The technical name for the malware is Backdoor.AndroidOS.Obad. The malware author used a previously

unknown vulnerability in Android that allowed the malware to gain extended device administrator privileges.

All strings in the executable file of the malware were encrypted, and the code was obfuscated. It has multi-

functional capability such as sending SMS to premium-rate numbers, downloading other malware programs,

install them on the infected device and/or sending them further via Bluetooth. This malware sample does not

have a graphical user interface and operates as a background service (Sims, 2013; Unuchek, 2013).

Anti-Analysis Techniques and Behaviour

OBAD is an emulator-aware malware, which increases the complexity of analysis. The malware looks for the

“Android.os.build.MODEL” value throughout the code and exits if it matches with the emulator's model. The

malware can only be run in an emulator after patching several of checks. The malware sends information

including the victims IMEI number, operator name, MAC address of the Bluetooth device and the prepaid card

account balance of the user in an encrypted JSON form. In response, the malware author sends another JSON

object that contains configuration information alongside the commands to be executed.

PROCEDURES IN LIVE RESPONSE

The research following the guidance from Hubbard (2013), Kercher (2013) and Nagy et al. (2014) that includes

specific ADB commands for gathering the Live Response information. Since Live Response can overwrite the

unallocated data in the RAM, the examiner should be aware of their actions to minimise the impact on the

system.

PROCEDURES IN LIME AND VOLATILITY

The procedure for LiME follows the guidance from 504ensicsLabs (2014), Case (2012b), Valenzuela (2013)

and Wächter (2015). The research found that the thesis from Wächter is the most feasible guideline in

comparison with the previous guidelines available. For analysing the LiME file, the research uses the instruction

and guidelines from Volatility (2013) and Ligh et al. (2014).

PROCEDURES IN MEM TOOL

First of all, the Mem tool and NC tool should be installed on the /dev/ directory. It is tmpfs file directory that

means the directory only persisted as long as the device has not been rebooted. The main purpose of this

procedure is to avoid both tools to overwrite potential evidence on non-temporary file system’s directory.

According to with the documentation file of the tool, if the examiner set O for the PID then it can dump the

entirety of memory. Unfortionalty this did not appear to be the case regarding implementation, as such processes

were dumped on an individual basis.

RESULTS AND DISCUSSION

Analysis Output

a. List of processes

The Live Response can obtain detail information regarding all processes that related with the malware sample.

Especially the ps –t command that can list whole related process including the processes that will diminish

afterward. Figure 3 shows the detail processes that related with the malware. Examiner can see the similarity of

all process based on its User ID (u0_a53) and PPID (1585).

9

Figure 3: Live Response: ps –t command

LiME/Volatility (plugin: pid hash table) gives the similar output: name, PID and UID of the related processes as

shown in Figure 4. Alongside with the detail of memory address of the process (offset and Directory Table

Base/DTB). Not disclosed by Live Response is the start time. This information is significant for the examiner to

know when the malware and its related process are starting and identified all the process that related with the

malware based on the sequence of the start time.

Figure 4: Volatility Plugin: PID Hash Table

On the Autopsy, the whole bin files from Mem tool’s acquisition have been processed as a single case. After

searching based on the keyword “system.admin,” there are seven processes that might relate with the malware

as shown in Table 2 below:

Table 2: Mem Tool: Using keyword for searching “system.admin”

Keyword Hits PID Process Name

system.admin 104 1541 com.android.system.admin

 1578 com.android.settings

 341 system.server

 664 com.android.input.method.latin

 69 zygote

 708 com.android.phone

 916 com.android.systemui

10

b. APK (Package) Detail

Live Response uses adb command: “dumpsys package ” and obtained the Android package file of the malware.

It includes detail information such as the time stamp, first installed date, the last update time, etc. Moreover, the

information such as the permissions that have been granted and the Android component such as intent and

action are disclosed on the output file. The similar information could be gathered by examiner through static

malware analysis.

c. C&C Server

This information is significant to reveal who is might responsible or involved with such incidents. Most of

Trojans require C&C server to receive and to send data or files. However, the Live Response cannot reveal the

information of C&C server. In contrast, LiME and Mem tool reveal how the process

(com.android.system.admin) send the key cipher, the balance of prepaid SMS/MMS and other victim’s

credential to the C&C server (www.androfox.com and www.androfox.tk). Through Volatility’s plugin:

yara_scan –Y “http”, the examiner can obtain three findings based on the keyword search “androfox.” Figure 6

shows the example of the finding.

Figure 5: Volatility’s plugin: yara_scan –Y “http”

The Mem tool provides the similar findings as LiME/Volatility. After the first launch, the malware sample

collects information such as MAC address of the Bluetooth device, the name of the operator, telephone number,

IMEI, phone users account balance, whether or not Device Administrator has been obtained, and local time. All

this information is sent to the C&C server (www.androfox.tk or www.androfox.com) in the form on an

encrypted JSON object. After sending the information, the malware receives an instruction from the C&C server

and records them in the database. Each instruction recorded in the database contains the instructions sequence

number: the time when it must execute as ordered by C&C server and parameters (Unuchek, 2013). However,

during the examination process, there is no instruction have been received by the malware.

d. Network Information

Live response with netstat commands only reveals the IP Address of the devices and Internet Service Provider

without any information about third party IP Address that might relate with the incident.

In contrast, with plugin route cache in Volatility, the examiner found a particular IP Address: 195.20.46.245 that

might relate with the incident. After checking those IP Address, apparently it has been already listed on the

Blacklist Check.

e. Packets Sent through Sockets

The detail processes can be gathered from lsof command on the Live Response. It shows how the malware

attempts to connect its C&C server through the socket with file descriptor. However, from the output file it is

shown that not all sockets are active. Hence, there may be no packets transmitted via those sockets at the time of

11

http://www.androfox.com/
http://www.androfox.tk/
http://www.androfox.tk/
http://www.androfox.com/

analysis (Unuchek, 2013). This feature shows the advancement of Live Response from LiMe/Volatility and

Mem Tool.

LiME/Volatility with the plugin lsof reveals the similar output. Although there are two differences from Live

Response’s output: First, there is no information whether the process is active or not (on/off); second, there is

information about the size of the related process. However, it is not clear the cause of the differences: whether

the plugin lsof did not parsing the information or the LiME did not dump the information.

With the Autopsy and based on the keywords search of “androfox” and “system.admin,” there are several hits

in related processes that obtained from the bin files. Moreover, with regular expression search of “URL”, there

is one hit in the related process (as shown in Table 3 below).

Table 3: Mem Tool-Keyword/Regex Search

Keyword Hits PID Process Name

androfox 20 1541 com.android.system.admin

system.admin 104 1541 com.android.system.admin

 1578 com.android.settings

 341 system.server

 664 com.android.input.method.latin

 69 zygote

 708 com.android.phone

 916 com.android.systemui

Regex: URL

f. Time Events

LiME/Volatility is the only tool that can reveal the time events of processes and services that related with the

malware. Therefore, the examiner can reconstruct the incidents and easily identify the related processes or

services based on the time events.

CONCLUSION

LiME and Volatility show the most robust findings for answering the investigative questions. Moreover, LiME

has a repeatability feature that enable examiner or another examiner to do further analysis or re-analyse the

memory dumps. However, LiME is not feasible for real world use for many reasons. Thus, the research suggests

deploying LiME and Volatility Framework as a part of dynamic malware analysis only.

Live Response shows the less effective findings than LiME. Although providing less output overall, Live

Response did provide some findings not found by LiME/Volatility. Significant advantages from Live Response

are the implementation is far less complex and does not need root access. Mem Tool shows the least robust

findings comparing with the two previous approaches. Mem Tool Allows for repeatability much like LiME. If

root access is available, then acquisition can be performed with minimal impact on the state of the system

12

REFERENCES

504ensicsLabs. (2014). LiME – Linux Memory Extractor Instructions v1.4.

https://github.com/504ensicsLabs/LiME/blob/master/doc/LiME_Documentation_1.4.pdf

(SWGDE), Scientific Working Group on Digital Evidence. (2013). SWGDE Best Practices for Mobile Phone

Forensics

Aljaedi, Amer, Lindskog, Dale, Zavarsky, Pavol, Ruhl, Ron, & Almari, Fares. (2011). Comparative analysis of

volatile memory forensics: live response vs. memory imaging. Paper presented at the Privacy, Security, Risk

and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011

IEEE Third International Conference on.

Ayers, Rick, Brothers, Sam, & Jansen, Wayne. (2014). Guidelines on Mobile Device Forensics NIST Special

Publication 800-101 Revision 1.

file:///G:/ECU%20WORKS%20DOCUMENTS/DIT%20Meeting%20with%20Supervisor/NIST.SP.800-

101r1%20Guidelines%20on%20Mobile%20Device%20Forensics.pdf

Burdach, Mariusz. (2006). Physical memory forensics. USA: Black Hat.

Case, Andrew. (2012a). Analyzing Malware in Memory. http://blog.hackeracademy.com/wp-

content/uploads/2012/12/THA-Deep-Dive-Analyzing-Malware-in-Memory.pdf

Case, Andrew. (2012b). Android Forensics with Volatility and LiME: YouTube.

Computer Security Incident Handling Guide (2012).

Cisco. (2014). Cisco 2014 Annual Security Report.

Group, The Internet Society Network Working. (2002). Guidelines for Evidence Collection and Archiving RFC

3227.

Hoog, Andrew. (2011). Android Forensics: Investigation, Analysis and Mobile Security for Google Android:

Syngress.

Hubbard, Donovan. (2013). Best practices for Linux Live host analysis. from

http://forensics.donovanhubbard.com/2013/01/live-response-on-linux.html

Electronic Crime Scene Investigation: A Guide for First Responders, Second Edition (2008).

Kercher, K. (2013). Best Practices: Linux Live Analysis. from http://somethingk.com/main/?p=100

Leppert, Simon. (2012). Android memory dump analysis. Student Research Paper, Chair of Computer Science,

1.

Ligh, Michael Hale, Case, Andrew, Levy, Jamie, & Walters, AAron. (2014). The Art of Memory Forensics:

Detecting Malware and Threats in Windows, Linux, and Mac Memory: John Wiley & Sons.

Macht, Holger. (2013). Live Memory Forensics on Android with Volatility. (Diploma), Friedrich-Alexander

Universitat, Nurnberg.

Nagy, Tamer, Lindskog, Dr. Dale, & Zavarsky, Dr. Pavol. (2014). Analytic Comparison between Live Memory

Analysis and Memory Image Analysis in Android Environment. Paper presented at the The 2nd World Congress

on Computer Applications and Information Systems. http://nngt.org/digital-library/upload/conference4/p19.pdf

Nasim, Faisal, Aslam, Baber, Ahmed, Waseem, & Naeem, Talha. (2015). Uncovering Self Code Modification in

Android. In S. El Hajji, A. Nitaj, C. Carlet & E. M. Souidi (Eds.), Codes, Cryptology, and Information Security

(Vol. 9084, pp. 297-313): Springer International Publishing.

OpenSignal. (2015). Android Fragmentation Visualized (August 2015). from

http://opensignal.com/reports/2015/08/android-fragmentation/

Sims, Gary. (2013). Obad was the nastiest piece of Android malware discovered in 2013. from

http://www.androidauthority.com/obad-nastiest-piece-android-malware-discovered-2013-324830/

13

Sylve, Joe, Case, Andrew, Marziale, Lodovico, & Richard, Golden G. (2012). Acquisition and analysis of

volatile memory from android devices. digital investigation, 8(3–4), 175-184. doi:

http://dx.doi.org/10.1016/j.diin.2011.10.003

Talley, Andre V. (2014). Content analysis tools in android memory forensics. (1554445 M.S.), Utica College,

Ann Arbor. Retrieved from

http://ezproxy.ecu.edu.au/login?url=http://search.proquest.com/docview/1527126221?accountid=10675

http://kx7gx4pm8t.search.serialssolutions.com/?&genre=article&sid=ProQ:&atitle=Content+analysis+tools+in+

android+memory+forensics&title=Content+analysis+tools+in+android+memory+forensics&issn=&date=2014-

01-01&volume=&issue=&spage=&author=Talley%2C+Andre+V. ProQuest Dissertations & Theses Global

database.

Tamma, Rohit, & Tindall, Donnie. (2015). Learning Android Forensics J. Ursell, R. Youe & A. Varangaonkar

(Eds.),

Thing, Vrizlynn LL, Ng, Kian-Yong, & Chang, Ee-Chien. (2010). Live memory forensics of mobile phones.

digital investigation, 7, S74-S82.

Tinaztepe, Emre, Kurt, Doğan, & Gulec, Alp. (2013). Android OBAD. Technical Analysis Paper

Comodo Malware Analysis Team. https://www.comodo.com/resources/Android_OBAD_Tech_Reportv3.pdf

Unuchek, Roman. (2013). The most sophisticated Android Trojan. from

https://securelist.com/blog/research/35929/the-most-sophisticated-android-trojan/

Valenzuela, Ismael. (2013). Acquiring volatile memory from Android based devices with LiME Forensics, Part

I. 2013, from http://blog.opensecurityresearch.com/2012/04/acquiring-volatile-memory-from-android.html

Volatility. (2013). Linux Memory Forensics. Retrieved 4/12/2014, 2014, from

https://code.google.com/p/volatility/wiki/LinuxMemoryForensics

Wächter, Philipp. (2015). Practical Infeasibility of Android

Smartphone Live Forensics. (Master), Friedrich-Alexander-Universität. Retrieved from

https://www1.cs.fau.de/filepool/gruhn/thesis_waechter.pdf

14

	Comparison of Live Response, Linux Memory Extractor (LiME) and Mem tool for acquiring android’s volatile memory in the malware incident
	COMPARISON OF LIVE RESPONSE, LINUX MEMORY EXTRACTOR (LIME) AND MEM TOOL FOR ACQUIRING ANDROID’S VOLATILE MEMORY IN THE MALWARE INCIDENT

