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Abstract: Systemic risk contagion is a key issue in the banking sector in maintaining financial
system stability. This study is among the first few to use three different distance-to-risk measures
to empirically assess the domestic interbank linkages and systemic contagion risk of the Chinese
banking industry, by using bivariate dynamic conditional correlation GARCH model on data collected
from eight prominent Chinese banks for the period 2006–2018. The results show a relatively high
correlation among almost all the banks, suggesting an interconnectedness among the banks. We
found evidence that the banking system is exposed to significant domestic contagion risks arising
from systemic defaults. Given that Chinese markets deliver weak signals of forthcoming stress in
banking sectors, new policy intervention is crucial to resolve the hidden stress in the system. The
results have important policy implications and will provide scholars and policymakers further insight
into the risk contagion originating from interbank networks.

Keywords: contagion; DCC-GARCH model; distance to capital; distance to default; distance to
insolvency; Chinese banks

1. Introduction

Since its path-breaking initiatives of reforms launched over four decades ago, China’s
economic development has been miraculous. According to the World Bank, China’s GDP
grew from USD 149.5 billion in 1978 to USD 14.3 trillion by 2019, with real GDP growth
averaging nearly 10% a year despite the recent slowdown. The GDP value of China
accounts for 11.8% of the world economy. Since 2010, China has surpassed Japan to become
the world’s second-largest economy by nominal GDP, and overtaken the United States as
the world’s largest economy in terms of purchasing power parity (PPP) since 2014. Equally
remarkable has been the incredible expansion of China’s banking system, accounting for
11.7% of the top 1000 banks worldwide [1]. The Chinese banking system is critical to the
functioning of the Chinese economy and plays a pivotal role in monitoring the practices of
state-owned enterprises to ensure that these enterprises comply with sound commercial
principles. Hence, maintaining the stability and soundness of the banking system hinges
on the regular and timely assessment and measurement of bank risk. Its importance is also
highlighted by the global financial crisis in 2008 and subsequent policy measures to reform
global banking regulations in response to the perceived lessons of this crisis [2]. In its 13th
five-year plan (2016–2020), China has shifted its focus away from unfettered growth rates
towards initiatives to improve the quality of China’s economic growth, particularly in the
financial sector [3]. In 2019, the economic growth of China was projected to be 6.2% due to a
strong and stable traditional financial sector that could only be multiplied by the new ‘One
Belt One Road’ initiative [4,5]. This tremendous current and future growth in the Chinese
financial and banking sector requires a better understanding of their banking sector’s
systemic risk from a local and global standpoint [6,7] given the systemic risk spillover
between China and other countries [8], especially that the growing Chinese economy
cannot be sustained with fragile and backward banking infrastructure.
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Recent authors in the field have heavily supported this view through their schol-
arly works [9,10], pointing out that the contagion risk of the Chinese banking sector can
adversely affect the rest of the world [11]. They have used traditional methodologies in-
cluding COVAR [12], Marginal expected shortfall [13], and Granger causality networks [14],
where they mostly looked into tail risk network [15], conventional GARCH contagion [16],
or network hypothesis [17]. Given the nature of these models, they all investigate the
Chinese financial sector from a conventional point of view and provide consistent results
throughout. These characteristics of the conventional results have been well documented
as they failed to predict the last Global Financial Crisis (GFC) and thus financial macro-
prudential authorities including International Monetary Fund (IMF) and Organization
for Economic Co-operation and Development (OECD) have been using different distance
to risk (DR)-based models to better understand the spillover effect within the post-GFC
banking sector [18,19]. However, there have been no studies that have incorporated these
distances to risk measures into Chinese banks to investigate the spillover effects.

In this paper, we intend to fill this gap by using three different distance-to-risk mea-
sures (Distance to default (DD), Distance to insolvency (DI), and Distance to capital (DC))
to empirically assess the domestic interbank linkages and systemic contagion in China,
following the footsteps of [8,20]. We believe these measurements complement each other
and can validate each other’s findings as used by other authors in the field similarly. Next,
we employ the bivariate DCC-GARCH model to investigate the systemic risk spillovers
between the eight prominent Chinese banks (see Table 1), including Agricultural Bank of
China (ABC), Bank of China (BOC), China Construction Bank (CCB), China Merchants
Bank (CMB), China Minsheng Banking Corp, Ltd. (CMS), Hua Xia Bank Co, Ltd. (HUX),
Industrial and Commercial Bank of China (ICC), and Shanghai Pudong Development Bank
(SPB). We have chosen these eight largest banks based on their size and share market
capitalization within China per following the footsteps of previous authors. These banks
control more than half of the reported net assets in China and a significant portion of
assets in the world banking sector with remarkably healthy risk indicators (Beta, Sharp,
and Stock Reports Risk Score). The results show relatively high quasi-correlations among
almost all the banks (except ABC), suggesting a marked interconnectedness among these
banks. Our sample period covers the daily data from 2006 to 2018 which includes waves
of financial turmoil in the global market including the Global Financial Crisis (GFC). As
the DD, DI, and DC are simulated using yearly interpolation, these fluctuations can be
observed every year as per following the previous authors in our field. We do not focus on
the individual event impact as we are focused on the overall spillover from bank to bank.
We find evidence that the internal banking system is exposed to extreme contagion risks
from the domestic interbank defaults. Given that Chinese markets deliver weak signals
of forthcoming stress in banking sectors, new policy intervention is crucial to resolve
the hidden stress in the system. The results have important policy implications and will
provide scholars and policymakers further insight into the risk contagion originating from
interbank networks.

The rest of the paper is organized as follows. Section 2 presents the data and sample
used in this study, followed by the model specifications in Section 3. Section 4 discusses
and analyzes the results of the dynamic conditional correlation generalized autoregres-
sive conditional heteroscedasticity (DCC-GARCH) model incorporated to measure the
contagion among the Chinese banks. Section 5 concludes by providing recommendations.
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Table 1. Key financial information for sample Chinese banks.

S. No. Banks Short Name Net Asset
Value—Actual

Beta Up 5-Yr
Mthly

Sharpe Ratio
5-Yr Mthly

Stock Reports + Risk
Score by Data

Stream

1. Agricultural Bank of
China Ltd. ABC 249,551,048,992.73 0.87 0.04 10

2. Bank of China Ltd. BOC 257,092,174,275.84 0.86 0.02 10

3. China Construction
Bank Corp. CCB 296,094,971,900.93 1.02 0.12 10

4. China Merchants Bank
Co, Ltd. CMB 80,063,183,940.38 0.99 0.30 9

5. China Minsheng Banking
Corp, Ltd. CMS 64,218,282,053.19 1.18 −0.01 10

6. Hua Xia Bank Co, Ltd. HUX 32,312,167,973.69 1.22 0.03 10

7.
Industrial and

Commercial Bank of
China Ltd.

ICC 348,003,591,516.90 0.62 0.08 10

8.
Shanghai Pudong

Development Bank
Co, Ltd.

SGP 69,625,080,048.90 0.89 0.10 10

Note: This table provides basic financial and identifying information for the sample banks.

2. Data and Sample
2.1. Distance to Default

The DD measure is a market-based measurement approach of default risk derived
from the Merton [21] model. Following the model, a larger DD value that results in a
lower default risk thus is a better indicator for the financial institutions. The Merton
model has been modified and summarized in subsequent empirical research to condense a
wider range of financial activities. It measures both liquidity risk and solvency risk at an
entity level [22]. This has been an important advantage of this model above others. Thus,
we have seen regulators having a keen interest in implementing the outcome from the
model [23]. However, as the model uses significant theoretical simulations to generate the
risk measures, the model can sometimes over depend on the interpretation of the theory
rather than reality. Based on the Merton [24] model, the daily DD at time t can be calculated
as follows:

DDt =
log
(

At
Lt

)
+
(

r f − 0.5σ2
A

)
(T − t)

σA·
√

T− t
(1)

where the values of At and Lt are the asset and liability values at time t, respectively,
with risk-free rate noted as Rf. The equation also uses volatility of asset value σA. We fol-
lowed [25] to compute asset, liability, risk-free rate, and asset volatility. Previous researchers
in the contagion research field have also preferred this procedure [18,19]. This procedure
gives us a sample of 3130 daily observations for our period. We can calculate the daily
return of these values using Equation (2) following the footsteps of the previous researchers
in our field studying the contagion effect inside the Chinese financial sector [26,27], thus
effectively ensuring the data normality and stationarity as discussed later. In this paper,
we refer to the DD return values as DD values.

∆DDt =
DDt − DDt−1

|DDt−1|
(2)

The descriptive statistics of these values are given in Table 2 with a mean of approxi-
mately between −0.01 and 0.1. It can be seen, the DD value for all the sample banks shows
significant similarity in the descriptive statistics including the stationarity test for time
series analysis using Dickey-Fuller p-value. We can deduce that the sample is acceptable
for time series analysis. A timeline of these DD return values is shown in Figure 1. In
Figure 1, we can observe significant fluctuations at the beginning of 2008 for most banks
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except ABC and SGP. Throughout the data, SGP has shown significant stability compared
to others.

Table 2. Descriptive statistics for DD return values.

ABC BOC CCB CMB CMS HUX ICC SGP
Mean −0.01 −0.01 −0.01 0.01 0.01 0.01 −0.01 0.01

Standard Error 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Dickey-Fuller p-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Standard Deviation 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.17

Sample Variance 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03

Kurtosis 29.53 9.64 22.30 6.52 8.38 21.50 9.55 730.30

Skewness −0.89 −0.46 0.94 0.25 0.63 −0.17 −0.44 −2.85

Minimum −0.21 −0.16 −0.17 −0.15 −0.15 −0.37 −0.16 −5.34

Maximum 0.14 0.13 0.32 0.19 0.27 0.33 0.12 5.35

Count 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00

Note: This table provides basic descriptive statistics for the sample banks’ daily DD.
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Figure 1. Distance to default for the sample Chinese banks in the period 2006–2018. Source: This figure visualizes the daily
distance to default statistics for our sample banks for 2006–2018. Authors’ calculation.

2.2. Distance to Insolvency

Volatility is a variable that is extensively used for measuring default risk. According
to the Merton [24] model, an entity will be in default if the asset value falls below a default
threshold level. Consequently, the proximity of an entity to the default threshold level
is a function of the anticipated difference between values of assets and volatility as well
as debt commitments. Higher expected volatility for a given capital structure and asset
value suggests a greater probability regarding the failure of future asset values to meet
debt commitments [28]. The extended version of Merton’s model incorporates decisions on
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investments, while not considering long-term borrowing. In contrast, the Leland model [29]
comprises long-term strategic bankruptcy and debt financing. From here based on the
structural models of credit risk proposed by [24,29,30] proposed a robust and intuitive
approach for obtaining the financial soundness of individual entities by using data on
equity volatility, termed distance to insolvency (DI). DI is defined as the ratio of a measure
of the percent difference between the asset value of an entity and liabilities at time t (known
as leverage) to annualized percent standard deviation of innovations concerning the asset
value of an entity at time t (known as asset volatility). According to [30], DI recapitulates
the distortions to incentives of equity owners that reasonably occur when the entity gets
financially distressed. As the DI computation requires only equity volatility data, it can
be computed for a wide-range set of cross-sectional and temporal data compared to other
measuring approaches. DI as a measure still inherits the limitations of DD but as an
extension, it supersedes DD’s contribution in risk management. Similarly, a larger DI value
results in a lower default risk and is thus a better indicator for financial institutions. The DI
at time t can be defined as:

DI =

(
At−Lt

At

)
σA

(3)

where At and Lt are the asset and liability at time t, respectively, and σA is the asset
volatility. Although in a default scenario, the Lt of an entity will be over the current value
of At, At ≥ Lt is true for perfect conditions. Thus, firm leverage can be defined as the
percentage difference between At and Lt. Following the procedure of the previous section,
we can calculate the daily return on these values using Equation (4). In this paper, we refer
to the DI return values as DI values. These DI values are shown in Table 3, followed by
Figure 2 with the timeline of the sample DIs. This procedure gives us a sample of 3129 daily
observations with properties similar to DD, including stationarity. Figure 2 illustrates that
DIs are significantly less volatile than DDs. This phenomenon was most likely caused
by ongoing balance sheet stress rising from poor asset quality and increased provisions
required by the regulators [31,32]. Mismatches in maturity have resulted in the disclosure
of interest rate risk and liquidity.

∆DIt =
DIt − DIt−1

|DIt−1|
(4)

Table 3. Descriptive statistics for DI return values.

ABC BOC CCB CMB CMS HUX ICC SGP

Mean −0.01 −0.01 −0.01 0.01 0.01 −0.01 −0.01 0.01

Standard Error 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Dickey-Fuller p-Value −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01

Standard Deviation 0.04 0.11 0.03 0.04 0.07 0.10 0.04 0.13

Sample Variance 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02

Kurtosis 21.40 129.12 39.52 19.67 208.47 251.10 10.89 408.52

Skewness −0.46 −0.71 1.61 0.26 −1.96 −7.15 −0.40 3.33

Minimum −0.40 −1.66 −0.29 −0.49 −1.79 −2.73 −0.32 −2.95

Maximum 0.32 2.02 0.50 0.41 1.41 1.39 0.27 3.58

Count 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00
Note: This table provides basic descriptive statistics for the sample banks’ daily DI.
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2.3. Distance to Capital

The DD has acceptance among the market-based measures due to its predictive
ability to segregate rating downgrades for banks [33,34]. However, the DD concept acts
as an absolute default risk measuring approach when applied to banks, which has some
limitations [19]. First, the risk inherent in a bank’s leverage varies substantially compared
to a non-financial entity, as the former is more leveraged for an assigned level of credit risk.
Second, the DD measure considers the total equity capital of a bank as a buffer, though bank
regulators typically take necessary actions before losing its total equity capital [35,36]. For
instance, it is recommended by the BASEL Committee on Banking Supervision (BASEL) that
banks should possess excess capital over a regulatory minimum because of risk factors [37].
The distance-to-capital (DC) measure is an alternative to the DD measure originated from
the structural model of corporate debt proposed by [24,38]. The DC measure considers
a level of default point (i.e., a dissimilar distance measure of risk). It considers capital
thresholds (as outlined by the Prompt Corrective Action [PCA] framework) that permit
early intervention by bank regulators [39] rather than considering the face value of a bank’s
liabilities (L) as the pertinent barrier. Similar to DD, it also uses theory to simulate the risk
prediction, and a larger DC value results in a lower risk. It can be stated as Equation (5)
below, following [19] where CAR = capital adequacy ratio at a given time t. Previous
researchers in our field have also followed the same procedure [40]:

DCt =

ln
(

At
1

1−CARt
L

)
+
(
µ− 0.5σ2

A
)
T

σA
√

T
(5)

and then,

∆DCt =
DCt − DCt−1

|DCt−1|
(6)
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Following the procedure of the previous sections, we can calculate the daily return on
these values using Equation (6). In this paper, we refer to the DC return values as DC values.
These DC values are shown in Table 4 and presented in Figure 3. This procedure gives us
a sample of 3129 daily observations with properties similar to DD including stationarity
where we can observe the same mean, standard error, and Dickey-Fuller p-value of most
of the cases. Figure 3 illustrates that DCs are significantly less volatile than DDs and DIs.
Most of the curves in this figure are picked at the same time as DC is risk-adjusted using
BASEL requirements; such change in the value is similar to all the sample banks as per
regulatory shocks.

Table 4. Descriptive statistics for DC return values.

ABC BOC CCB CMB CMS HUX ICC SGP
Mean −0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Standard Error 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Dickey-Fuller p-Value −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 0.01

Standard Deviation 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Sample Variance 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Kurtosis 367.97 351.15 247.76 253.10 218.59 257.42 392.18 199.94

Skewness −6.59 −7.68 −2.00 −6.55 −5.65 −6.64 −7.40 −3.86

Minimum −0.82 −0.82 −0.59 −0.69 −0.58 −0.74 −0.88 −0.63

Maximum 0.57 0.54 0.53 0.44 0.44 0.42 0.54 0.50

Count 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00 3129.00

Note: This table provides basic descriptive statistics for the sample banks’ daily DC.
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3. Methodology
Model Specifications

We employ the DCC-GARCH model, proposed by [41,42], to examine the contagion
risks among Chinese banks. The model calculates the correlation coefficients of the stan-
dardized residuals and continually regulates the correlation for time-varying volatility,
and allows simultaneous modeling of the variances and conditional correlations of sev-
eral series. Despite the limits of DCC, such as no regularity conditions and asymptotic
properties of consistency with asymptotic normality [43–45], it remains a popular rep-
resentation of dynamic conditional correlations because of its dynamic structure of the
correlation [46] and its inherent ability to handle a large set of computational data [47].
Furthermore, DCC-GARCH can provide a superior measurement for the correlation that
accounts for heteroskedasticity straightforwardly. The bivariate DCC-GARCH model is
derived as follows:

εi,t = zi,t

√
hi,t (7)

hi,t = ωi0 + ∑ αijεj,t−1 + ∑ βijhj,t−1, f or i, j = 1, 2 (8)

Ri,t = µi + λiRt−1 +
n

∑
j=1

ρiRi,t−j + ei,t (9)

where zi,t = standardized residual, Ri,t= mean, and hi,j = conditional variance. The condi-
tional variance-covariance matrix can be specified as:

Ht = Dt Pt Dt (10)

where Ht = 2 × 2 conditional covariance matrix, Pt = conditional correlation matrix, and
Dt = diagonal matrix with time-varying standard deviations.

Dt = diag
(√

h11,
√

h22

)
(11)

and
Pt = diag

(
Q−1/2

t

)
Qtdiag

(
(Q−1/2

t)

)
(12)

where Qt = 2 × 2 symmetric positive definite matrix and Qt = (qt
ij) and is defined as in

Equation (13).
Qt = (1− θ1 − θ2)Q + θ1zt−1z′t−1 + θ2Qt−1 (13)

where Q = 2 × 2 matrix of the unconditional correlation of standardized residual. θ1 and
θ2 = non-negative scalars and it is presumed that θ1 + θ2 < 1. The correlation estimates are
derived using Equation (14).

ρi,j,t =
qi,j,t

√qi,i,tqj,j,t
(14)

where ρi,j,t = dynamic conditional correlation between assets. The diagonal bivariate
GARCH model considers that ρi,j,t = 0 for all i and j. In contrast, the constant conditional
correlation assumes Pij = ρij and Pt = P.

4. Results
4.1. Distance-to-Default Contagion

Table 5 reports the estimation results based on the bivariate DCC-GARCH (1,1) model
for the period 2006–2018 using the DD data. Panel A of Table 5 reports the coefficients of the
mean equation, followed by the variance equation in Panel B and the correlation equation
in Panel C. The correlation results show that all the estimates are positive and significant
mostly at the one percent level. In addition, the DCC results for the variance equation are
quite significant for each pair in our sample. Overall, all the coefficients are significant
and positive even at the one percent level, except the HUX pairs. The strongest correlation
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exists between ABC and BOC (0.92), whereas HUX and ABC are the least correlated pair.
Overall, the DCC results in Table 5 for DD show highly significant and positive correlations
between the Chinese banks.

Table 5. Estimation results of distance to default from the bivariate DCC-GARCH model.

Panel A: Mean Equation

ABC BOC CCB CMB CMS HUX ICC SGP

ABC

BOC −0.01

CCB 0.01 0.01 *

CMB 0.01 * 0.01 ** 0.01 ***

CMS 0.01 ** 0.01 ** 0.01*** 0.01 ***

HUX 0.01 0.01 ** 0.01 ** 0.01 *** 0.01*

ICC −0.01 *** 0.01 ** 0.01 *** 0.01 *** 0.01 *** 0.01 ***

SGP 0.01 0.01 0.01 *** 0.01 * 0.01 0.01 ** 0.01 **

Panel B: Variance Equation

ABC

BOC 0.01 ***

CCB 0.01 ** 0.01 *

CMB 0.01 * 0.01 0.01

CMS 0.01 *** 0.01 *** 0.01 ** 0.01 *

HUX 0.01 ** 0.01 ** 0.01 ** 0.01 ** 0.01 **

ICC 0.01 *** 0.01 *** 0.01 ** 0.01 ** 0.01 *** 0.01 ***

SGP 0.01 ** 0.01 *** 0.01 ** 0.01 *** 0.01 *** 0.01 *** 0.01 ***

Panel C: Correlation Equation

ABC

BOC 0.73 ***

CCB 0.26 *** 0.36 ***

CMB 0.39 *** 0.63 *** 0.42 ***

CMS 0.42 *** 0.66 *** 0.37 *** 0.73 ***

HUX 0.21 0.49 ** 0.33 *** 0.56 *** 0.67 ***

ICC 0.59 *** 0.82 *** 0.38 *** 0.63 *** 0.63 *** 0.47 ***

SGP 0.31 * 0.60 *** 0.38 *** 0.70 *** 0.70 *** 0.57 *** 0.58 ***
Note: The table reports the µi of mean Equation (9), ωi0 of variable Equation (8), and ρi,j,t from time-varying DCC correlation from
Equation (14) from the regression. *, **, and *** indicate significance at the 10, 5, and 1 percent levels, respectively.

To visualize the results reported in Table 5, the DD correlation patterns (pair-wise)
over the considered study period for eight Chinese banks are presented in Figure 4. As
apparent in Figure 4, regardless of the fluctuations, the results follow a straight-line pattern
around 0.5 and similar for all pairs. This proves that the correlation between Chinese banks
is significantly stable compared to the rest of the world. We can also clearly observe that the
larger banks are more stable than their smaller counterparts in the pair-wise comparison.
For example, BOC and CCB are more stable in correlations than ABC and SGP. Based on
these, it is safe to infer that DCC correlations and systematic risk contagion are extremely
high in Chinese banks regardless of the period.
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4.2. Distance-to-Insolvency Contagion

Table 6 reports the estimation results of the DI using the bivariate DCC-GARCH (1,1)
model. As can be seen in Panel A of Table 6, the intercept terms in the mean and variance
equation are moderately significant for half of the banks. However, the parameter estimates
for the correlation equation in Panel C are very high, positive, and significant, even at the
one percent level. CMS–CCB stands out as the most correlated pair in the sample, with
a value of 0.79, whereas the weakest correlation in the sample is 0.3 between CCB–ABC.
Similar to the results for DD in Table 5, the DCC results for DI further confirm that Chinese
banks are highly prone to systematic risk contagion among themselves.

The DI correlation patterns (pair-wise) over the considered study period for the eight
Chinese banks are presented in Figure 5. Plots here depict a pattern very similar to that
for DD in Figure 4. Most of the plots are stable for the entire time as expected. However,
the number of extreme fluctuations from the mean result increases compared to the DD.
Overall, our results for DI confirm the presence of contagion risk among Chinese banks,
suggesting that there is a high vulnerability of the Chinese banking system to spillover
effects of risk among each other. The size of the banks’ effects holds a similar finding from
the DD.
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Table 6. Estimation results of distance to insolvency from the bivariate DCC-GARCH model.

Panel A: Mean Equation

ABC BOC CCB CMB CMS HUX ICC SGP

ABC

BOC −0.01

CCB 0.01 0.01 *

CMB 0.01 * 0.01 0.01 *

CMS 0.01 −0.01 0.01 * 0.01

HUX 0.01 * 0.01 0.01 0.01 ** 0.01 **

ICC 0.01 0.01 0.01 * 0.01 ** 0.01 ** 0.01 ***

SGP 0.01 0.01* 0.01 *** 0.01 0.01 0.01 0.01

Panel B: Variance Equation

ABC

BOC 0.01 ***

CCB 0.01 *** 0.01 ***

CMB 0.01 0.01 0.01 *

CMS 0.01 *** 0.01 ** 0.01 ** 0.01 ***

HUX 0.01 ** 0.01 ** 0.01 0.01 ** 0.01 **

ICC 0.01 ** 0.01 * 0.01 ** 0.01 0.01 0.01

SGP 0.01 ** 0.01 ** 0.01 * 0.01 * 0.01 *** 0.01 ** 0.01 **

Panel C: Correlation Equation

ABC

BOC 0.52 ***

CCB 0.30 *** 0.39 ***

CMB 0.37 *** 0.65 *** 0.40 ***

CMS 0.42 ** 0.67 *** 0.48 *** 0.79 ***

HUX 0.44 *** 0.58 *** 0.33 *** 0.66 *** 0.73 ***

ICC 0.61 *** 0.81 *** 0.46 *** 0.73 *** 0.73 *** 0.63 ***

SGP 0.40 ** 0.65 *** 0.42 *** 0.77 *** 0.77 *** 0.69 *** 0.70 ***
Note: The table reports the µi of mean Equation (9), ωi0 of variable Equation (8), and ρi,j,t from time-varying DCC correlation from
Equation (14) from the regression model. *, **, and *** indicate significance at the 10, 5, and 1 percent levels, respectively.

4.3. Distance-to-Capital Contagion

The results of the DCC-GARCH (1,1) model for DC are tabulated in Table 7. As can
be seen in Panel A and B of Table 7, the coefficients show significant similarity to the DI
results. In addition, the results of the correlation equation for DC are consistent with the
previous findings on DD and DI. All the coefficients are positive and significant for all the
banks’ pairs at the one percent level. Compared to the results for DD and DI, the results for
DC are even stronger where all the correlations are above 0.5. The BOC–ICC pair reports
the highest correlation (0.87) in our sample on DC.
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Table 7. Estimation results of distance to capital from the bivariate DCC-GARCH model.

Panel A: Mean Equation

ABC BOC CCB CMB CMS HUX ICC SGP

ABC

BOC −0.01

CCB −0.01 0.01 *

CMB 0.01 0.01 0.01 ***

CMS 0.01 0.01 0.01 *** 0.01 **

HUX −0.01 0.01 0.01 * 0.01 * 0.01 **

ICC −0.01 ** 0.01 * 0.01 * 0.01 ** −0.01 0.01 **

SGP −0.01 0.01 0.01 0.01 *** 0.01 * 0.01 0.01

Panel B: Variance Equation

ABC

BOC 0.01

CCB 0.01 0.01 *

CMB 0.01 0.01 ** 0.01

CMS 0.01 0.01 0.01 0.01

HUX 0.01 0.01 *** 0.01 * 0.01 ** 0.01 *

ICC 0.01 0.01 *** 0.01 *** 0.01 *** 0.01 0.01 ***

SGP 0.01 0.01 0.01 0.01 *** 0.01 0.01 0.01
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Table 7. Cont.

Panel A: Mean Equation

ABC BOC CCB CMB CMS HUX ICC SGP

Panel C: Correlation Equation

ABC

BOC 0.84 ***

CCB 0.58 *** 0.63 ***

CMB 0.72 *** 0.79 *** 0.65 ***

CMS 0.66 *** 0.76 *** 0.62 *** 0.80 ***

HUX 0.73 *** 0.81 *** 0.66 *** 0.83 *** 0.79 ***

ICC 0.82 *** 0.87 *** 0.64 *** 0.80 *** 0.77 *** 0.79 ***

SGP 0.65 *** 0.78 *** 0.68 *** 0.83 *** 0.82 *** 0.83 *** 0.74 ***

Note: The table reports the µi of mean Equation (9), ωi0 of variable Equation (8), and ρi,j,t from time-varying DCC correlation from Equation
(14) from the regression model. *, **, and *** indicate significance at the 10, 5, and 1 percent levels, respectively.

The patterns of pair-wise DC correlations for the sample Chinese banks over the
considered period 2006–2018 are depicted in Figure 6. For all the plots involving ABC,
correlations are comparatively high and stable. Although there are some rare spikes closer
to 0 for some of the plots during the early years, most of the time they are stable above or
around 0.5, indicating their low sensitivity to contagion risk. Overall, the plots in Figure 6
validate the high exposure of Chinese banks to the spillover effect of the systematic risk in
support of DD and DI.
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5. Conclusions

This paper presents a comprehensive analysis of the systemic risk contagion of Chinese
banks. The DD, DI, and DC results indicate the achievement of the soundness of banks
while showing a continuous deterioration for all banks post-2008 and recovery only after
2010. The results attained from the bivariate DCC-GARCH (1,1) model suggest that
the correlation parameters are statistically significant at the one percent level for all risk
measures. The patterns of pair-wise correlations for distance measures show relatively
high and stable correlations among most of the banks during the period.

Overall, the results imply that there is remarkable interconnectedness among the
banking sectors in China, which is largely consistent with the existing studies [11,15,48].
Although these Chinese banks have remained largely isolated from the global financial
crisis, risks exist from within its banking system due to a high level of non-performing
assets, extended credit dispersed to non-banking financial companies, muted corporate
demand for credit, and corporate governance issues. Further, there is evidence that some
banks were susceptible to the global financial crisis, as a trough is observed for DD, DI,
and DC during the period post-2008 to 2010.

The world economy and financial sectors have experienced significant changes during
the current global pandemic [49,50]. A strong and resilient banking system is the foundation
for sustainable economic growth, as banks are the hubs for credit intermediation and a
well-acknowledged connection for service activities [51]. The results presented in this
study suggest that the banking system is exposed to significant domestic contagion risks
arising from systemic defaults supported by other authors in the field [52]. This is because
the Chinese markets provide weak signals of forthcoming stress in banking systems. Thus,
new policy interventions are needed to overcome the hidden stress in the system. From
the viewpoint of structure and activities, the Chinese banking system has changed over
the past decade. Therefore, it is recommended that the regulatory oversight of interbank
exposures and interbank market structures be prioritized.

As a policy implication, regulators can clearly distinguish that the Chinese banking
industry is more connected than the peer banking communities. However, a shock in
one bank will transmit quickly and severely to other banks. Given these parameters,
regulators need to monitor all banks closely rather than on one or two underperforming
ones. Furthermore, they can also control the capital and investment flow between banks to
mitigate spillover risk within the banking system.

Author Contributions: Conceptualization, T.C., S.S., J.Y. and Z.Z.; methodology, T.C., S.S., J.Y. and
Z.Z.; software, T.C.; formal analysis and investigation, T.C., S.S., J.Y. and Z.Z.; writing, T.C., S.S., J.Y.
and Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The fourth author wishes to acknowledge the financial support of the Sumitomo Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors wish to thank the journal editor and two anonymous reviewers for
their helpful comments and suggestions which have greatly improved the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, Q.; De Haan, J.; Scholtens, B. Analysing Systemic Risk in the Chinese Banking System. Pac. Econ. Rev. 2017, 24, 348–372.

[CrossRef]
2. Ho, K.-Y.; Shi, Y.; Zhang, Z. News and return volatility of Chinese bank stocks. Int. Rev. Econ. Financ. 2020, 69, 1095–1105.

[CrossRef]
3. World Bank. China Overview. 2019. Available online: https://www.worldbank.org/en/country/china/overview (accessed on

13 July 2021).

http://doi.org/10.1111/1468-0106.12212
http://doi.org/10.1016/j.iref.2018.12.003
https://www.worldbank.org/en/country/china/overview


Sustainability 2021, 13, 7954 15 of 16

4. Huang, Y. Understanding China’s Belt & Road initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40,
314–321.

5. Rolland, N. China’s “Belt and Road Initiative”: Underwhelming or game-changer? Wash. Q. 2017, 40, 127–142. [CrossRef]
6. Liu, Y.; Brahma, S.; Boateng, A. Impact of ownership structure and ownership concentration on credit risk of Chinese com-mercial

banks. Int. J. Manag. Financ. 2019, 16, 253–272.
7. Zhu, N.; Wang, B.; Yu, Z.; Wu, Y. Technical Efficiency Measurement Incorporating Risk Preferences: An Empirical Analysis of

Chinese Commercial Banks. Emerg. Mark. Financ. Trade 2015, 52, 610–624. [CrossRef]
8. Daly, K.; Batten, J.A.; Mishra, A.V.; Choudhury, T. Contagion risk in global banking sector. J. Int. Financ. Mark. Inst. Money 2019,

63, 101136. [CrossRef]
9. Weber, O. Corporate sustainability and financial performance of Chinese banks. Sustain. Account. Manag. Policy J. 2017, 8, 358–385.

[CrossRef]
10. Witt, M.A. China’s Challenge: Geopolitics, De-Globalization, and the Future of Chinese Business. Manag. Organ. Rev. 2019, 15,

1–18. [CrossRef]
11. Wang, G.-J.; Jiang, Z.-Q.; Lin, M.; Xie, C.; Stanley, H.E. Interconnectedness and systemic risk of China’s financial institutions.

Emerg. Mark. Rev. 2018, 35, 1–18. [CrossRef]
12. Tobias, A.; Brunnermeier, M.K. CoVaR. Am. Econ. Rev. 2016, 106, 1705.
13. Acharya, V.V.; Pedersen, L.H.; Philippon, T.; Richardson, M. Measuring Systemic Risk. Rev. Financ. Stud. 2017, 30, 2–47. [CrossRef]
14. Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and

insurance sectors. J. Financ. Econ. 2012, 104, 535–559. [CrossRef]
15. Zhang, W.; Zhuang, X.; Wang, J.; Lu, Y. Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk

network. N. Am. J. Econ. Financ. 2020, 54, 101248. [CrossRef]
16. Xu, Q.; Chen, L.; Jiang, C.; Yuan, J. Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t approach. Pac.

Basin Financ. J. 2018, 51, 13–31. [CrossRef]
17. Zhang, Z.; Zhang, D.; Wu, F.; Ji, Q. Systemic risk in the Chinese financial system: A copula-based network approach. Int. J. Financ.

Econ. 2021, 26, 2044–2063. [CrossRef]
18. Blundell-Wignall, A.; Roulet, C. Business models of banks, leverage and the distance-to-default. OECD J. Financ. Mark. Trends

2013, 2012, 7–34. [CrossRef]
19. Chan-Lau, J.A.; Sy, A.N.R. Distance-to-default in banking: A bridge too far? J. Bank. Regul. 2007, 9, 14–24. [CrossRef]
20. Nagel, S.; Purnanandam, A. Bank Risk Dynamics and Distance to Default. Available online: https://www.nber.org/system/

files/working_papers/w25807/w25807.pdf (accessed on 13 July 2021).
21. Merton, R.C. An Intertemporal Capital Asset Pricing Model. Econometrica 1973, 41, 867. [CrossRef]
22. Saldías, M. Systemic risk analysis using forward-looking Distance-to-Default series. J. Financ. Stab. 2013, 9, 498–517. [CrossRef]
23. Chan-Lau, M.J.A.; Mitra, M.S.; Ong, M.L.L. Contagion Risk in the International Banking System and Implications for London as a

Global Financial Center. IMF Working Paper No. 07/74. 2007. Available online: https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=979028 (accessed on 13 July 2021).

24. Merton, R.C. On the pricing of corporate debt: The risk structure of interest rates. J. Financ. 1974, 29, 449–470.
25. Akhter, S.; Daly, K. Contagion risk for Australian banks from global systemically important banks: Evidence from extreme events.

Econ. Model. 2017, 63, 191–205. [CrossRef]
26. Wang, G.-J.; Yi, S.; Xie, C.; Stanley, H.E. Multilayer information spillover networks: Measuring interconnectedness of financial

institutions. Quant. Financ. 2020, 1–23. [CrossRef]
27. Yang, L.; Yang, L.; Ho, K.-C.; Hamori, S. Dependence structures and risk spillover in China’s credit bond market: A copula and

CoVaR approach. J. Asian Econ. 2020, 68, 101200. [CrossRef]
28. Correia, M.; Kang, J.; Richardson, S. Asset volatility. Rev. Account. Stud. 2017, 23, 37–94. [CrossRef]
29. Leland, H.E. Corporate debt value, bond covenants, and optimal capital structure. J. Financ. 1994, 49, 1213–1252. [CrossRef]
30. Atkeson, A.G.; Eisfeldt, A.L.; Weill, P.-O. Measuring the financial soundness of U.S. firms, 1926–2012. Res. Econ. 2017, 71, 613–635.

[CrossRef]
31. Salike, N.; Ao, B. Determinants of bank’s profitability: Role of poor asset quality in Asia. China Financ. Rev. Int. 2018, 8, 216–231.

[CrossRef]
32. Zhang, D.; Cai, J.; Dickinson, D.G.; Kutan, A.M. Non-performing loans, moral hazard and regulation of the Chinese commercial

banking system. J. Bank. Financ. 2016, 63, 48–60. [CrossRef]
33. Yao, J.Y.; Chan-Lau, J.A.; Mathieson, D.J. Extreme Contagion in Equity Markets. IMF Work. Pap. 2002, 2, 1. [CrossRef]
34. Gropp, R.; Gruendl, C.; Guettler, A. The impact of public guarantees on bank risk-taking: Evidence from a natural experiment.

Rev. Financ. 2013, 18, 457–488. [CrossRef]
35. Kocherlakota, N.; Shim, I. Forbearance and Prompt Corrective Action. J. Money Credit. Bank. 2007, 39, 1107–1129. [CrossRef]
36. Mayes, D.G.; Nieto, M.J.; Wall, L. Multiple safety net regulators and agency problems in the EU: Is Prompt Corrective Action

partly the solution? J. Financ. Stab. 2008, 4, 232–257. [CrossRef]
37. Basel III: A Global Regulatory Framework for More Resilient Banks and Banking Systems; Basel Committee on Banking Supervision:

Basel, Switzerland, 2010.

http://doi.org/10.1080/0163660X.2017.1302743
http://doi.org/10.1080/1540496X.2015.1008889
http://doi.org/10.1016/j.intfin.2019.101136
http://doi.org/10.1108/SAMPJ-09-2016-0066
http://doi.org/10.1017/mor.2019.49
http://doi.org/10.1016/j.ememar.2017.12.001
http://doi.org/10.1093/rfs/hhw088
http://doi.org/10.1016/j.jfineco.2011.12.010
http://doi.org/10.1016/j.najef.2020.101248
http://doi.org/10.1016/j.pacfin.2018.05.009
http://doi.org/10.1002/ijfe.1892
http://doi.org/10.1787/fmt-2012-5k4bxlxbd646
http://doi.org/10.1057/palgrave.jbr.2350056
https://www.nber.org/system/files/working_papers/w25807/w25807.pdf
https://www.nber.org/system/files/working_papers/w25807/w25807.pdf
http://doi.org/10.2307/1913811
http://doi.org/10.1016/j.jfs.2013.07.003
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=979028
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=979028
http://doi.org/10.1016/j.econmod.2016.11.018
http://doi.org/10.1080/14697688.2020.1831047
http://doi.org/10.1016/j.asieco.2020.101200
http://doi.org/10.1007/s11142-017-9431-1
http://doi.org/10.1111/j.1540-6261.1994.tb02452.x
http://doi.org/10.1016/j.rie.2017.05.003
http://doi.org/10.1108/CFRI-10-2016-0118
http://doi.org/10.1016/j.jbankfin.2015.11.010
http://doi.org/10.5089/9781451852158.001
http://doi.org/10.1093/rof/rft014
http://doi.org/10.1111/j.1538-4616.2007.00059.x
http://doi.org/10.1016/j.jfs.2007.10.001


Sustainability 2021, 13, 7954 16 of 16

38. Black, F.; Scholes, M. The effects of dividend yield and dividend policy on common stock prices and returns. J. Financ. Econ. 1974,
1, 1–22. [CrossRef]

39. Aggarwal, R.; Jacques, K.T. The impact of FDICIA and prompt corrective action on bank capital and risk: Estimates using a
simultaneous equations model. J. Bank. Financ. 2001, 25, 1139–1160. [CrossRef]

40. Harada, K.; Ito, T. Did mergers help Japanese mega-banks avoid failure? Analysis of the distance to default of banks. J. Jpn. Int.
Econ. 2011, 25, 1–22. [CrossRef]

41. Engle, R.; Sheppard, K. Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH. Theor.
Empir. Prop. Dyn. Cond. Correl. Multivar. GARCH 2001. [CrossRef]

42. Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroske-
dasticity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [CrossRef]

43. Chang, C.-L.; McAleer, M.; Wang, Y.-A. Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices.
Renew. Sustain. Energy Rev. 2018, 81, 1002–1018. [CrossRef]

44. McAleer, M.; Hafner, C.M. A One Line Derivation of EGARCH. Econometrics 2014, 2, 92–97. [CrossRef]
45. Theissen, E. Price discovery in spot and futures markets: A reconsideration. High Freq. Trading Limit Order Book Dyn. 2016, 18,

249–268. [CrossRef]
46. Zhang, K.; Chan, L. Efficient factor GARCH models and factor-DCC models. Quant. Financ. 2009, 9, 71–91. [CrossRef]
47. Basher, S.A.; Sadorsky, P. Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC,

ADCC and GO-GARCH. Energy Econ. 2016, 54, 235–247. [CrossRef]
48. Fang, L.; Sun, B.; Li, H.; Yu, H. Systemic risk network of Chinese financial institutions. Emerg. Mark. Rev. 2018, 35, 190–206.

[CrossRef]
49. Hassan, M.K.; Djajadikerta, H.G.; Choudhury, T.; Kamran, M. Safe havens in Islamic financial markets: COVID-19 versus GFC.

Glob. Financ. J. 2021, 21, 100643. [CrossRef]
50. Kinateder, H.; Campbell, R.; Choudhury, T. Safe haven in GFC versus COVID-19: 100 turbulent days in the financial markets.

Finance Res. Lett. 2021, 101951. [CrossRef]
51. Choudhury, T.T.; Paul, S.K.; Rahman, H.F.; Jia, Z.; Shukla, N. A systematic literature review on the service supply chain: Research

agenda and future research directions. Prod. Plan. Control 2020, 31, 1363–1384. [CrossRef]
52. Choudhury, T.; Daly, K. Systemic risk contagi on within US states. Stud. Econ. Financ. 2021. [CrossRef]

http://doi.org/10.1016/0304-405X(74)90006-3
http://doi.org/10.1016/S0378-4266(00)00125-4
http://doi.org/10.1016/j.jjie.2010.09.001
http://doi.org/10.3386/w8554
http://doi.org/10.1198/073500102288618487
http://doi.org/10.1016/j.rser.2017.07.024
http://doi.org/10.3390/econometrics2020092
http://doi.org/10.1080/1351847X.2011.601643
http://doi.org/10.1080/14697680802039840
http://doi.org/10.1016/j.eneco.2015.11.022
http://doi.org/10.1016/j.ememar.2018.02.003
http://doi.org/10.1016/j.gfj.2021.100643
http://doi.org/10.1016/j.frl.2021.101951
http://doi.org/10.1080/09537287.2019.1709132
http://doi.org/10.1108/SEF-08-2020-0342

	Non-traditional systemic risk contagion within the Chinese banking industry
	Introduction 
	Data and Sample 
	Distance to Default 
	Distance to Insolvency 
	Distance to Capital 

	Methodology 
	Results 
	Distance-to-Default Contagion 
	Distance-to-Insolvency Contagion 
	Distance-to-Capital Contagion 

	Conclusions 
	References

