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Abstract 
Passwords are broken. Multi-factor Authentication overcomes password insecurities, but its potentials are often 

not realised. This article presents InSight, a system to actively identify perpetrators by deceitful adaptation of the 

accessible system resources using Multi-factor Authentication profiles. This approach improves authentication 

reliability and attributes users by computing trust scores against profiles. Based on this score, certain 

functionality is locked, unlocked, buffered, or redirected to a deceptive honeypot, which is used for attribution. 

The novelty of this approach is twofold; a profile-based multi-factor authentication approach that is combined 

with a gradient, deceptive honeypot. 

Keywords: Authentication, Multi-Factor, Deceptive Security, Trust, Honeypot 

INTRODUCTION 

This paper addresses an aspect of multi-factor-authentication in combining a number of behavioural indicators to 

provide more trust in the identity of the user. Multi-factor authentication, especially when based on behavioural 

metrics such as key-stroke recognition provide a level of trust in the identity of the user. Typically such systems 

use a threshold to either authenticate or deny access to a user. The novelty of the approach is that instead of only 

authenticating a user, the system is dynamically configuring a deceptive honeypot to include additional 

attribution techniques to ascertain the identity of the actual user.  The result is the InSight system that adjusts 

dynamically the deployment of deceptive features and attribution techniques based on the trust-level established 

through the user’s interaction with the system. 

Weaknesses have long been identified in traditional authentication systems based on username and password 

(Adams 1999) (Ives 2004) (Schaffer 2011). A typical person is capable of remembering 4 to 5 passwords, 

however, research by (Sasse 2011) shows that at work a person is likely to need in the region of 15 to 16 

different passwords. This creates bad practices, such as writing passwords on post-it notes and reusing the same 

password between systems. When one system is cracked, all others topple over like a line of dominoes (Ives 

2004). 

Worse still, people often choose memorable personal passwords, such as their date of birth or the name of their 

first pet. This information is often shared on social networking websites or can be obtained through social 

engineering. On the other hand, when people do choose complex passwords, they often are difficult to remember 

and are consequently recorded in notebooks or on yellow stickers. Even complex passwords remain in many 

cases trivial to brute force attacks. 

Security breaches at large organisations have, in the past, led to password credentials being posted publicly to 

websites such as pastebin.com or through bittorrent sharing websites. An analysis of these credentials often 

shows easy to crack login credentials. For example, in one corpus of 32 million credentials, it was found that the 

average password length was between 6 and 9 characters. Further analysis of the data set showed that the most 

popular password was ``123456'' with 290731 unique occurrences1.  

Adversaries typically use three well known methods to compromise passwords; dictionary attacks, brute force 

attacks and rainbow tables. Simple passwords such as 'Password' and 'princess' can be compromised by an 

adversary using a dictionary based attack. A dictionary file contains a list of words which is used to sequentially 

attempt authentication. Dictionary attacks are fast; using a typical home desktop computer, dictionary words are 

trivially compromised in a matter of seconds. Dictionaries even exist that replace characters with common 

substituted character variations (e.g. p4s\$w0rd). 

1 http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf 
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Alternatively an adversary may perform a brute force attack to compromise a password by using all possible 

permutations of available characters. This is a slower attack, but has the potential to crack any password. If an 

adversary knows something about the password (e.g. it is greater than 8 characters and it ends with a number) 

then this can be incorporated into the brute force attempt to reduce the effective search space and time required 

to compromise the password. This is also known as a mask attack. 

Adversaries can use rainbow tables, a pre-computed file containing all possible oneway hashes for a given 

dictionary. However, it is considered unrealistic to generate rainbow tables for all possible salt + password 

combinations. Recent advancements in graphical processing units (GPU) shows us that passwords can be 

cracked at a rate of 3.3 billion passwords per second.  A common practice in the security of user passwords 

stored in databases is to use a cryptographic salt. This should be a complex, difficult to guess, string that is added 

to the user’s password before it is encrypted. Therefore a standard dictionary attack or use of rainbow tables is 

likely to fail since the encrypted oneway hash is a representation of the salt + the password. However, if the 

adversary knows the salt then they can generate a rainbow table which includes the salt. 

A solution to this problem that is in widespread use is multifactor authentication, which combines the username 

and password with an additional authentication metric such as a biometric fingerprint scan. The three widely 

accepted authentication principles for the identification of a user are shown in Table 1. 

Table 1: Widely accepted Authentication Principles 

Authentication Principle Example 

i) Something the User has Authentication Token, RFID Card 

ii) Something the User knows Password, PIN, Passphrase 

iii) Something the User is Fingerprint, Iris Scan, Voice Pattern 

Multi-Factor Authentication  

Multi-factor authentication typically uses a combination of authentication principles to establish a user's identity 

(Nag 2015). For example, the credit card payment system (Kumar 2008) with biometric authentication employs 

fingerprint verification with a credit card, combining principles i) the card and iii) the fingerprint. Such an 

approach requires the installation of additional equipment, increasing the cost of the approach and preventing a 

more widespread adoption. The use of additional devices such as fingerprint readers typically adds to the time 

taken for authentication which also affects the user acceptance of the technology. Depending on the technology 

used, fingerprints can also be spoofed (Ihmaidi 2006). Worse, usable fingerprints may readily be available on the 

credit card itself. Most current approaches to multi-factor authentication are expensive, difficult to deploy and 

directly affect the usability of the system as they prolong the authentication process (Naji 2011). 

A well recognised alternative to fingerprints are keystroke dynamics which can be used as behavioural 

biometrics for users. It is an analysis technique in which the typing behaviour of users whilst inputting through a 

keyboard input is monitored (Oppliger 2011). However, if a keystroke is not combined with particular keystroke 

keys such as the password, it is insufficient to be an objective authentication factor (Teh 2010). Another 

challenge in this area is that the way users type is very much dependent on the devices they use to enter their 

credentials. This led to problems in accuracy with this authentication approach when users are able to use a 

variety of hardware configurations, such as laptops, tablet PCs or smartphones for data entry. Indeed the use of 

hardware for authentication has been used since the 1980s. The idea was that users register their devices, e.g. 

based on their MAC address, so that the devices are authenticated rather than their users. 

The authentication module of InSight combines hardware authentication with keystroke recognition to overcome 

some of their respective problems. To be compatible with traditional authentication approaches InSight extends a 

simple password mechanism with additional profiling techniques to create a form of multifactor authentication 

that is based on hardware and behaviour profiles. Both of these additional factors do not require the user to 

memorise or otherwise keep any additional secret information. 

This also means that InSight does not require special devices to be deployed to endusers, avoiding the impact of 

additional authentication procedures on usability. InSight integrates profiling information with the established 

username/password authentication thus discriminating the valid use of password credentials against misuse by 

establishing a level of trust in the authenticity of the user. This level of trust is then used to drive a deceptive 

backend for attribution purposes that adapts the level of deception corresponding to the trust in the authenticity 
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of the user. The authentication in InSight is based on the trust in the multi-factor assessment, whereas other 

approaches (Koved 2015) take a risk-based approach. 

InSight determines the user behaviour with respect to entering usernames and passwords in correlation with 

users’ hardware. First InSight determines the assumed identity of the user through normal password 

authentication, gathering in additional information about the hardware configuration and the keystroke behaviour 

of the user when typing the username and password. The username is then matched against the hardware 

configurations stored in an associated hardware profile. This compares the ownership and usage patterns of the 

hardware. Based on the hardware profile the login procedure discriminates between keystroke profiles against 

which the current login request is evaluated. 

Deceptive Security with Honeypots  

Honeypots are specially crafted systems that lure adversaries by imitating vulnerable systems, services and 

software. Honeypots monitor the interaction between the adversary and the system so that the collected data can 

be analysed by an investigator or automated process. Honeypots are capable of misleading adversaries into 

revealing information about themselves, by e.g. inadvertently revealing their preferred tools and techniques, 

coding mistakes and hours of operation. Honeypots are often classified by their fidelity; low or high. Low 

interaction honeypots, such as Dionaea or Nepenthes, generally simulate a single service and are effective when 

facing automated scripts such as worms. They are easy to deploy and manage, however they are quickly 

identified as honeypots by human adversaries, since they offer only limited interactivity. High interaction 

honeypots are fully fledged operating systems hosted on physical equipment or in a virtual environment. They 

require high levels of human monitoring and there is an increased risk that they may be compromised and used 

by an adversary e.g. as a node in a botnet of machines. However, they offer much higher levels of fidelity, such 

that there is less chance of them being identified as a honeypot. Tools such as Sebek2 are used to monitor high 

interaction honeypots and use rootkit techniques to hide deep inside the operating system to avoid detection. 

A recent trend in honeypot research has been to combine honeypots with other security technologies. Honeypots 

have been stitched together with intrusion detection systems, firewalls and hostbased security technologies such 

as antivirus. While networkbased services were once the only strand of honeypot research; a wider variety in 

the form of wireless, USB, bluetooth, clientbased honeypots and honeypots in nonIP networks such as 

industrial control systems characterise this area of research. 

InSight uses the level of trust that is established by the authentication module, to adapt the underlying system’s 

functionality. This approach has the result that the user, or adversary, cannot distinguish the real system 

functionality from the one that is provided by InSight’s adaptive honeypot. The novelty here is to not simply to 

redirect the user to a honeypot, but to have a continuous gradient between the real system and functions that are 

not influencing the system with direct and immediate effect. 

InSight's Honeypot Trust Model  

Deceptive technologies are an unusual but suitable partner to multifactor authentication systems. This 

partnership can be justified by challengeing one of the primary principles of authentication: Upon failing any 

part of an authentication challenge, a user should be denied access to the system. 

Traditionally, when failing one or more checks in a multifactor authentication, the actor is not authenticated and 

consequently denied access to the resources. InSight relaxes this authentication principle using indicators of 

malice (IOM) to determine a trustlevel in the actor’s authenticity using a weighted average of the IOMs derived 

from the Hardware and the Behaviour profile. When an actor attempts to login using a legitimate 

username/password combination but the device signature and/or the behavioural biometric does not match the 

profile in the database, then these are considered IOM. Currently InSight only supports Hardware Profiles and 

Keystroke Recognition as a biometric, but this can easily be extended to include other IOMs as indicated in 

Figure 1. 

As a result of the computed trust score, the actor is placed within a system that employs a gradient from high 

trust, in which all system functionality is enabled, and with few characteristics of a honeypot, to low trust, in 

which actions are buffered, and can be rolledback as well as profiling, traceback and other deceptions enabled.  

Figure 1 shows how the honeypot functionality increases as trust is decreased. Trust is decreased as users trigger 

IOMs indicating that they are potential adversaries that succeeded in obtaining username/password pairs, but 

2 https://projects.honeynet.org/sebek/ 
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without matching the behaviour profiles adequately. To equal proportions, access to the functionality of the real 

system is minimised as trust is decreased. The partnering of multifactor authentication with deceptive security 

in InSight, results in the authentication matrix shown in Table 2. 

 

 
 

Fig 1: Honeypot Trust Model 

 

 
Table 2: Multi-factor Authentication with and without InSight 

 

 

Experiments  

Our experiment is based on an online (e)banking system. Ebanking allows for customers to conduct online 

financial matters, such as transactions and mortgage applications through the Internet. The mid90s saw the birth 

of online banking; now its use is widespread. Recent studies identified that 30% of the UK population use online 

banking. Banks benefit from cost savings as their branches and telephone call centres receive less interaction, 

customers benefit from convenient and fast access to key financial actions such as transferring funds and paying 

bills. However, financial fraud is a pressing issue and solutions have been proposed by security researchers 

(Oppliger 2011). The IC3 reported losses of hundreds of millions of dollars due to online account takeovers and 

unauthorised funds transfers between 2005-2009.3 

User authentication plays a critical role as customers typically login using a web or smartphone application. 

Banks have adopted multifactor authentication on a widespread scale. One-time PIN hardware devices have 

been sent to millions of customers free of charge by major UK banks. 

In the experiments described in this paper the login server belongs to a fictional high street bank that employs 

numerous security methods to identify cybercriminals. The experiment is based on synthetic datasets, that were 

obtained through a 12 student volunteers logging into the system and processing pre-defined tasks. In subsequent 

experiments this will be expanded to use field data and a real-world application. The prototype experiment s 

3 http://www.ic3.gov/media/2010/100312.aspx 
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Experiments

Our experiment is based on an online (e)banking system. Ebanking allows for customers to                         

conduct online financial matters, such as transactions and mortgage applications through the                     

Internet. The midnineties saw the birth of online banking; now its use is widespread. Recent                           

studies identified that 30% of the UK population use online banking. Banks benefit from cost                           

savings as their branches and telephone call centres receive less interaction, customers benefit                       

from convenient and fast access to key financial actions such as transferring funds and paying                           

bills. However, financial fraud is a pressing issue and solutions have been proposed by security                           

researchers [11]. The IC3 reported losses of hundreds of millions of dollars due to online                           

account takeovers and unauthorised funds transfers between 20052009             

(http://www.ic3.gov/media/2010/100312.aspx).

User authentication plays a critical role as customers typically login using a web or smartphone                           

application. Banks have adopted multifactor authentication on a widespread scale. One time                     

PIN hardware devices have been sent to millions of customers free of charge by major UK                             

banks.

In our experiment the login server belongs to a fictional high street bank that employs numerous                             

security methods to identify cyber criminals. The experiment is based on synthetic datasets, in                         

subsequent experiments we plan to use field data. We assume that both legitimate and                         

illegitimate users have access to valid username and password credentials. The illegitimate                     

users are assumed to have acquired the credentials via, e.g. compromised machines, by                       

installing a keylogger or rootkit.

InSight grants access to the banking resources provided that they have correctly entered the                         

username and password credentials. Unlike traditional multifactor authentication, the user is                   

also granted access when the hardware and behavioural profiles are not matched. This results                         
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assume that both legitimate and illegitimate users have access to valid username and password credentials. The 

illegitimate users are assumed to have acquired the credentials via, e.g. compromised machines, by installing a 

key-logger or rootkit. 

InSight grants access to the banking resources provided that they have correctly entered the username and 

password credentials. Unlike traditional multifactor authentication, the user is also granted access when the 

hardware and behavioural profiles are not matched. This results in a lower trust score, representing an Indicator 

of Malice. Insight will consequently monitor their activities and deploy attribution mechanisms such as 

honeypots. To show the practicality of the Insight approach the honeypot features allow for delayed execution 

mechanisms and confirmations through independent channels. For example when money is moved from one 

account to another, InSight lets them appear to the illegitimate user as having been processed legitimately, thus 

increasing potentially the interaction with the honeypot. Two alternatives to achieve this behaviour are: 

1. Carry out and then later rollback transactions  Any actions that take place on a compromised account 

would be rolled back to their original state. In our ebanking scenario, this technique is problematic 

when funds are transferred to external accounts. 

2. Buffer transactions  Actions are buffered for a given amount of time or until a certain condition is met. 

An example of such is that enough attribution data has been collected. Based on the user's trustscore 

adjusted over a period of time, Insight can then choose to either process or drop the action. This 

approach will produce a lag in transactions which a nefarious user may become suspicious of. This 

approach is deemed to be acceptable as banking transactions already have similar systems in place, 

causing a similar lag. 

Figure 2 shows the simplified banking website from the observation point of a logged in user. 

 

Figure 2: Simplified Banking Website for Experiment 

Figure 2. Simplified Banking Website for Experiment

Theexperimentconsists ofanumberofrealisticusecases thatrepresentlegitimateand                         

illegitimateusers whohaveobtainedvalidusername/passwordcombinations.Theusecases for                     

the experiment are as follows:

Legitimate User

● Prerequisites  none

● Interaction Flow Logs In UsingCorrectCredentials,Common machineandCorrect                     

BehaviouralBiometric>InSightassesses credentials,common machineandcorrect                 

behaviouralbiometric.Useris loggedin,>Useris notmonitored,makes required                       

transactions > InSight accepts > User logs out.
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The experiment consists of a number of realistic use cases that represent legitimate and illegitimate users who 

have obtained valid username/password combinations. The use cases for the experiment areas follows: 

Legitimate User: 

 Prerequisites: none 

 Interaction Flow: Logs In Using Correct Credentials, Common machine and Correct Behavioural 

Biometric  InSight assesses credentials, common machine and correct behavioural biometric. User is 

logged in,  User is not monitored, makes required transactions  InSight accepts  User logs out. 

Illegitimate User 1 (Local Nefarious User) 

 Prerequisites: Acquired correct credentials by installing a keylogger onto a local shared machine (e.g. 

library). The illegitimate user uses the same machine to login with the stolen credentials. This user has 

physical access to the machine and therefore has a correct common machine and thus correct device 

signature. 

 Interaction Flow: Logs In Using Correct Credentials, Common machine and Incorrect Behavioural 

Biometric  InSight assesses credentials are correct, common machine is correct and biometric is 

incorrect. User is logged in,  User is monitored, makes required transactions  InSight buffers  

User logs out. 

Illegitimate User 2 (Remote Nefarious User) 

 Prerequisites: Acquired correct credentials by compromising a legitimate user’s remote machine. The 

illegitimate user compromised the machine with a phishing email and installed a rootkit which contains 

a keylogger, which is able to record all interactions (e.g. keystrokes) and covertly send them to a remote 

server which the illegitimate user controls. 

 Interaction Flow: Logs In Using Correct Credentials, NonCommon machine and Incorrect Behavioural 

Biometric  InSight assesses credentials  correct, common machine  incorrect and biometric  

incorrect. User is logged in,  User is monitored, makes required transactions  InSight buffers  

User logs out. 

RESULTS 

We find that within a controlled environment InSight operates as expected. The login screen provides controlled 

test accounts for each of the three outlined users (legitimate, local nefarious and remote nefarious). Figure 3 

showed a successful login to the system by a legitimate user. The debugging and output panel shown in the 

bottom left corner shows the current trustlevel of the user and the deployed deception mechanisms. It is only 

present during debugging mode and is described further below. 

 

Figure 3: Simplified Backing Website, Experimental Results 
Figure 3. Simplified Banking Website for Experiment

Figure 3 shows the webbased debugging and output panel that we used during experiments. 3A                           

shows the results of a legitimate user login. In this case the output states that no honeypot                               

functionality is deployed. 3B shows the results of the first illegitimate user login. In this case a                               

persistent cookie has been deployed to track the user, however, passive fingerprinting has not                         

been deployed. At this level and below transactions are buffered. Finally 3C shows a low profile                             

score, using correct credentials, but the hardware profile and behavioural characteristics have                     

failed. In this case the user has been assigned a low profile score and all methods of profiling                                 

and tracking are enabled.

Figure 3 also demonstrates that the range of the profiling technique can be defined by the                             

operator. In this ebanking scenario we defined three distinct categories and the window for a                           

trusted user is small; the trust score must be between 83 and 100. For an ebanking website this                                 

Proceedings of the 15th Australian Information Security Management Conference 145



Figure 3 shows the webbased debugging and output panel that were used during experiments. The honeypot in 

this prototype features three features used for attribution: i) persistent cookies; ii) passive fingerprinting; iii) 

behaviour interaction profiling. The profile score is computed through the use of time-of-use and place-of-use 

profile combined with a key-stroke metrics to create a biometric. 3A shows the results of a legitimate user login. 

In this case the output states that no honeypot functionality is deployed. 3B shows the results of the first 

illegitimate user login. In this case a persistent cookie has been deployed to track the user, however, passive 

fingerprinting has not been deployed. At this level and below transactions are buffered. Finally 3C shows a low 

profile score, using correct credentials, but the hardware profile and behavioural characteristics have failed. In 

this case the user has been assigned a low profile score and all methods of profiling and tracking are enabled. 

Figure 3 also demonstrates that the range of the profiling technique can be defined by the operator. This 

ebanking scenario defined three distinct categories and the window for a trusted user is small; the trust score 

must be between 83 and 100. For an ebanking website this seems to be appropriate. However, adequate testing 

and base-lining using real customer data would help to identify a suitable range to minimise false positives and 

false negatives. The categories and ranges are customisable. 

DISCUSSION  

The previous section showed that the InSight approach performs well and delivered promising results. This 

section critiques the approach with respect to a real world implementation. The following are considered: i) 

costs, ii) false positives, iii) human factors, vi) performance factors and compromise. 

Costs 

Current multifactor authentication systems require physical devices, e.g. onetime password (OTP). Newer 

solutions place the OTP device within the payment card itself, which is convenient for the user, but simply shift 

the costs into the production of the card.  

Other systems such as iris scanners, fingerprint readers and RFID readers also require physical hardware to be 

present that is unlikely to be owned by a home user. When considering online banking, a high-street bank would 

need to send millions of these devices to home-users. To place this cost into perspective, personal USB device 

fingerprint readers currently range from GBP30 to GBP100, while eye scanners are not available for homeuse. 

Eye scanners, such as retina scanners are costly and are invasive to individuals. The use of these devices is 

common in high security facilities but has not transcended to home use. 

The multifactor authentication system presented in this work does not require any new hardware to be present 

and therefore avoids the associated costs. Instead, the approach uses something the user already has across 

multiple devices; a keyboard and a device signature. So a software solution would need to be developed which 

implements the approach and is available on multiple device platforms. 

With regard to the deceptive system, the maintenance costs can be better understood by examining the 

honeypots. A critical aspect is that honeypots should be maintained by a skilled team; the higher the interaction 

level the greater the maintenance requirements. The honeypot system for this approach need not have high 

interactivity, since in fact the user has full use of functionality, but their requests are buffered. The costs of 

honeypot maintenance may be a barrier to entry for smaller organisations. The key is the integration into the 

organisations’ business processes.  If a user is only partially trusted, the additional delay or additional effort in 

establishing his/her identity in the case of high-value transactions is allowing to dynamically adjust the risks to 

the organisation against experience of the user. 

False Positives 

If a user is having a stressful day and their behaviour profile is unusual, they may slip into the honeypot side of 

the gradient; this is a false positive. This may result in their activities being monitored and their requests, such as 

banking transactions, buffered. Depending on the system, this may be highly inconvenient. In fact, this result is 

not problematic two reasons. One, it is anticipated that the user would be contacted by an additional channel (e.g. 

telephone), as is already standard practice for unusual banking transactions. Two, this increased monitoring is 

not wasted; it can be used as part of a feedback loop which further improves the system and the novel approach, 

creating a better baseline of the correct user. With regard to false positives, the approach is similar to intrusion 

detection systems. Tuning is required and depending on the system in question, an appropriate number of false 

positives and false negatives should be known from the offset. 
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Human Factors 

The multifactor authentication technique offers significant benefits in the real world. Humans and passwords 

are not a particularly good combination (Kovet 2015) (Nag 2015) (Charab 2007) (Kumar 2008). Using InSight 

the authentication technique is based on a behavioural pattern that is difficult to replicate and is inherent to the 

individual. Also, while behavioural patterns do change slowly over time, such as a user becoming adept at touch 

typing, the algorithm can actually account for this. 

Performance Factors and Compromise 

In our approach there are opportunities for compromise at the client and at the server. At the client side a 

nefarious user with access to a compromised machine could potentially record a user's keyboard timing data and 

their hardware details. These could be replayed along with the correct username and password. 

The InSight server collects a corpus of behavioural data. If the system is compromised then the unique 

behavioural records could be exposed. Therefore it is of importance that the system is hardened to deter and 

prevent compromise. It is also important that behavioural data is encrypted when stored. 

Regarding performance of a system that were to implement such an approach, it is likely that there would be an 

increase in processing and that this would increase the further into the honeypot the user is. Therefore, if the 

adversary was aware of the system, they might be able to identify the depth at which they are located based on 

timing data. One solution to this problem is to normalise output to a predetermined and acceptable speed or 

duration and add randomness so that output is not 'too similar'. 

CONCLUSION 

This paper discussed the inherent weaknesses in singlefactor authentication systems and current multifactor 

authentication systems. InSight was presented and demonstrated to be a novel system that uses behavioural 

aspects and hardware profiles for multifactor authentication to compute a trust score. This score is used to 

determine the users position in a deceptive environment. Insight offers the attractive capability of being able to 

create a corpus of adversary activities. While the experiment demonstrated the capability within a simulated 

ebanking environment, the approach could be used in any other system that requires authentication. This data is 

useful for detecting ongoing attacks using signature matching and is especially useful for attribution, traceback 

and profiling purposes. 
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