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Abstract 

The Internet of Things (IoT) expands the global Internet-connected network to encompass device-to-device, 

device-to-server, and server-to-server connectivity for an ever-increasing variety of end-user devices. IoT remains 

a somewhat amorphous entity, with little in the way of coordinated development, and is undermined largely by a 

manufacturer-driven scramble to be first-to-market with the latest innovation. Communication between IoT 

devices/servers relies on underlying protocols, which must be efficient and effective to establish and maintain 

reliability and integrity of data transfer. However, the lack of coordination during IoT’s expansion has resulted 

in a variety of communications protocols being developed. AMQP (Advanced Message Queuing Protocol) 

originated from the financial sector’s requirement for an improved messaging system that was fast, reliable and 

independent of end-user platform configurations. AMQP is an open-source server-to-server communications 

protocol which allows the addition of user-specific extensions. The software coding of such end-user-developed 

modules can be insufficient regarding threat-mitigation and can make the end product vulnerable to cyber-attack. 

Through this paper, we present vulnerability and threat analysis for AMQP-based IoT systems. 

 

Keywords: AMQP (Advanced Message Queuing Protocol), AMQP Vulnerabilities, Application Layer Protocols, 

Internet of Things (IoT), IoT Architecture 

INTRODUCTION 

For more than a decade, the desire to have an increasing range of devices controllable via wired or wireless 

communications has seen an exponential rise in the number of Internet-of-Things (IoT) devices being available 

for the workplace and the home. No sector of our lives appears to be immune from the IoT invasion, whether it be 

military, medical, industrial, or domestic. The Internet-of-Everything (IoE) is rapidly becoming a reality. 

The term IoT is believed to have been originally coined in 1999 (Ashton, 2009), though in hindsight devices such 

as the wireless telegraph can be considered to be IoT devices dating back to the early to mid-19th century (Foote, 

2016). In the early 2000s, the first commercial domestic appliance IoT device, the Internet refrigerator, began 

being shipped by some manufacturers (Osisanwo, Kuyoro, & Awodele, 2015). During 2008, the number of devices 

connected to the Internet was considered to exceed the number of people on earth (Evans, 2011). In 2011, IPv6 

protocol became available which allowed an address space of 2128 unique IP addresses. This vast number prompted 

Steven Leibson of the Computer History Museum, Mountain View, CA at that time, to say “we could assign an 

IPv6 address to EVERY ATOM ON THE SURFACE OF THE EARTH, and still have enough addresses left to 

do another 100+ earths!” (Bhalla, 2012). By 2025, it is estimated that 75 billion IoT devices will make up a market 

worth between US$3.9 trillion to US$11.1 trillion (Jacobs, 2017). 

As with other fields of technological development, the security of such IoT devices has predominantly taken a 

backseat in a rush to be first to market with a new product (Arias, Wurm, Hoang, & Jin, 2015). For this reason, 

IoT has been considered as the future of the Internet (Gubbi, Buyya, Marusic, & Palaniswami, 2013) or as the 

death of the Internet (Vaughan-Nichols, 2016) depending on one’s point of view. As part of this research, we 

present IoT as an imminent reality which is making a positive impact on modern day living and hence the paper 

will discuss the following: 

1. Different protocols involved in enabling IoT concept. 

2. The history of the AMQP protocol, along with various features. 

3. The design architecture of AMQP. 

4. The known vulnerabilities of the protocol. 

5. Threats posed by these vulnerabilities. 
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BACKGROUND 

IoT consists of much more than just connected end-user devices. Underlying an IoT operation is a framework to 

allow data extraction from each device for analysis, and data insertion back to each device for control purposes. 

Such frameworks apply to all IoT deployments in use today, and will equally apply to future IoT deployments that 

have not yet been developed, even for so-called independent or autonomous devices. 

TechBeacon (2017) describes such an architecture as a four-stage process: 

1. Stage 1 – IoT devices consisting of wireless sensors and actuators. 

2. Stage 2 – Sensor data aggregation systems and analogue-to-digital conversion. 

3. Stage 3 – Edge IT systems for data pre-processing and transmission. 

4. Stage 4 – Back-end data systems for analysis, management, and storage. 

Bradicich (2015) clarifies these four stages graphically, as shown in Figure 1. 

 

 

Figure 1. IoT Architecture Stages (Bradicich, 2015) 

Overview of Application Layer Protocols in IoT 

AMQP (AMQP, 2017a) is an open-standard application protocol middleware which enables server-to-server 

message communication. It is independent of both the platform and language that each of the end-servers may be 

using. Flow-controlled communication enables delivery options, such as at-most-once, at-least-once, or exactly-

once. Delivery authentication is provided by SASL (Simple Authentication and Security Layer). Encryption is 

provided by TLS (Transport Layer Security), which is the successor to SSL (Secure Sockets Layer). 

CoAP (Constrained Application Protocol) (CoAP, 2017) is an M2M (Machine to Machine) web transfer protocol 

for use with constrained nodes and constrained networks. It is based on the REST (Representational State Transfer) 

model. Since this is also true of HTTP, seamless connection to a web client interface is possible. CoAP uses 

minimal resources while providing encryption through DTLS (Datagram Transport Layer Security) equivalent to 

3072-bit RSA. 

DDS (Data Distribution Service) (DDS, 2017) is a protocol designed to interconnect devices and has its origins in 

high-performance environments, such as the military, industry and embedded systems. Its rapid delivery of 

messages simultaneously to an array of receivers make it suitable for real-time analytics and sensor monitoring. 

IBM developed MQTT (Message Queuing Telemetry Transport) (MQTT, 2017) in 1999 and since 2013 has 

become an OASIS (Organization for the Advancement of Structured Information Standards) standard. It is an 

M2M IoT connection protocol, which uses publish/subscribe messaging transport methodology to connect a device 
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to a server. MQTT’s lightweight architecture makes it suitable for situations where communications bandwidth is 

limited, such as remote locations or via satellite links. 

RESTFUL (Service Architecture, 2017) provides a set of standards for communication between computer systems 

on the Internet. Its underlying HTTP-compliant architecture enables the communication and transfer of data 

between IoT devices using this protocol. It uses the same HTTP methods of GET, POST, PUT, and DELETE to 

conduct request/response interactions. 

SMQTT (Secure Message Queuing Telemetry Transport) (SMQTT, 2017) is an extension to MQTT which 

encrypts a message before publication by the broker. The encrypted message is sent to multiple subscriber nodes 

where the message is decrypted using the same master key. 

WebSocket protocol (WebSocket, 2017) provides full-duplex communication between clients and a remote server 

on a single TCP connection. WebSockets can be implemented in both web browsers, servers and indeed any 

application making use of the client/server paradigm. Apart from the initial handshake with HTTP servers, Web-

Socket is an independent protocol that maintains a two-way exchange between client and server using TCP port 

80 or TLS port 443 for encrypted traffic. 

XMPP (Extensible Messaging and Presence Protocol) (XMPP, 2017) is one of four Instant Message (IM) protocols 

which has developed to satisfy the rapidly expanding information society’s need for short message services. 

XMPP’s use of Extensible Markup Language (XML) overcomes prior difficulties in connecting an IM system 

with a non-IM system. Several large public IM services, such as LJ Talk, Nimbuzz, and HipChat exclusively use 

XMPP. Other popular IM applications like WhatsApp, Gtalk and Facebook Chat use XMPP on their back-end 

servers. 

AMQP Protocol History and General Features 

AMQP was first proposed in 2003 by John O'Hara of JPMorgan Chase in London. In 2005 JPMorgan Chase 

commenced taking other firms on board to develop a working group for the project. These firms initially included 

the likes of Cisco Systems and Red Hat, but within a few years, the AMQP working group had expanded to include 

23 partners. 

In August 2011 the AMQP working group had attained OASIS membership, and two months later AMQP 1.0 was 

released at a conference in New York. Successful demonstrations of software running the protocol resulted in an 

OASIS Technical Committee being formed to develop the protocol into an international open standard. 

In April 2014 OASIS AMQP was granted ISO and IEC International Standard approval, under the designation 

ISO/IEC 19464. Despite its development predominantly within the financial sector, AMQP has seen wide adoption 

as a server-to-server communications protocol within the IoT environment. AMQP is one of the few highly used 

application layer protocols with its prominent implementation India's Aadhaar project, considered as one of the 

world’s largest biometric databases (Varma, 2010). AMQP is also being used in the Ocean Observatories Initiative 

infrastructure that uses sensor nets to bring readings ashore from ocean platforms and a global publisher-subscriber 

network to disseminate readings (Meisinger, 2010). Other notable implementations of AMQP include The 

Deutsche Börse, JPMorgan, NASA, AT&T (AMQP, 2017b). 

AMQP offers the following protocol features (Ross, 2012): 

 

Session Multiplexing 

 Multiple Sessions can be carried over a single connection 

 Sessions have independent message sequencing and flow control 

 Interleaving of large messages 

 

Full Duplex, Asynchronous Communication 

 Within a session, messages can flow independently in both directions 

 

Semantics of Message Hand-off 

 AMQP formally defines the semantics of message transfer and settlement/acknowledgement 

 Messages can be moved or copied 

 Delivery guarantees: 

o Best Effort (Fire and Forget) 

o At Least Once 
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o Exactly Once 

 Transactional Message Transfer 

o Local Transactions between Endpoints 

o Distributed Transactions 

 

Data Security 

 TLS/SSL 

o Encryption only, or 

o Encryption and authentication by x.509 certificates 

o Most APIs provide this option via the text of a URL: amqp://hostname vs amqps://hostname 

 Extensible Authentication/Security Mechanisms 

o SASL – Simple Authentication and Security Layer 

o Supports numerous mechanisms: 

 ANONYMOUS 

 PLAIN 

 DIGEST-MD5 

 GSSAPI 

 NTLM 

 

Flow Control 

 Limits the number of messages that a producer can transfer at a time 

 Greatly simplifies some difficult architectural problems 

o Many data sources sending to a data sink at the same time 

 

Serialisation of Structured Data 

 AMQP defines the wire-line format for data types 

 The application designer does not need to be concerned with 

o The Endian order of a peer system 

o The Word Size of a peer system 

 Rich API support is provided to access this feature 

o A Python program can send a message containing a Python Dictionary 

o A Java program can receive the message as a Hash Map (or a JMS Map Message) 

o A C++ program can receive the same message as an std::map 

 

Message Metadata 

 Like HTTP, AMQP allows messages to be annotated with headers 

 Any number of application-specific headers may be placed in a message 

 Headers are carried separately from the message body (which may be encrypted, encoded, and 

compressed) 

 

Transport Independence 

 Messages can be sent between services in many ways, all hidden from one’s business logic 

AMQP ARCHITECTURE 

AMQP Design 

The primary objective of AMQP was to replace existing proprietary and non-interoperable messaging systems that 

were considered to be hampering communications in the financial sector (Vermesan & Friess, 2014). It aimed to 

enable messaging at enterprise level between two platform systems of any configuration, provided that each of 

those platform systems, and the libraries that they are using, was AMQP-compliant (Indrasiri, 2016). 

In AMQP, a shared queue space or broker is provided, which all participating applications can access. A message 

is sent from a client via a publisher to an exchange within the broker. Each message contains a routing key, which 

will be used by the broker to either assign the message to a particular queue, distribute the message to several 

queues, duplicate every message to multiple queues or distribute multiple messages to chosen queues as defined 

by the routing key. 
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A subscriber then receives its authorised messages from queues for delivery to its end client. Since each message 

is assigned to one particular subscriber, even though the same message may have been duplicated for another 

subscriber, only one subscriber can receive a particular message from any of the queues present. 

Individual messages are tracked and accounted for to ensure that all messages are delivered as intended. For this 

to occur, all endpoints must acknowledge receipt of each message. 

Richardson (2008) graphically represents the methodology of the AMQP protocol, as shown in Figure 2. 

 

 

Figure 2. AMQP Methodology (Richardson, 2008) 

Key: Pub = Publisher, E = Exchange, Sub = Subscriber 

 

AMQP uses underlying TCP/IP-compatible protocols at the network and transport levels, which provides wire-

level interoperability and reliability. It is a messaging solution offering flexibility, which Richardson (2008) 

summaries as follows: 

1. any language (C, C++, C#, Python, Java, Javascript, Erlang, Lisp, Ruby, Tcl, PHP, …) 

2. any model (native, .NET WCF, JMS, Mule, can do Caching) 

3. any payload (binary, XML, SOAP, JSON, …) 

4. any transport (TCP, SCTP, UDP, HTTP, …) 

5. any scenario (desktop, router, wan, mobile, mesh, cloud) 

Figure 3 shows a comparison between same-platform and cross-platform server integration, the latter being the 

issue AMQP was developed to resolve. 
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Figure 3. Same-Platform Integration via JMS vs Cross-Platform Integration via AMQP (Indrasiri, 2016) 

Known Vulnerabilities 

The research explored Common Vulnerabilities and Exposures (CVE) databases for the known vulnerabilities of 

AMQP. While searching and examining the CVE database for the terms AMQP and IoT, 17 vulnerabilities were 

identified with a disclosure date within the past decade: 

 

Table 1. CVE Search Results for “AMQP IoT” (Common Vulnerabilities and Exposures, 2017) 

Date Created CVE ID Details 

18-Apr-2017 CVE-2017-7911 A Code Injection issue was discovered in CyberVision Kaa IoT 

Platform, Version 0.7.4. An insufficient-encapsulation vulnerability has 

been identified, which may allow remote code execution. 

23-Mar-2017 CVE-2017-7243 Eclipse tinydtls 0.8.2 for Eclipse IoT allows remote attackers to cause a 

denial of service (DTLS peer crash) by sending a "Change cipher spec" 

packet without pre-handshake. 
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Date Created CVE ID Details 

09-Mar-2017 CVE-2017-6780 A vulnerability in the TCP throttling process for Cisco IoT Field 

Network Director (IoT-FND) could allow an unauthenticated, remote 

attacker to cause the system to consume additional memory, eventually 

forcing the device to restart, aka Memory Exhaustion. The vulnerability 

is due to insufficient rate-limiting protection. An attacker could exploit 

this vulnerability by sending a high rate of TCP packets to a specific 

group of open listening ports on a targeted device. An exploit could 

allow the attacker to cause the system to consume additional memory. If 

enough available memory is consumed, the system will restart, creating 

a temporary denial of service (DoS) condition. The DoS condition will 

end after the device has finished the restart process. This vulnerability 

affects the following Cisco products: Connected Grid Network 

Management System, if running a software release prior to IoT-FND 

Release 4.0; IoT Field Network Director, if running a software release 

prior to IoT-FND Release 4.0. Cisco Bug IDs: CSCvc77164. 

17-Jul-2017 CVE-2017-11408 In Wireshark 2.2.0 to 2.2.7 and 2.0.0 to 2.0.13, the AMQP dissector 

could crash. This was addressed in epan/dissectors/packet-amqp.c by 

checking for successful list dissection. 

24-May-2016 CVE-2016-4974 Apache Qpid AMQP 0-x JMS client before 6.0.4 and JMS (AMQP 1.0) 

before 0.10.0 does not restrict the use of classes available on the 

classpath, which might allow remote authenticated users with 

permission to send messages to deserialize arbitrary objects and execute 

arbitrary code by leveraging a crafted serialized object in a JMS 

ObjectMessage that is handled by the getObject function. 

02-May-2016 CVE-2016-4432 The AMQP 0-8, 0-9, 0-91, and 0-10 connection handling in Apache 

Qpid Java before 6.0.3 might allow remote attackers to bypass 

authentication and consequently perform actions via vectors related to 

connection state logging. 

29-Jan-2016 CVE-2016-2173 org.springframework.core.serializer.DefaultDeserializer in Spring 

AMQP before 1.5.5 allows remote attackers to execute arbitrary code. 

01-Jul-2015 CVE-2015-5240 Race condition in OpenStack Neutron before 2014.2.4 and 2015.1 

before 2015.1.2, when using the ML2 plugin or the security groups 

AMQP API, allows remote authenticated users to bypass IP anti-

spoofing controls by changing the device owner of a port to start with 

network: before the security group rules are applied. 

25-May-2015 CVE-2015-4080 The Kankun Smart Socket device and mobile application uses a 

hardcoded AES 256 bit key, which makes it easier for remote attackers 

to (1) obtain sensitive information by sniffing the network and (2) obtain 

access to the device by encrypting messages. 

09-May-2015 CVE-2015-2247 Unspecified vulnerability in Boosted Boards skateboards allows 

physically proximate attackers to modify skateboard movement, cause 

human injury, or cause physical damage via vectors related to an 

"injection attack" that blocks and hijacks a Bluetooth signal. 

07-Jan-2015 CVE-2015-0862 Multiple cross-site scripting (XSS) vulnerabilities in the management 

web UI in the RabbitMQ management plugin before 3.4.3 allow remote 

authenticated users to inject arbitrary web script or HTML via (1) 

message details when a message is unqueued, such as headers or 

arguments; (2) policy names, which are not properly handled when 

viewing policies; (3) details for AMQP network clients, such as the 

version; allow remote authenticated administrators to inject arbitrary 

web script or HTML via (4) user names, (5) the cluster name; or allow 

RabbitMQ cluster administrators to (6) modify unspecified content. 
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Date Created CVE ID Details 

09-Nov-2014 CVE-2014-8711 Multiple integer overflows in epan/dissectors/packet-amqp.c in the 

AMQP dissector in Wireshark 1.10.x before 1.10.11 and 1.12.x before 

1.12.2 allow remote attackers to cause a denial of service (application 

crash) via a crafted amqp_0_10 PDU in a packet. 

10-Apr-2014 CVE-2014-2814 Microsoft Service Bus 1.1 on Microsoft Windows Server 2008 R2 SP1 

and Server 2012 Gold and R2 allows remote authenticated users to cause 

a denial of service (AMQP messaging outage) via crafted AMQP 

messages, aka "Service Bus Denial of Service Vulnerability." 

12-Oct-2010 CVE-2009-5005 The Cluster::deliveredEvent function in cluster/Cluster.cpp in Apache 

Qpid, as used in Red Hat Enterprise MRG before 1.3 and other products, 

allows remote attackers to cause a denial of service (daemon crash and 

cluster outage) via invalid AMQP data. 

21-Aug-2008 CVE-2012-4458 The AMQP type decoder in Apache Qpid 0.20 and earlier allows remote 

attackers to cause a denial of service (memory consumption and server 

crash) via a large number of zero width elements in the client-properties 

map in a connection.start-ok message. 

21-Aug-2008 CVE-2012-4446 The default configuration for Apache Qpid 0.20 and earlier, when the 

federation_tag attribute is enabled, accepts AMQP connections without 

checking the source user ID, which allows remote attackers to bypass 

authentication and have other unspecified impact via an AMQP request. 

14-Jun-2006 CVE-2012-3467 Apache QPID 0.14, 0.16, and earlier uses a NullAuthenticator 

mechanism to authenticate catch-up shadow connections to AMQP 

brokers, which allows remote attackers to bypass authentication. 

 

The way the architecture of IoT has developed in recent years means that there are many protocol options available. 

The challenge, from the security aspect, is to ensure that the correct protocol is utilised in an appropriate 

environment. Often this will necessitate a solution which spans many protocols, and not just one (axway, 2015). 

As with other IoT protocol software, the security of AMQP often suffers from the code being poorly written by 

many developers (Braue, 2015). Due to the open-source nature of AMQP, which allows for industry-specific 

extensions to be added, this exacerbates the variety of vulnerabilities that may be introduced to a particular 

messaging system based on AMQP. 

Threats to AMQP Protocol 

As the Internet of Things expands to encompass billions of devices around the world, the cybersecurity CIA triad 

of Confidentiality, Integrity, and Availability becomes as significant as ever. With an exponential growth in the 

number of IoT devices, so too is there a corresponding exponential growth in the number of lines of communication 

and data transfer, be they via wired or wireless connections. Indeed, in a situation where every device is capable 

of communicating with every other device, the number of communications channels equals n(n-1)/2, where n is 

the number of devices involved. 

Every IoT communication channel is as vulnerable to potential man-in-the-middle cyber-attack as in a simple 

email communication between two end-users. The four types of such active attacks are: 

1. Replay – An attack entity replays data between communication sessions to impersonate a user to obtain 

information. 

2. Masquerade - An attack entity gains access to a system or performs a malicious act by posing as an 

authorised entity. 

3. Modification - An attack entity performs additions or deletions to the network communication content. 

4. Denial of Service – An attack that inhibits legitimate users from accessing computer services. 
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Despite AMQP using TLS/SSL-based encryption on an underlying TCP-based transmission protocol, resolute 

threat entities will still be able to intercept and decipher IoT communications, given sufficient time. Not only are 

we seeing IoT devices being introduced on the market with insufficient security measures (Arias et al., 2015), but 

we are also seeing IoT networks being compromised by the introduction of carefully-crafted botnets. An example 

of such an attack occurred at an unnamed University in the United States early this year (2017). 

Cybercriminals were able to crack default or poorly-configured passwords in one IoT device via a brute force 

attack taking advantage of the device’s inadequate security measures. Once this device was under their control, 

specially designed malware was able to be installed (Palmer, 2017). 

The malware then spread from IoT device to IoT device by a botnet which again brute-forced weak or defaults 

passwords. As the botnet spread, it locked administrators out and repeatedly changed the password on infected 

devices with each malware update (Moss, 2017). 

Within a short time frame, all 5,000+ devices were infected, and each device was making hundreds of DNS 

requests for seafood restaurants (Mezzofiore, 2017). The consequence of this DDoS attack was a severe slowing 

of the University’s Internet access resulting in a loss of availability of resources required by students and staff 

(Palmer, 2017). 

What makes this incident particularly interesting is that it is one of the few cases to date which has seen a botnet 

DDoS attack spread and then directed against the same network on which the infected devices are hosted. If such 

an attack is to involve the compromise of server-to-server communications hosting AMQP, then the potential 

would be for multiple IoT networks to be seeded with such internally-spreading infections; causing widespread 

compromise of AMQP-enabled IoT devices. 

Figure 4 is a theoretical graphical interpretation of how the botnet attack on the University above may have been 

initiated and spread. 

 

 

Figure 4. Hypothetical Interpretation of Attack Vector Methodology 

 

Other software developers have created more direct AMQP-specific attack vectors. Enteletaor is a Message Queue 

& Broker Injection tool that can be used to implement attacks to AMQP-compatible messaging providers, such as 

RabbitMQ. It is also effective on non-AMQP-compatible message systems such as Redis, and ZeroMQ (GitHub, 

2016). Features include: 
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1. Listing remote tasks. 

2. Read remote task content. 

3. Disconnect remote clients from Redis server (even the admin!) 

4. Inject tasks into remote processes. 

5. Make a scan to discover open brokers. 

6. Try to discover user/passwords in authentication-protected brokers 

CONCLUSIONS 

From its origins in the finance sector, AMQP has developed far beyond its original scope to become a widely 

accepted messaging protocol throughout the field of IT, including the Internet of Things. Through the use of 

binding/routing keys, AMQP provides a powerful and flexible mechanism for sending messages from publishers 

to subscribers via exchanges and queues. AMQP’s underlying TCP/IP-compatible framework adds to the diversity 

of its range of applications but also makes it vulnerable to an assortment of known weaknesses and methods of 

exploitation. Its usage as a server-to-server messaging protocol leads to the potential that its inherent TCP/IP-

based vulnerabilities could be leveraged to propagate malware infections between networks. This research has 

reported various vulnerabilities that exist in AMQP protocol and how various threats can be used to exploit these 

weaknesses to make AMQP a susceptible protocol in IoTs list which otherwise has a very strong architecture. 

Therefore, the need for having an IoT device using AMQP protocol in a network must be carefully evaluated 

before AMQP becomes part of the system. 
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