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Abstract 8 

Open-cut mining presents mine rehabilitation challenges which are generally well-understood for 9 

terrestrial ecosystems. Mine void pit lakes often form when water fills the empty pits and these 10 

are frequently of poor water quality with potential for environmental harm that may dwarf other 11 

mine closure environmental issues in terms of severity, scope and longevity. This is particularly 12 

so when many pit lakes occur close together to form a new landscape as a 'lake district’'. Pit 13 

lakes may provide opportunities where lake or wetland ecosystems are developed as beneficial 14 

end uses to fulfil mining industry commitments to sustainability. As for terrestrial ecosystems, a 15 

clearly articulated restoration goal and strategic plan are necessary to ensure pit lake restoration 16 

toward a new, yet regionally-relevant, aquatic ecosystem, which may facilitate achievement of 17 

sustainability as out-of-kind environmental offsets. Such an approach must also consider 18 

obstacles to development of a self-sustaining aquatic ecosystem such as water quality and 19 

ecological requirements. We recommend integration of pit lakes into their catchments as a 20 

landscape restoration planning exercise with clearly-identified roles and objectives for each new 21 

lake habitat and its surrounds. 22 
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Introduction 1 

Increasingly frequent, and of growing scale, open-cut/cast mining has left a legacy of many 2 

thousands of mining pit voids worldwide (Klapper and Geller 2002; Castendyk and Eary 2009). 3 

Where backfill of pits is not an economic or feasible option and the pit extends into the water 4 

table, then pit lakes ranging from very deep (e.g., hard rock mining pits >250 m deep) to shallow 5 

(e.g., dredge ponds <10 m) may form (Castro and Moore 2000). 6 

There is also a growing demand on many natural water resources from nearby communities. 7 

Many regions have seen reduced regional recharge through increased demand or climate change 8 

and decrease in quality through pollution leading to damage or complete loss of aquatic habitats 9 

as a result (Pyke 2004). This demand has been simultaneous to increasing development of 10 

mining activities and may even sometimes be a direct result of this activity. These pressures 11 

continue to contribute to an international loss of aquatic habitat types ranging from seasonal 12 

wetlands to entire lake systems. 13 

Rehabilitation of post-mining terrestrial landforms to provide restored ecosystems has now 14 

become a well-researched (and generally successful) practice that borrows from both disciplines 15 

of ecology and engineering. Indeed, post-mining rehabilitated ecosystems are a significant 16 

landscape feature in many regions with mining history. However, this landscape restoration 17 

typically ceases at the edge of open-cut/cast pits, unless backfill and/or landscaping can directly 18 

incorporate the pit back into the surrounding terrestrial ecosystem. Instead, pit lakes are 19 

generally left unconsidered with no clear regulation or restoration aims and techniques; as 20 

‘elephants in the mine closure room’. Geochemical weathering processes such as acid and 21 

metalliferous drainage (AMD) may then lead to poor water quality resulting in lake waters toxic 22 

to aquatic life (McCullough 2008). Such water quality impaired pit lakes typically have few 23 

environmental values and may even detrimentally affect regional water bodies through 24 

contamination of surface and groundwater sources (McCullough and Lund 2006). As a result, pit 25 

lakes are often a social and environmental liability to the surrounding region (Doupé and 26 

Lymbery 2005), frequently underestimated in terms of their scope and magnitude of 27 

environmental impacts. Indeed, of all mine closure legacies, pit lakes are frequently the most 28 

severe environmental impacts to a mining region and may continue to present even after the 29 

mine is closed and the greater catchment is rehabilitated (Younger 2002). 30 
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Notwithstanding the significant environment and community problems that can be caused by the 1 

new pit lake landscape features, a number of pit 'lake districts' have formed over the past few 2 

decades, or are currently being formed for closure and return to state governments over the next 3 

few decades (Table 1). Through improvements in scale of mineral extraction technology, these 4 

more recent pit lakes are generally deeper and of greater volume than historically. Although it is 5 

often assumed that pit lakes will follow an evolution from young to mature lakes resulting in 6 

lakes with a well-developed ecosystem (Kalin and Geller 1998), there are many examples of pit 7 

lakes formed soon after open cut mining technologies became commonplace that have not 8 

improved in environmental quality or in biological measures such as biodiversity and ecological 9 

function many decades after forming (McCullough et al. 2009b). Instead, many pit lakes present 10 

continued risks to surrounding natural ecosystems and it is likely that many of these new habitats 11 

may continue to display degraded ecosystems relative to natural systems for many hundreds of 12 

years following lake filling (Castendyk in press). 13 

In contrast to these risks which pit lakes may represent to adjacent and regional environments, 14 

they may nevertheless also represent significant opportunities. There are many potential benefits, 15 

most of which are untapped in the pursuit of mine closure planning by mining companies and 16 

regulators concentrating on terrestrial restoration outcomes. Nonetheless, if appropriate 17 

restoration can be achieved these large pit lake water bodies represent potentially valuable 18 

environmental and social resources (McCullough and Lund 2006; McCullough et al. 2009a) 19 

particularly in the face of global aquatic ecosystem losses to man regions (Sklenička and 20 

Kašparová 2008). Such post-mining use of an industry legacy would help advance expectations 21 

of best-practice mining environmental sustainability when pit lakes are final landforms. 22 

This paper explores options for restoration that are rarely applied to pit lakes even within their 23 

restored mining landscapes. We identify both opportunity, and constraint, within a contemporary 24 

mine closure and restoration context and recommend regional planning strategies to best realise a 25 

restored pit lake ecosystem of significant environmental value and successfully integrated into its 26 

broader ecological landscape. 27 

 28 
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Historical and Current Practice 1 

Traditionally pit lakes and even the pit void structure itself have rarely been considered in mine 2 

rehabilitation plans aside from geotechnical health and safety aspects. As such, rehabilitation has 3 

specifically addressed human and animal safety risks and have generally been achieved through 4 

simple structures such as earthen bunds and fences, e.g. DMP/EPA (DMP/EPA 2011). Some 5 

engineering technologies even take advantage of this isolationist perception to use pit voids as 6 

reservoirs for tailings storage or as sacrificial sumps for AMD or erosion products from over-7 

burden and other disturbed landforms (Loch and Vacher 2006; McCullough and Lund 2006). 8 

As a result, there are very few examples of restored pit lakes internationally where pit lakes and 9 

their immediate surrounds have been rehabilitated to restore ecosystem values (regional or 10 

otherwise). Where restoration has been achieved it has sometimes been incidental, e.g. some of 11 

the former Eastern Germany lakes that were treated as waste dumps for sewage (Charles 1998) 12 

and/or some ecosystem properties and processes developing naturally but only many decades or 13 

even following filling. As a result, there are no demonstrative examples of pit lake restoration 14 

success for most regions and mining types. This has often been because rehabilitation of pit 15 

lakes, let alone restoration of a sustainable ecosystem therein, has not often been a focus for mine 16 

closure planning. 17 

The use of water quality as the most common, and often sole, criteria chosen by regulators may 18 

be because most countries have well developed water quality guidelines that lend themselves to 19 

this application (Jones and McCullough in press). Consequently, in some instances, pit lakes 20 

have been relinquished to the state with restoration requirements, or at least consideration, to 21 

state or national water quality guidelines. For example, stock water drinking guidelines tend to 22 

be applied by regulators and as rehabilitation goals if the regional economy is predominantly 23 

agricultural, and environmental guidelines used if this is an explicit state or federal requirement 24 

E.g., Axler et al. (1998) or if there is risk of discharge to other regional water bodies. Given that 25 

environmental water quality guidelines typically surpass guidelines for other water body uses 26 

(e.g. industrial, agricultural use), relinquishing a pit lake with environmental water quality 27 

standards may allow for many other end uses as well. However, although the use of water quality 28 

guidelines for environmental standards may represent this ‘gold standard’ of restoration, other, 29 
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equally-important, ecological variables are generally not considered (McCullough et al. 2009a; 1 

Lund and McCullough in press). 2 

 3 

Pit lakes as Out-of-Kind Environmental Offsets 4 

Rehabilitation practices mitigating environmental impact during operations and then 5 

rehabilitating remaining disturbed or reformed terrestrial habitat will undoubtedly reduce overall 6 

environmental impact and biodiversity losses from the post-mining landscape. However, it is 7 

difficult to see how the goal of achieving no net biodiversity loss in their operations, or even a 8 

“net positive impact” (NPI) on biodiversity, often proposed by many 'blue chip' mining 9 

companies, e.g., Rio Tinto Plc (2008), can be achieved when a significant proportion of the mine 10 

footprint becomes inundated at completion of mining and consequent cessation of dewatering. 11 

Instead, developing aquatic ecosystems in and around a pit lake may be a means of helping to 12 

achieve this biodiversity protection through a form of out-of-kind offset (Figure 1). Such offsets 13 

are now well-established in regulatory policy in many countries, including USA, Australia and 14 

South Africa (McKenney and Kiesecker 2010) where concerns of mining and, in particular, mine 15 

water issues such as pit lakes, are growing (Newmont Golden Ridge Limited 2009). In this 16 

closure planning model, all mining activities ranging from the direct impacts of mining through 17 

to access corridors and other peripheral disturbances away from the mine footprint result in net 18 

loss of terrestrial ecosystems. Many contemporary restoration strategies may redress this loss 19 

through mitigation of potential impacts, to rehabilitation of impacted sites as mine closure. Still, 20 

excavation of a vast open pit that floods to form a lake will result in irreversible net loss of 21 

terrestrial ecosystems. Recognition of the value of a developing aquatic ecosystem in the 22 

developing pit lake, and deliberate and targeted restoration of this ecosystem toward a regionally 23 

relevant aquatic ecosystem of value may be a suitable offset which redresses this net terrestrial 24 

ecosystem loss. Overall, there may even be a net ecosystem value (e.g., biodiversity) or gain 25 

following mine closure when the pit lake ecosystem is included in mine site rehabilitation 26 

accounting. As with terrestrial ecosystems, this gain is likely to significantly develop further 27 

ecological value over time as the lake fills and a burgeoning aquatic ecosystem develops. 28 

 29 
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Applying Restoration Theory to Pit Lake Districts 1 

Restoration theory and practice guidelines are generally well developed for terrestrial ecosystems 2 

and typically seek to restore the disturbed landscape towards a regional “analogue system”. This 3 

analogue system may represent either the pre-mining ecosystem type that was lost or 4 

alternatively a local reference ecosystem. For example, in the case of a forest lost due to mining, 5 

a reasonable analogue ecosystem in the first instance would be the pre-mined exact forest type, 6 

but if this was not possible then a regionally-representative forest could be selected. However, 7 

there is often a gross dichotomy between mine closure criteria for terrestrial and aquatic 8 

communities on rehabilitated mining leases. This difference of expectations for ecological goals 9 

at mine closure extends even to the edge of the pit lake, where riparian vegetation is seldom 10 

either representative of the region or self-sustaining (e.g., Figure 2). Some of this difference may 11 

be because pit lake formation presents a situation where the previous terrestrial habitat now 12 

forming the lakes has been absolutely lost by coverage of significant volumes of permanent and 13 

often deep pit lake waters. 14 

Where the degree of environmental modification is often severe, such as typically follows 15 

mining, achieving a pre-mining, or even analogue ecosystem is rarely achievable. Instead, it is a 16 

common scenario that post-mining landscapes are modified to such an extent that the terrestrial 17 

component is no longer available for restoration to a pre-mining landscape. Similarly terrestrial 18 

goals for the areas now occupied by the lakes need to be abandoned and alternative restoration 19 

goals must then be sought. Pit lakes and their terrestrial surrounds are often seen as classic 20 

examples of novel ecosystems, with combinations of species and environmental conditions not 21 

previously found (Hobbs et al. 2009). However, this needs not lead to a complete abandonment 22 

of restoring ecological values; significant areas above water that will form lake riparian and 23 

catchment could, and should be, clearly identified and restored to integrate the lakes into the 24 

broader regional landscape as a first goal. Obtaining at least some properties and/or values of 25 

regional reference aquatic ecosystems may even be a preferred goal, especially where such other 26 

amphibious ecosystems are regionally rare (Brewer and Menzel 2009). The process of 27 

determining and defining appropriate goals and end point criteria for completion, as well as 28 

monitoring to ensure restoration is on the right trajectory to meet these goals (Society for 29 

Ecological Restoration International 2004), are therefore integral components of ecological 30 

restoration relevant to developing pit lake ecosystems. 31 
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 1 

Environmental Restoration Goals for Pit Lakes 2 

Ecological sustainability is paramount to the regional value of these new lakes and their 3 

collective lake district. As with all restoration goals, although significant management 4 

intervention may be required during periods of physical and ecological development, the 5 

objective of management should be to restore an independently self-sustaining ecosystem for 6 

both terrestrial and aquatic habitats that are integrated into the new landscape. The first step in 7 

development of a pit lake ecosystem of environmental value is to identify an ‘Identifiable 8 

Desired State‘(c.f. Grant 2006) as a restoration goal. Desired environmental values may come 9 

from a number of different, and often complimentary, end points. They may include the pit lake 10 

and its catchment providing habitat for charismatic species, typically demonstrated through 11 

waterfowl and mammal species (Santoul et al. 2004). Simultaneously, the pit lakes may even 12 

provide seasonal habitat for migratory bird species protected by international (e.g., RAMSAR) or 13 

other treaties. Although it is unlikely that the inherently artificial nature of the pit lake landscape 14 

will provide for many rare species with their often specific and narrow habitat and food 15 

requirements, such as aquatic macroinvertebrates (Kumar et al. in press), some endangered 16 

species may still be able to utilise pit lake districts as long-term refugia where the catchment-17 

scale landscape approximates that of a natural lake district (sensu Brewer and Menzel 2009). 18 

Importantly, for the pit lake and its catchment to contribute value to the regional environment, 19 

this should be achieved by having a restoration target for aquatic and amphibious littoral and 20 

riparian (lake edge shallows and immediate terrestrial margin), through to terrestrial upper 21 

ecosystems, that are considered of ecological value and are regionally representative (Van Etten 22 

in press). A caution must be made that, in order to contribute to regional biodiversity, species 23 

that are found in the lake should not be those that are already common elsewhere so that there is 24 

no net loss in biodiversity. A similar caveat may hold for the genetic diversity within species that 25 

occupy the new lake ecosystems and their catchments through artificial translocation or natural 26 

migrations. Lake district ecosystems dominated by limited gene pool or demes will likely be less 27 

genetically diverse and resilient than natural lake districts that have developed over many 28 

thousands of years (Shwartz and May 2008). 29 

 30 
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Compromised Ecosystems 1 

Some pit lakes and their catchments may be so disturbed, such as through extensive and 2 

inappropriate (e.g., steep and eroding) terrestrial catchment and lake morphologies, or through 3 

ongoing chemical processes such as AMD, that they will present long-term legacies of 4 

compromised ecosystems. Such lakes that present no environmental value, or even 5 

environmental risk, will be unavoidable even with pro-active restoration strategies in place. 6 

Other pit lakes may be deemed ‘unmanageable ‘or ‘un-fixable’ once formed as environmental 7 

legacies and liabilities are substantial, however this is not always due to limited treatment or 8 

remediation knowledge, but rather lack of financial or community will. Such lakes should then 9 

be regarded as impaired ecosystems. An outcome for these lakes has been proposed as 'novel' 10 

ecosystems that may contribute to scientific understanding through provision of 'natural 11 

experiments', c.f. Hobbs et al. (2006). Indeed, there have even been proposals to maintain 12 

especially acidic lakes such as these as valuable extreme and unique ecosystems warranting 13 

protection under legislation (Nixdorf et al. 2005). It is unclear, however, how a regional ecology 14 

could ever benefit from the presence of such potential risk in the landscape. A more preferable 15 

stance may be that restoration endeavours for pit lakes and their districts need look past 16 

traditional measures of restoration success such as approximation of regional physico-chemical 17 

quality and biotic diversity and assemblages and instead to focus on what fundamental ecological 18 

processes that have potential to be restored (Hobbs et al. 2009). Such basic processes include 19 

development of nutrient cycling, functional feeding groups and/or trophic structure that might 20 

satisfactorily compare to those of regional reference aquatic systems. 21 

Similarly, measuring pit lake values in terms of recovery or development of ecosystem structure 22 

(sensu Bell 2001) and services, such as habitat complexity, forms of carbon storage (e.g., 23 

through net respiration:production ratios) and other measures, may help identify contributions of 24 

significant ecological values to a region's natural landscape even for highly 'impaired' pit lake 25 

ecosystems . Whether the lake district is natural or anthropogenic in origin may be entirely 26 

academic to the provision of these ecosystem services. Indeed, such new constructs containing 27 

common or even alien species may present greater opportunity for ecosystem services than their 28 

natural counterparts in the landscape (Lugo 1992; Ewel and Putz 2004). 29 

 30 
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Restoring Ecosystem Values to Impaired Pit Lakes 1 

Some impaired pit lake systems may naturally restore to ecosystems of environmental value over 2 

time though natural, albeit slow, remediative processes such as succession driven along a 3 

restorative trajectory, e.g., water quality remediation by primary production and sulfate reduction 4 

(King et al. 1974). However, these processes may occur at too slow a rate or may be inhibited by 5 

negative feedback loops presenting as degraded local stable-states, c.f. Suding & Hobbs (2009) 6 

(Figure 3). Such alternative stable state models are now a popular way to describe change in 7 

disturbed environments (Hobbs and Suding 2009). The ecological successions of pit lakes in 8 

these instances will need to be mediated by management interventions. Due to lack of examples 9 

of long-term studies, it is largely unknown to what degree pit lakes, often described as examples 10 

of primary succession, (Kalin et al. 2001) follow classic succession models which presume 11 

gradual, predictable recoveries. 12 

Prior to mining, a landscape dominated by terrestrial ecosystems has ecological values which are 13 

definable by measures such as biodiversity, presence of rare species, productivity and other 14 

ecosystem services (Figure 3). During the mining period the ecosystems affected by mining may 15 

face a substantial decrease in their terrestrial ecosystem value as mining operations impose pulse 16 

pressures of vegetation clearance and topsoil removal, and then excavation of over-burdens and 17 

actual ore extraction activities forming an open mining pit. Longer lasting pressures of vehicle 18 

disturbances of dust and noise and loss of habitat connectivity around the pit void will extend 19 

this phase of decreasing ecosystem value. Formation of the pit void and then flooding when 20 

dewatering ceases and the pit void forms a lake, will mean significant loss of terrestrial habitat. 21 

Following rehabilitation of remaining terrestrial habitats, some terrestrial ecosystem of 22 

ecological value will be regained. However, terrestrial habitat of the often extensive pit area will 23 

have been submerged and converted to aquatic ecosystem habitat. Terrestrial habitat is lost and 24 

cannot be rehabilitated and realised as terrestrial habitat ever again. 25 

Through natural ecological succession processes, this evolving lake system may develop 26 

increased ecosystem values over time as some primary production begins both within and on 27 

lake banks and as fauna and flora colonise (Figure 3). However, fundamental physico-chemical 28 

conditions may limit ecological development of the lake below a successional threshold, even at 29 

this early stage, such as through AMD toxicity or other water quality issues. The ecological 30 
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consequences of AMD often include low species' diversity caused by pH stress and the exposure 1 

to high concentrations of heavy metals (Nixdorf et al. 2001; Lee and Kim 2007), low trophic 2 

states, low nutrient concentrations and low rates of primary production. Water quality is a master 3 

threshold factor for almost all pit lake ecological processes and especially for those species of 4 

lower levels of biological organisation. For example, pit lake water quality frequently displays 5 

chemically-driven alternative stable states as stable, albeit poor water quality (sensu Sim et al. 6 

Sim et al. 2009). This may be through abiotic processes as the only determinant for that 7 

particular lake e.g., ongoing and irreversible increases of salinity in lake district regions of low 8 

net precipitation. Local stable states of poor water quality may also be due to biotic remediation 9 

processes present but weaker than their opposite and concurrent abiotic processes, for example 10 

catchment and internal formation of acidity occurring at greater rates than external and internal 11 

microbial driven-alkalinity generation processes. This state of aquatic ecosystem development 12 

may be very stable, largely driven by geochemical processes. For example, development of a 13 

basic self-sustaining food chain with phytoplankton algae in the lake is an initial challenge, 14 

largely dependent upon water toxicity and nutrient concentrations. In this example, a 15 

management intervention to improve water quality, such as by active or passive remediation of 16 

AMD or similar issues, may be required before ecosystem development can continue to a high 17 

level of ecological complexity (Figure 3). Such restoration efforts would then use a management 18 

intervention to elevate the ecological succession path above this water quality threshold so that 19 

the pit lake ecosystem may continue to develop and achieve greater ecological value (Klapper 20 

and Geller 2002). 21 

A pit lake ecosystem with high rates of primary production may be desirable in that it contributes 22 

to the ecological value of a pit lake in many ways. Algal primary producers play an important 23 

role in natural lakes, providing the dominant allochthonous energy sources that are the basis of 24 

lake-ecosystem food webs (Bott 1996). Primary producers can facilitate sulphate production by 25 

providing a carbon source for sulfate reducing bacteria (SRB) which increase alkalinity and pH 26 

in AMD impaired lakes (Lund and McCullough 2009) and also chelate metals directly causing 27 

toxicity or sorbing phosphorus and overcome carbon limitation (Nixdorf and Kapfer 1998). 28 

Primary producers may also accelerate development of a natural food chain. Conversely, AMD 29 

may lead to low pH and high acidity, increased metal and/or other contaminant concentrations 30 

and a paucity of the macro-nutrients carbon and phosphorus that all limit primary production 31 
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rates and primary producer biomass. These limitations may then cascade as bottom-up controls 1 

on higher trophic levels and reduced abundances of taxa such as fishes and waterfowl 2 

(McCullough et al. 2009b). Pit lake restoration efforts in this first instance might identify the 3 

biotic processes needing assistance from abiotic factors that buffer ecological development. For 4 

example, AMD with low pH and elevated metal concentrations, or other issues with water 5 

quality that limit ecological succession such as low nutrient levels (e.g., phosphorus, carbon) 6 

(Tittel and Kamjunke 2004). 7 

Adequate and appropriate revegetation within catchments is also important in developing 8 

functional lake riparian vegetation which, in turn, may play a key role in many pit lake 9 

ecological processes. Even with good pit lake water quality, many pit lakes fail to attain bank 10 

vegetation of any description, even after many years (Figure 3). Riparian vegetation is also 11 

important to integrate pit lakes into their greater catchments to form connected and functioning 12 

landscapes. There may also be interactions between terrestrial and aquatic ecosystem 13 

components remediating physico-chemical water quality issues and also providing ecological 14 

habitat. This interaction shows the need to clearly identify how individual ecological components 15 

must be considered in the context of the overall ecosystem in pit lake ecosystem development. 16 

The contribution of organic carbon from riparian and catchment vegetation was recognised many 17 

years ago as a primary causative factor in water quality improvements in AMD pit lakes 18 

(Campbell and Lind 1969). Riparian vegetation may also contribute to bank stabilisation, 19 

facilitating further littoral and riparian establishment. The development of sustainable pit lake 20 

communities finfish and large crustacea will require such an environmental suite that is more 21 

holistic than just water quality; one that also includes habitat such as fallen logs and bank 22 

overhangs, as well as food resources (McCullough et al. 2009b; Van Etten in press). 23 

 24 

Conclusions and Recommendations 25 

Aquatic habitats are increasingly diminished in their frequency and quality through both local 26 

and global anthropogenic activities. Concurrently, the growing activities of open-cut mining are 27 

contributing pit lake aquatic habitats to post-mining landscapes. These pit lakes environments 28 

often display depauperate ecologies of little representation and value to a regional reference 29 

environment and may even present an environmental risk to nearby natural water bodies because 30 



12 
 

of long-term ecological development inhibition due to poor water quality and/or other ecological 1 

factors. There is often no or little planning for a functioning pit lake of targeted ecological value 2 

with pit lakes often overlooked in rehabilitation efforts because aquatic habitats were not present 3 

previously in many of these disturbed mining locales. Nonetheless, pit lakes represent significant 4 

landscape restoration opportunities for replacement (or offset) of lost terrestrial habitat values 5 

with the alternative habitat values of an aquatic landscape as entire lake districts. 6 

Fundamental restoration theory directs mine closure planning of post-mining landscapes that will 7 

contain pit lakes, to first identify end use values. These are often environmental values as 8 

specific endpoints; or as endpoints that still provide for alternative uses such as for recreation or 9 

aquaculture/agriculture. 10 

How do we ‘restore’ pit lakes as ecosystems then? Achieving a desirable pit lake ecosystem will 11 

involve more than just attaining good water quality. Water quality guidelines are only the 12 

beginning. Recognition of limiting factors to development of a self-sustaining ecology of 13 

regional values are essential. It must also be recognised that there will be much more limited 14 

scope for management manipulation of the pit lake after filling; therefore, any obstacles to 15 

ecosystem development should be identified and remedied as much as possible prior to filling, 16 

starting with water quality. Obtaining environmental values at higher levels than simply 17 

improving water quality must also be achieved through ecological approaches, a goal which is 18 

frequently ignored by restoration managers and regulators (McCullough et al. 2009b; Lund and 19 

McCullough in press). Such ecological approaches to develop pit lake ecosystems may assist in 20 

clearly articulating targets for the long term sustainability of pit lake districts. Such ecological 21 

versus physical/chemical-driven approaches also recognise mine water-affected landscapes such 22 

as pit lakes as more than a geochemical environment, with consequent further (and often simple) 23 

requirements for fundamental limnological and ecological processes also needing to be 24 

addressed if restoration to a representative functional ecosystem is to be successful. 25 

Although it is likely that their broad environmental requirements for food and habitat will be 26 

very similar to those in natural systems, pit lake biota and their ecological requirements remain 27 

rarely studied and poorly understood. As such, there remains a pressing need for catchment-scale 28 

rehabilitation attempts of pit lakes to move towards development of aquatic ecosystems as a best 29 

practice. These restoration attempts are likely to initially fall-short of attaining satisfactory 30 
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ecosystem values due to a lack of knowledge of both general pit lake formation and ecological 1 

processes, as well as intrinsic site-specific considerations. However, monitoring and ad hoc 2 

investigation studies of combined physico-chemical and ecological characteristics of these early 3 

attempts will provide fertile insight for future restoration attempts. 4 

In conclusion, we hope that this paper serves to develop the field of mining closure planning by 5 

both considering pit lake ecosystems as desirable and valid restoration goals. Considering mine 6 

waters legacies in the context of their catchments, and vice versa, will also lead to realisation of 7 

more holistic environmental benefit to post-mining landscapes. We trust that the transdiciplinary 8 

perspective offered by this study will translate into improved community and regulatory 9 

involvement in mine closure planning, as well as providing an example to the mining industry of 10 

further opportunities with which to effectively achieve environmental sustainability targets when 11 

presented with these new landscape challenges. 12 
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Table 1. Examples of pit lake districts internationally. 1 

Lake District Country Number of lakes in 
District 

Reference 

Athabascan Oil Sands region Canada 
0 current (26 

proposed) 
(Charette and Wylynko 

in press) 

Borská Nížina lowlands Slovakia 11 current (Otahel'ová and Oťahel’ 
2006) 

Central German and Lusatian 
districts; Rhenish district Germany 

370 current; 205 
current (Schultze et al. in press) 

Collie Lake District Australia 
13 current (more 

proposed)  (Kumar et al. in press) 

Iberian Spain 22 current (Sánchez-Espanã et al. 
2008) 

2 
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Figure 1. Hierarchy of increasing biodiversity achievements through standard-practice terrestrial 1 

rehabilitation and then inclusion of pit lake aquatic ecosystem in post mining landscape 2 

restoration efforts. After NSW EPA (2002). 3 

 4 

Figure 2. A typical 'bathtub' ring effect showing failure of a functional riparian vegetation 5 

community to develop. WO3 lake (50 years old), Collie Lake District, Australia. 6 

 7 

Figure 3. Successional development of a pit lake ecosystem from low ecological value 8 

immediately following mining to attainment of prior ecological value, albeit now dominated by 9 

aquatic ecosystems. Local-stables states demonstrate fundamental ecological thresholds 10 

management restoration activities must overcome to realise a self-sustaining aquatic ecosystem 11 

of value. After Grant (2006). 12 
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