1989

Cognitive learning outcomes in a cardiac nursing course: A pilot study

Amanda J. Whittle

Edith Cowan University
COGNITIVE LEARNING OUTCOMES
IN A CARDIAC NURSING COURSE
- a Pilot Study -

BY

Amanda J. Whittle, RN.

A Thesis Submitted in Partial Fulfilment of the
Requirements for the Award of
Bachelor of Health Science (Nursing) - Honours
at the School of Nursing, Western Australian
College of Advanced Education.

Date of Submission: 15.11.89
This study measured the cognitive learning outcomes of registered nurses who completed a short cardiac nursing course. This course was held in a metropolitan teaching hospital during four weeks in September, 1989. The author grouped the twenty participants into one of two groups according to prior acute cardiac nursing experience; (1) those who had less than six months post-basic cardiac nursing experience; and (2) those who had six months or more post-basic cardiac nursing experience. A pre-course test and post-course test was given to the participants to measure the dependent variable, that is, cognitive knowledge. Using a case-comparative design, the results of both groups were then compared to determine what effect prior experience, the independent variable, had on the learning outcomes.

That is, which group benefits more from such a course? The study's main purpose was to contribute to the dearth of literature on assessment of cognitive learning outcomes in nursing courses. An adaptation of Stake's Countenance Model of Evaluation (1973) was used which provided a means to propose and test relationships between the variables via three hypotheses. The Gestalt cognitive discovery view of learning formed the theoretical rationale for the study and results were discussed in light of this view.
The study found that whilst prior relevant experience had a significant effect on the scores gained by the experienced nurses, the most significant results was the gain scores of the non-experienced nurses whose scores from pre-test to post-test rose by almost two standard deviations. The gain scores of the experienced nurses rose by only one standard deviation. These results indicate that cognitive learning had taken place and that both groups of nurses benefit from such a course, as even a rise of one standard deviation is very significant.
"I certify that this thesis does not incorporate, without acknowledgement, any material previously submitted for a degree or diploma in any institution of higher education and, to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where due reference is made in the text".

...[redacted]...

A. J. Whittle
ACKNOWLEDGEMENTS

I wish to acknowledge the kind assistance and encouragement received from my main supervisor, Mr Anthony Hussey, in compiling this thesis, and for the patience and time spent by Dr Sybe Jongeling in assisting me to prepare the statistics. Special thanks also to the cardiac nursing course coordinator, Mrs Eileen Lamb, the cardiac Clinical Nurse Specialist, Mrs Jane Buttimer, and the Acting Coordinator of Nurse Education, Mrs Carol Piercey from the agency involved. To Mrs Sunita McGowan, Nurse researcher, and the Clinical Nursing Research Committee I am grateful for their assistance and approval of the study. To Dr Ruth McKay for enlightening me in the ways of research. And finally, to my husband Noel and my parents for having such faith in me.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Declaration</td>
<td>4</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>5</td>
</tr>
<tr>
<td>List of Tables</td>
<td>7</td>
</tr>
<tr>
<td>List of Figures</td>
<td>8</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>9</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>Study Problem</td>
<td>11</td>
</tr>
<tr>
<td>Study Purpose</td>
<td>12</td>
</tr>
<tr>
<td>Study Objectives</td>
<td>13</td>
</tr>
<tr>
<td>Hypotheses</td>
<td>13</td>
</tr>
<tr>
<td>II LITERATURE REVIEW</td>
<td>14</td>
</tr>
<tr>
<td>III FRAME OF REFERENCE</td>
<td></td>
</tr>
<tr>
<td>Theoretical Rationale</td>
<td>25</td>
</tr>
<tr>
<td>Conceptual Model</td>
<td>28</td>
</tr>
<tr>
<td>Major Variables and Operational Definitions</td>
<td>34</td>
</tr>
<tr>
<td>Assumptions</td>
<td>34</td>
</tr>
<tr>
<td>IV METHODS AND PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>Sample Population</td>
<td>35</td>
</tr>
<tr>
<td>Setting</td>
<td>35</td>
</tr>
<tr>
<td>Ethical Considerations</td>
<td>35</td>
</tr>
<tr>
<td>Research Design and Data Collection</td>
<td>37</td>
</tr>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>Methodological Limitations</td>
<td>39</td>
</tr>
<tr>
<td>V RESULTS</td>
<td></td>
</tr>
<tr>
<td>Data analysis and results</td>
<td>40</td>
</tr>
<tr>
<td>VI DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>Major Findings</td>
<td>46</td>
</tr>
<tr>
<td>Conclusions</td>
<td>50</td>
</tr>
<tr>
<td>Implications for Nursing and Nursing Education</td>
<td>52</td>
</tr>
<tr>
<td>Recommendation for Further Research</td>
<td>53</td>
</tr>
<tr>
<td>References</td>
<td>54</td>
</tr>
<tr>
<td>Appendices</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean difference between overall pre-test scores and post-test scores.</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>Pre-test scores of both groups</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Difference between the means of both groups on their pre-test and post-test.</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>Pre-test scores comparison of nurses currently working in CCU with those who are not.</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Post-test scores comparison of nurses currently working in CCU with those who are not.</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of difference of means for the two groups.</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: A representation of the processing of description data. 33

Figure 2: Conceptual model for assessing cognitive learning outcomes related to post-basic cardiac nursing experience. 34

Figure 3: Study design for the assessment of cognitive learning outcomes in experienced and non-experienced nurses who complete a cardiac nursing course. 38

Figure 4: Comparison of scores gained by both groups in pre-test and post-test. 44
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix A: Stake's Countenance Model of Evaluation.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B: Letter of Explanation.</td>
<td>62</td>
</tr>
<tr>
<td>Appendix C: Pre-test/Post-test questionnaire.</td>
<td>63</td>
</tr>
<tr>
<td>Appendix D: Answer key to questionnaire.</td>
<td>68</td>
</tr>
<tr>
<td>Appendix E: Specification grid for instrument design.</td>
<td>69</td>
</tr>
<tr>
<td>Appendix F: Course objectives, philosophy and content.</td>
<td>70</td>
</tr>
</tbody>
</table>
Evaluation is one the principal components of an effective educational process. Demands for educational evaluation come from administration, accrediting agencies, the public and students themselves. It is a process that ensures the relevance of the material used and the success of the teaching strategies (Tarcinale, 1988, p. 97). Yet, as Fojtasek (1985) observed, "evaluation is often an overlooked aspect of the process of nursing staff development" (p. 58). As a critical step in the teaching-learning process, evaluation involves formal and informal activities designed to obtain objective measures to determine the effectiveness of a particular programme or course. Assessment of learning outcomes may be considered a subset in the overall process of evaluation (Gronlund, 1985, p. 5.; Stanhope and Lancaster, 1984, p. 233). It was this area of evaluation that the researcher addressed in her study.

One of the primary aims of continuing education in coronary care nursing is to ensure that individual staff nurses demonstrate a basic knowledge in cardiac nursing such that this knowledge can be applied in the performance of the nursing care activities for which they are employed (Toth and Ritchey, 1984, p. 272). As
the coronary care nurse has a complex role to play, he or she needs to be a clinical expert using all his or her professional skills according to the individual needs of each patient. It is little wonder then that increasing numbers of nurses are realizing that continuing education is vital to the development of the nursing profession. Such development programmes assist in the acquisition of information and in increasing competency in motor skills. Developmental programmes also bring about appropriate changes in attitudes, which it is assumed, have a direct positive effect on patient care (Forni and Overmen, 1974, p. 45).

Study Problem
According to Bloom (1956) knowledge and hence learning encompasses three domains - the cognitive, the affective and the psychomotor domain (Bloom, 1956, p. 7). The cognitive domain deals with recall or recognition of knowledge and the development of intellectual abilities and skills. The affective domain deals with changes in interest, attitudes, and values, and the development of appreciation. The psychomotor domain deals with both mental and muscular functions (Bloom, 1967, in Gronlund, 1985, p. 7).
This research has investigated the learning outcomes in the cognitive domain of two groups of nurses who complete a cardiac and electrocardiography (ECG) continuing education nursing course. The researcher was interested in comparing the scores gained by nurses who had little experience in cardiac nursing with those who were more experienced in cardiac nursing. Hence, the study question was "What are the cognitive learning outcomes of two groups of nurses who complete a cardiac and ECG nursing course? Do nurses with less than six months post-basic cardiac nursing experience benefit more from such a course than those who have six months or more post-basic cardiac nursing experience?"

Study Purpose
This study was necessary for a number of reasons. Firstly, only a small amount of research exists which documents the learning outcomes of continuing education in nursing (Daley, 1987, p. 203). Hence, this study contributes to the overall body of knowledge on assessing cognitive learning outcomes in short courses. Secondly, assessment of cognitive learning outcomes in this particular course had not been formally measured, yet 15 such courses have been conducted at the agency since the course's inception in 1984. Over 400 nurses have participated in these courses. Thirdly, the information gained from this study may be used to modify
and improve the course as necessary, thereby performing
a role in formative evaluation. And finally, the
hospital accreditation panel requires documentation of
the effectiveness of programmes conducted by the
hospital in order for the hospital to remain accredited.
This study has provided an example of such
documentation.

Study Objectives
The objectives of this study were to;
A) Determine pre-test and post-test scores comparison
of the two groups of nurses.
B) Determine the effects of six months or more prior
cardiac nursing experience on the learning outcomes.
C) Determine the effects of less than six months of
prior cardiac nursing experience on the learning
outcomes.

Hypotheses
The following hypotheses were derived in an attempt to
provide answers to the research question.
H1: There will be a significant (p < 0.05) increase in
the overall post-test results compared to pre-test
results.
H2: Nurses who have prior post-basic cardiac nursing
experience (> 6 months) will demonstrate significantly
(p <0.05) higher pre-test scores than nurses who have less experience.

H3: Nurses who have minimal or no prior post-basic cardiac nursing experience (< 6 months) will demonstrate significantly (p <0.05) higher gain scores between pre-test and post-test than those nurses who have more than six months experience.

II LITERATURE REVIEW

Continuing education in nursing is based on the principles of adult education, or andragogy. According to Knowles (1984) andragogy is based on four assumptions; (1) as people grow older their concept of self shifts from one of dependency to one of self-direction; (2) they accumulate an enlarging supply of experiences that serve as resources for their own learning; (3) their readiness to learn increasingly becomes consistent with their developmental milestones; and (4) their orientation of learning shifts from future to present and from subject to problem (Knowles, 1984, p. 55-59). Adult learners tend to have a greater investment and interest in what they are learning; they see immediate relevance in the information and want to learn it now in the most painless way possible. As Worrel and Lancaster stated, "Nurses attending education
programmes exhibit this tendency toward eagerness to have information presented now" (Worrel and Lancaster, in Stanhope and Lancaster, 1984, p. 179).

Several studies on the evaluation of continuing education, undergraduate, and higher degree courses were reviewed. Nearly all of which made reference to or incorporated a theoretical model (Cervero, 1985, p. 85; Fojtasek, 1985, p. 58; Gosnell, 1984, p. 9; Smillie et al., 1984, p. 487; Sook Sohn, 1987, p. 27; Stewart and Hluchyj, 1987, p. 79; Tarcinale, 1988, p. 98; Warmuth, 1987, p. 4; Yeaw, 1987, p. 123).

Yet Gosnell (1984) reports that despite a steadily increasing number of evaluation studies in nursing being reported there is one distinct deficit in the majority of these studies, that is, the use of an identifiable conceptual framework or model. She states that;

"the absence of this essential structural component limits the extents to which the reported phenomena can be classified, conceptualized, or accurately interpreted.... Frameworks and models enhance understanding" (Gosnell, 1984, p. 9)
This study was performed using an adaptation of Stake's Countenance Model (1973). This evaluation model and how it was applied to the study is discussed in greater detail later in the paper. Stake's model has been used widely by nurse educators and researchers. It was used with much success by Fojtasek (1985) in implementing a staff development programme at a general hospital (p. 58), and in the narratives by Yeaw (1987, p. 28) and Tarcinale (1988, p. 103) it was used to highlight the importance of a broad evaluation of a program or inservice class in order to reaffirm the relevance of the content. All authors referred to the model's ability to be easily adapted to suit any nursing evaluation, whether it be a complete nursing undergraduate programme, short course, or single inservice session.

Smillie et al., (1984) used an application of Glaser, Stufflebeam and Stake models in evaluating a chemistry and biochemistry support course that was conducted in a general baccalaureate nursing course. The nursing students were tested to decide whether or not students indeed used the knowledge from the course in their clinical practice. This was measured by examining the content of written nursing care plans submitted by students. The content was analysed for evidence of application of this knowledge to patient care. It was found that students who undertook the specially designed
science course took the opportunity to apply the knowledge of chemistry and biochemistry to nursing practice (p. 487-489). The focus of the evaluation project was on the outcomes of the course; student's knowledge and their ability to more readily transfer this knowledge to clinical practice.

Other models have also been used in evaluating nursing continuing education. Gosnell (1984) describes and suggests the use of a model developed from the works of Kirkpatrick (1967), Anderson (1973), Dixon (1977), and Mitsunaga and Shores (1977). The Conceptual Model for Evaluation of Continuing Nursing Education is a four-stage schematic model incorporating; (1) perceptual-opinion; (2) measurable learning; (3) behavioural performance; and (4) outcome results processes of evaluation (Gosnell, 1984, p. 9). Although not used extensively at the time of publication it appears to provide a useful framework for assessing the various types of evaluation currently being conducted in continuing nursing education today.

Cervero (1985) offered his own framework as a method for analyzing whether continuing education programmes are successful or not in producing lasting changes in a professional person's performance. Her module is based
on a behavioural model and describes four generic classes of variables as opposed to operational measures that must be employed in quantitative research. These are: (1) the characteristics of the programme; (2) the characteristics of the individual professional; (3) the characteristics of the proposed behavioural changes; and (4) the characteristics of the social system in which the professional operates (Cervero, 1985, p. 88).

Stewart and Hluchyj (1987) described the adaptation and implementation of a long-term evaluation strategy in an undergraduate nursing programme, using the Discrepancy Evaluation Model. This model examines the intent of the programme compared with what actually happens. The difference, or discrepancy, between the two is used to influence programme revision decisions (p. 79).

Warmuth (1987) utilized Tyler's early model in evaluating a refresher course for registered nurses conducted by a university. This traditional evaluation model is widespread in all of education as it lends itself to quantification and allows evaluators to utilize statistical measures to determine if a programme has the desired effect (p. 4).

Sooh Sohn (1987) described three evaluation models in her
narrative, those of Stake (1973), Scriven (1972) and Stufflebeam (1976) and compared them with the qualitative evaluation models of Guba's Naturalistic research (1978) and Parlett and Hamilton (1977) (p. 27-32). Her article did not favour any model in particular, but was intended to assist nursing faculty in appraising both the evaluation model and qualitative evaluation as alternative ways of evaluating programmes.

It is evident that many models are available to the nurse educator and researcher wishing to undertake a course or programme evaluation. Stake's model seems to be the most widely referenced model as, the reader will discover, it is very easily understood and is capable of being adapted to suit any evaluative process.

Whilst the author found many references to the broad topic of education in cardiac nursing, there was very little formal evaluation and reporting of participants learning outcomes from courses. This is surprising as there appears to be numerous cardiac courses of short duration held both nationally and internationally.

The lack of literature related specifically to the research question made it necessary to broaden the search for research studies to include not just
cognitive learning outcomes, but those in the affective and psychomotor domain of participants, in cardiac courses and courses in other clinical fields.

Although outside the time frame desired by the author, a study by Scheuer (1972) was found which dealt with cognitive learning outcomes and which closely resembled the research question. This study evaluated the effectiveness of a four week coronary care nurse training programme. The researchers used a multiple choice examination to measure nurse's knowledge as well as their confidence in that knowledge. Nurses were required to give the correct answer to each item as well as to designate whether that answer was certain, a partial guess, or a guess. Post-test results showed that nurses who completed the course performed better and with greater confidence than on the pre-test. However, no comparison was made on the basis of years of clinical experience of the participants. The purpose of that study was mainly to describe the methods utilized and results obtained in the evaluation of their specific objectives (Scheuer, 1972, p. 228).

The authors Houser (1977) and Toth and Ritchey (1984), also examined nurses knowledge in their studies. The purpose of Houser's (1977) study was to identify predictors of successful job performance of newly
employed nurses working in critical care areas. He looked at prior clinical experience, basic educational preparation and the length of time after the four week orientation programme when the job performance was measured. The best predictor of test scores was prior clinical experience (p. 341). Toth and Ritchey (1984) also found that the longer a nurse worked in a critical care setting the more her basic knowledge improved (p. 272). The purpose of their study was to identify what constituted basic knowledge in a critical care setting and to develop a valid and reliable test to measure that knowledge (Toth and Ritchey, 1984, p. 272).

Whilst this research examines knowledge gain in the cognitive domain, work in the affective domain is also being conducted. Nursing literature dealing with evaluation of the affective domain, that is, the domain that deals with human feelings, attitudes, beliefs, values and emotions, is increasing (Andrusyszyn, 1989, 81). One method, suggested by Andrusyszyn, of evaluating the affective domain in nursing is to utilize methods which examine the following four orientations; (1) psychometric - eg. likert scales; (2) behavioural - eg. observation; (3) counselling - eg. mutual exploration and; (4) traditional - eg. objective and
essay tests (Andrusyszyn, 1989, p. 75). She argues that the cognitive and/or psychomotor aspects of affective learning can be measured, whereas "the growth-producing or developmental element of affective learning may not be subjected to the same kind of evaluation. Formative rather than summative evaluation is therefore encouraged in most situations concerning the affective domain" (Andrusyszyn, 1989, 79).

Several studies dealing mainly with psychomotor skills and continuing cardiac education were found. Two such studies examined differing methods of instruction in basic cardiac life support (BCLS), the "self-taught" modular course, and the lecture-demonstration-return-demonstration method. Both found that there was no significant difference in retention of performance skills based on teaching methods and that motor skills decreased more rapidly with time than cognitive knowledge (Friesen and Stotts, 1984, p. 184, and Nelson and Brown, 1984, p. 118).

After reviewing low remote post-test results, the latter authors concluded that annual refresher courses are vital if cardio-pulmonary resuscitation is to be performed effectively and competently (Nelson and Brown, 1984, p. 118).
In the narrative by Kaye et al (1985) issues concerning training, performance and retention of BCLS and advanced cardiac life support (ACLS) skills were reviewed and many improvements were suggested (p. 916). They stated that no study had yet examined the effect of the quality of ACLS on patient outcome. However, the results of classroom testing have been used as indirect indicators of the quality of BCLS and ACLS (p. 917).

In a later study by Kaye et al (1987), the authors designed a refresher course in ACLS after discovering that pre-test scores of BCLS and ACLS were poor. They stated that for a refresher course to be effective, the population to be retrained must be pre-tested to determine major deficiencies and the course designed using that information. When this was carried out performance was found to increase significantly after the refresher course (p. 55).

Milne and Whyke (1988), in presenting the case for formative and summative evaluation of training courses, chose measures so as to gauge the learning dimensions of cognitive, affective and behavioural change. They used a multiple-measures, pre-test and post-test research designed in order to examine the effects of a post basic psychiatric nursing course on a nurse's learning. Their
findings concluded that formative evaluation would be able to be made with their study, however, in terms of summative evaluation, the post-course scores were low and so the case for a revised course was necessary (p. 79).

Hentinen and Sinkkonen (1985) investigated the effectiveness of a programme for developing nursing care for patients with myocardial infarction. Over the two year study it was found that the programme had a positive influence on the nurses readiness to provide care for these patients in terms of knowledge, skill, motivation and accountability (p. 405).

A developmental and planning phase of a staff development programme for critical care nurses was presented in a paper by Freeman et. al. (1983). It was hoped that by offering a staff development programme to employees, the job satisfaction, morale and numbers of nurses working in that area would increase. Incorporating competency based education, minimal performance outcomes are clearly identified and methods of evaluation delineated. Again dividing the three activities into pyschomotor (doing), cognitive (thinking) and affective (feeling) domains, Bloom's taxonomy was used to identify and describe a hierachy of levels (Freeman et. al., 1983, p. 86).
Whilst there appear to be many research articles and narratives on the general topic of cardiac continuing education for nurses, there is a dearth of literature specific to this research question. This is not surprising in view of the relative short history of research in nursing, and research in nursing education in particular. It is, therefore, the author's opinion that few, if any, research reports or narratives addressing cognitive learning outcomes in experienced and non-experienced cardiac nurses who complete a cardiac nursing course exist. With the trend toward accountability and effectiveness of implementing short courses the choice of research area becomes totally justified.

111 FRAME OF REFERENCE

Theoretical Rationale - Gestalt Psychology

Theoretical rationale in cardio-vascular nursing research has historically been lacking (Foster, Klover, & Stengrevies, 1984, p. 111). In a retrospective study into this area Foster et al. found that most of the studies examined did not include a theoretical rationale or construct, and hence, did not contribute to the development of theory (Foster, Klover, & Stengrevies,
1984, p. 111). These findings were echoed in a later study by Packa and Norris (1987) who found that only ten percent of cardio-vascular nursing research used a conceptual or theoretical framework or rationale, and those cited were non-nursing (p. 28). Since this study was dealing with learning, a learning theory was seen to be most appropriate.

Learning theories fall into two major families: stimulus-response theories and cognitive theories (Knowles, 1984, p. 14). It was the Gestalt cognitive-discovery view of learning that the author deemed most appropriate for this study because it dealt with the needs, motivation, interests and past experiences of the participant as well as their information processing.

In the early part of this century a group of German psychologists became known as Gestaltists, because they emphasized the importance of the Gestalt, a German word meaning the form, pattern or meaningfulness of the whole (O'Connell, 1973, p. 50).

The basic assumption in Gestalt psychology is that a person's behaviour is always based on cognition, "an act of knowing or thinking about the situation in which behaviour occurs...as a result, they are preoccupied with the organization of knowledge, information
processing, and decision-making behaviour aspects of the cognitive realm" (Dembo, 1977, p. 255).

Gestaltists believe that perceptions are influenced by both past experiences and current interests, and that the organization of perception into a Gestalt or "good theory" develops through learning and experience (O'Connell, 1973, p. 50., & Worrel & Lancaster, in Stanhope & Lancaster, 1984, p. 173). It was evident that this theory of learning could be applied to nurses in the study, who all had brought with them past nursing experiences into the course. It would also be used in an attempt to explain the results gained.

Studies into perception indicated that people respond to whole patterns or situations and that they view their learning process in terms of larger, more complex components. To the Gestaltists, learning is restructuring a situation or problem in a new light following the approach that the whole is greater than the sum of its parts (Dembo, 1977, p. 256., and Fojtasek, 1985, p. 59).

Another important concept in Gestalt psychology is insight, or "the sudden perception of the relationships among elements in a problem situation...often referred
to as the 'aha' or 'now I see' phenomenon and is an alternative explanation to trial and error" (Dembo, 1977, p. 256-6). Gagne (1977) describes it as "a suddenly occurring reorganization of the field of experience as when one 'has a new idea' or 'discovers' a solution to a problem" (p. 12).

In Gestalt psychology learning is thought to be promoted when a learner perceives a degree of ambiguity in a given situation, that is, he/she recognise a learning need and decide to do something about it. Gestalt psychologists postulate that the learner is motivated to reduce this ambiguity, not by external factors such as reward, but by perceptual organization. If a learner sees no ambiguity in a situation or believes that he understands what the teacher is presenting, he is not motivated to learn because he has already ordered the situation in his mind (Dembo, 1977, p. 257).

Conceptual Model
The Gestalt approach was used by Stake (1973) in designing his countenance of educational evaluation model (Stake, 1973, in Fojtasek, 1985, p. 59). It is upon Stake's model that the conceptual model for this study is based. Appendix A contains Stake's model.
A conceptual framework was important for this study as it allowed the author to clarify the concepts used, to propose relationships between the concepts and provides meaning within which to interpret the research findings. Stake's model is well documented (Ediger et al., 1983, p. 195., Fojtasek, 1985, p. 58., Smillie et al., 1984, p. 487., Sook Sohn, 1987, p. 28, Tarcinale, 1988, p. 98. and Yeaw, 1987, p. 123). It includes a Rationale Cell and two data matrices: a Descriptive Matrix and a Judgement Matrix.

The Rationale Cell includes data about the philosophic background and basic purposes of the programme. The matrices provide a format for data collection. They do not explain how to collect data, but rather they explain what data to collect and to compare (Sook Sohn, 1987, p.28).

The Descriptive Matrix identifies the areas in which data are to be collected in order to describe the programme fully. It is comparable to formative evaluation in which an evaluator makes informal observations of both intended and actual performances and describes information derived from his observations. The Judgement Matrix identifies data to be collected in order to have standards and judgements to be used in
decision making. This is comparable to summative evaluation (Ediger, 1983, p. 197., and Sook Sohn, 1987, p. 28).

Both the Descriptive and Judgement Matrices study the antecedents (inputs), transactions (processes), and outcomes (products) phases. Antecedents are any conditions existing before the teaching-learning process which may relate to outcomes, that is, they are 'entry behaviours'. In this study they include prior cardiac nursing experience. Transactions, the dynamic element of the model, deal with the actual teaching-learning process. Outcomes refer to the results of the teaching-learning experience, both immediate and long range. They include measurements such as the assessment of cognitive learning outcomes, as in this study, and achievement, application, transfer and relearning effects (Tarcinale, 1988, p. 100).

The Descriptive Matrix is further divided into two columns: Intents and Observations. The Intents are the expected or desired antecedents, transaction and outcomes of the programme. For example, desired entry skills of students are intended antecedents, the planned learning experience are the intended transactions, and the stated objectives are intended outcomes. The observations refer to empirical evidence of the actual
antecedents, transactions, and outcomes. An example of such include the actual student scores on the pre-test and post-test (Tarcinale, 1988, p. 101).

The division in the Descriptive Matrix allows data within each cell to be examined separately and the relationships between data in the two cells to be described. This is done by finding the contingencies (relationships) amongst the antecedents, transactions, and outcomes, and the congruence (agreement) between the Intents and Observations, as in Figure 1 overleaf (Ediger et al., 1989, p. 197). Within the Intents column the contingency is a logical one - there should be a logical connection between intended antecedents and intended transactions, and between intended transactions and intended outcomes. Within the Observation column the contingency is an empirical one - there should be empirical evidence that the observed outcome is related to the observed transactions and the observed transaction is related to the observed antecedent (Tarcinale, 1988, p. 101).
As an example, in this study it was logical to expect nurses who had more cardiac nursing experience (antecedent) to be more familiar with the course's content (transaction) than those who had less experience, which would be reflected in their questionnaire results (outcome). The empirical evidence to support the logical 'intents' is provided by the questionnaire results themselves.

Congruency is the criterion used to evaluate the
horizontal relationships between the cells in the Descriptive Matrix. "The data are considered if what was intended matches the observed data; however, the presence of congruence does not necessarily indicate that the observed data are valid or reliable" (Ediger et al., 1989, p. 197).

For the purposes of this study the researcher was only concerned with the Descriptive Matrix processes of Stake's model, hence an adaptation of the model was designed and implemented, see Figure 2. Indeed, Stake claims that it is not intended that every evaluation should study all areas he identifies; rather, each evaluator should decide which aspects he or she wishes to study and select the relevant variables (Stake, 1973, in Sook Sohn, 1987, p. 28).

Figure 2. Conceptual model for assessing cognitive learning outcomes related to post-basic cardiac nursing experience. (Arrows represent knowledge gained)

<table>
<thead>
<tr>
<th>Antecedents</th>
<th>Transactions</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 6 months experience</td>
<td>CARDIAC COURSE</td>
<td>COGNITIVE LEARNING OUTCOMES</td>
</tr>
<tr>
<td>< 6 months experience</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Stake's Countenance Model in Fojtasek, 1985, p. 59)
Major Variables and Operational Definitions

Independent variable: Prior cardiac nursing experience. This has two measured categories which was ascertained via the demographic section at the front of the pre-test.

(1) Nurses who have no post-basic cardiac nursing experience or less than six months experience in an acute cardiac setting.

(2) Nurses who have six months or more post-basic cardiac nursing experience in an acute cardiac setting, for example, a cardiac unit in a teaching hospital.

Dependent variable: Learning outcomes. This is defined as "an intended outcome of instruction that has been stated in terms of specific and observable pupil performance" (Gronlund, 1985, p. 26).

Learning has been defined as the "gathering, processing, storage, and recall of information received through the senses" (Lapedes, 1986, p. 904). However, learning theorists agree upon the definition of learning as being reflected in a change in behaviour as the result of experience (Hagard, 1963 in Knowles, 1984, p. 6).

Assumptions
The author assumed that the teaching methodology of the course encouraged the participants to be motivated to
learn and committed to achieving individual goals. The author assumed that the longer someone had been nursing in the acute setting of a cardiac unit the greater his/her basic knowledge of cardiac nursing would be.

IV METHODS AND PROCEDURES

Sample Population
The inclusion criterion for this study was all nurses enrolled in the course who consented to the study. All twenty of the registered nurses who enrolled in the course consented to the study. Of the group, two were male and 18 were female. The number of years they had been nursing as a registered nurse ranged from one year to 24 years. Seven were currently working in acute coronary care units, whilst several were working in small country hospitals.

Setting
The agency which conducted this course was a large metropolitan teaching hospital in Western Australia. The course was held at the hospital’s education centre.

Ethical Considerations
All nurses who enrolled in the course were sent a letter
of explanation to their home address regarding the study's purpose and what it entailed (see appendix B). The letter went on to ask the nurse to consent to the study by signing a slip and forwarding it to the author's home address using a stamped, self addressed envelope provided. Both the pre-test and post-test questionnaires were numbered the same and both given out on the first morning of the course to the participants. Before completing the pre-test, the participants were asked to check that both the questionnaires had the same number on them before placing the post-test questionnaire in an envelope provided, writing their name on that envelope and then sealing it. For the post-test the participants received the envelope with their name on it, with the post-test questionnaire inside numbering the same as the pre-test. The researcher collected only the questionnaires and the participants discarded the envelopes. Using this method, the researcher was left with pairs of numbered questionnaires which had been completed by the same person, and which assured confidentiality. The students were made aware that a copy of this report will be sent to the education centre should they wish to know the study's outcomes. This study was approved by the hospital's Clinical Nursing Research Committee.
Research Design and Data Collection Instrument

This study was a case comparative design. The author pre-tested the RN's on the first morning of the course and post-tested them on the last afternoon. The multiple-choice questionnaire is a common way of writing test items (Van Ort and Hazzard, 1985, p. 13), and the methodology of pre and post-testing is often used in nursing research, as in a study by Owen and Cole (1986) involving standardizing nurses' continuing education in emergency cardiac care (p. 163), and Scheuer (1972) in her evaluation of a coronary care nurse training programme (p. 228). A pictorial representation of the design is illustrated below:

Figure 3: Study design for the assessment of cognitive learning outcomes in experienced and non-experienced nurses who complete a cardiac nursing course. (Sample = 20).
The learning outcomes were measured using a 36-item identical pre and post-test questionnaire (refer Appendix C and D). It was designed by the author using Bloom's Specification Grid (Bloom, 1967, in Gronlund, 1985, p. 122) (refer Appendix E) incorporating Bloom's major categories in the Cognitive Domain of the Taxonomy of Educational Objectives - knowledge, comprehension, application, analysis, synthesis and evaluation (Bloom, 1967, in Gronlund, 1985, p. 514). Bloom's taxonomy has been widely used in nursing education (Freeman et al., 1983, p. 86).

The grid contained a horizontal axis and a vertical axis. The horizontal axis incorporated the above taxonomy, whilst the vertical axis covered the content areas of the course. Hence by utilizing Bloom's grid, questions were able to be designed which covered the content areas of the course whilst covering the cognitive domain.

Two experts in the field of cardiac nursing performed content validation of the questionnaire. They completed the draft and final questionnaires comparing the questionnaire content with their own prior cardiac knowledge. These experts were the clinical nurse specialist in cardiac nursing and the cardiac nursing
course coordinator from the agency.

The questionnaire contained multiple-choice and short answer questions. A demographic section was incorporated into the pre-test so the amount of post-basic cardiac experience could be ascertained. This allowed the respondent to be placed in one of the two groups. It was necessary to number the questionnaires, not only to maintain confidentiality of the participant, but so that paired data analysis could be carried out.

The design of the initial and resultant questionnaire was performed by the author with the assistance of the two cardiac experts and the nurse researcher at the agency. The questions were designed from the content areas studied in the programme, as the author had a copy of the teaching module and all other written materials given to the participants (refer Appendix F for course philosophy and objectives).

Methodological Limitations
The author identified the following methodological limitations;

(1) the small sample size, and the fact that the participants are not evenly distributed between the two groups.

(2) a possible threat to internal validity of the
course from the probable interaction of experienced cardiac nurses likely to assist less experienced nurses to learn independently of the teaching programme.

(3) the implementation of a newly constructed and relatively untried measuring tool.

V RESULTS

Data Analysis and Results
Analysis of the data was conducted using quantitative techniques available from the Statistical Analysis System (S.A.S.) computer package. The purpose of the statistical analysis was to compare the scores of the two groups in their pre-tests and post-tests and to test the proposed relationships using the theoretical rationale and conceptual model.

Hypothesis 1
The overall post-test results of the groups 1 and 2 when compared with the overall pre-test results of groups 1 and 2 showed a difference in the mean increase of 6.65 marks. Table 1 overleaf shows these results. This represents a mean increase in scores of 17.9% for the two groups on their post-test. A t-test procedure
showed this to be significant at a probability level of 0.0001 which far exceeds the probability level of 0.05 set prior to the study. Therefore, the hypothesis that there is a significant increase in the overall post-test results of the two groups compared to pre-test results is valid.

Table 1
Mean difference between overall pre-test scores and post-test scores.

<table>
<thead>
<tr>
<th>N obs</th>
<th>Mean Diff</th>
<th>STD</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6.65</td>
<td>4.56</td>
<td>6.33</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Hypothesis 2
A t-test to investigate the difference between the mean of the two groups in their pre-test was used. One of the assumptions underlying the use of the t-test is that the variances of the two groups are similar. A test showed this to be the case ($F' = 1.34$, $p = 0.6231$).

Table 2 overleaf shows a significant difference between the mean of Group 1, those nurses who had less than six months experience, and Group 2, those nurses who had six months or experience ($t = 3.25$, $p = 0.0044$). Hence the hypothesis that the more experienced nurses will demonstrate significantly higher pre-test results than less experienced nurses was accepted.
Table 2

Pre-test scores of both groups

<table>
<thead>
<tr>
<th>Grp</th>
<th>N</th>
<th>Mean</th>
<th>Diff</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>16.31</td>
<td>7.12</td>
<td>9</td>
<td>22</td>
<td>4.42</td>
<td>3.253</td>
<td>0.0044</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>23.43</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Hypothesis 3

A t-test was used to investigate the difference between the scores from the pre-test to post-test for each of the two groups ($F' = 1.51$, $p = 0.6368$). Table 3 shows both groups having statistically significant increases in scores from pre-test to post-test.

However, the results gained by Group 1, the nurses who had less experience, were greater than for the experienced group. Figure 4 overleaf illustrates this difference. Hence, hypothesis 3 is supported.

Table 3

Difference between the means for both groups on their pre-test and post-test.

<table>
<thead>
<tr>
<th>Grp</th>
<th>N</th>
<th>Pre Mean</th>
<th>Post Mean</th>
<th>Mean Diff</th>
<th>Min Diff</th>
<th>Max Diff</th>
<th>STD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>16.31</td>
<td>24.46</td>
<td>8.15</td>
<td>-3</td>
<td>15</td>
<td>4.43</td>
<td>0.0001</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>23.43</td>
<td>26.72</td>
<td>3.29</td>
<td>0</td>
<td>8</td>
<td>3.45</td>
<td>0.0453</td>
</tr>
</tbody>
</table>
Figure 4: Comparison of scores gained by both groups in pre-test and post-test.

Analysis of the data was also performed using the variable of recent experience in coronary care units. From the demographic section of the pre-test questionnaire the participants identified if they were currently working in coronary care units. Seven nurses were currently working in a CCU, whilst 13 were not. Of these seven nurses, two were classified as belonging to Group 1 as they had had less than six months experience in that CCU.
For analysis of the pre-test scores a t-test procedure was used as the variances were similar ($F' = 1.27, p = 0.6804$). Table 4 shows the seven nurses currently working in a CCU to have marginally higher pre-test scores, (20.00 compared to 18.15), however this was not statistically significant.

Table 4

<table>
<thead>
<tr>
<th>CCU</th>
<th>N</th>
<th>Mean</th>
<th>STD</th>
<th>Min</th>
<th>Max</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>13</td>
<td>18.15</td>
<td>5.56</td>
<td>9</td>
<td>30</td>
<td>0.677</td>
<td>0.5066</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>20.00</td>
<td>6.27</td>
<td>11</td>
<td>27</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>

Post-test scores comparison also show the results not to be significantly different between the two groups as indicated in Table 5 overleaf. Interestingly, the nurses who were not currently working in a CCU demonstrated a slightly higher post-test mean (25.31 compared to 25.14), however this difference is not very substantive. Again a t-test procedure was used as the variances were similar ($F' = 1.28, p = 0.6747$).
Table 5

Post-test scores comparison of nurses currently working in CCU with those nurses who are not.

<table>
<thead>
<tr>
<th>CCU</th>
<th>N</th>
<th>Mean</th>
<th>STD</th>
<th>Min</th>
<th>Max</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>13</td>
<td>25.31</td>
<td>3.84</td>
<td>19</td>
<td>30</td>
<td>0.0877</td>
<td>0.9311</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>25.14</td>
<td>4.34</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6 shows the difference in means of the two groups on their pre-test and post-test scores. Both groups of nurses, currently working in a CCU, and those who were not show statistically significant gains on their post-test results.

Table 6

Comparison of difference of means for the two groups.

<table>
<thead>
<tr>
<th>CCU</th>
<th>N</th>
<th>Mean</th>
<th>STD</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>13</td>
<td>7.1534</td>
<td>4.598</td>
<td>5.610</td>
<td>0.0001</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>5.143</td>
<td>4.525</td>
<td>3.007</td>
<td>0.0238</td>
</tr>
</tbody>
</table>
VI DISCUSSION

Major Findings

The cognitive learning outcomes of the experienced and non-experienced nurses were examined using the three hypotheses discussed earlier.

Nineteen of the twenty nurses in the course, had higher post-test scores than pre-test scores. These significant results were to be expected as the group was given intensive instruction eight hours a day, five days a week for the four weeks. Other influences upon these results included the assumption that the facilitatory teaching method based on the principles of andrology would have enabled the participant to be motivated to learn and committed to achieving individual goals. What is interesting, is the break down results from the two groups as they relate to the conceptual model and theoretical framework.

As was hypothesized, the experienced nurses performed higher on their pre-test scores ($\bar{x} = 23.43$) than the non-experienced nurses ($\bar{x} = 16.31$). This supports the findings of Toth and Ritchey (1984) who concluded that the best indicator of test results was the length of prior relevant experience in a cardiac unit (p. 272).
According to Gestalt psychology, these results would be explained in terms of past experience and insight. It would seem logical that the nurses who had been nursing in an acute cardiac setting for a while would have been subjected to many and varied nursing experiences. They would be continually expanding their knowledge base, either knowingly or unknowingly, formally or incidentally, constantly adding new information which they believe correct, and rejecting that which they believe to be incorrect. In other words, they would have been organizing their perceptions into Gestalts.

The experienced nurses would also have been subjected to insight, or the 'aha' phenomenon. No doubt, in their past experiences they would have been confronted with problems needing to be solved. Insightful learning occurs when people encounter a problem. They carefully survey the relevant conditions and produce intelligent attempts at problem solving which involves 'thinking through' the probable solution first and then testing it out. People often 'see' the solution to a problem in their minds instead of arriving at a solution through trial and error. This perceptual interpretation of the 'aha' experience and the consequent repetition of the successful problem solving act following insight is termed insightful learning, and is greatly aided by past
experiences (Hilgard and Bower, 1975, p. 254). These results would also be aided in their explanation with the Gestalt view of memory. In this view the experienced cardiac nurses would have the persistence of traces in the brain which allows a carry-over from previous to present experiences. "They (Gestaltists) view these traces not as static but as modified by a continual process of integration and organization" (Knowles, 1984, p. 22).

The lower scores from the non-experienced nurses with their few, if any, insightful learning opportunities and lack of 'traces' support these views.

Perhaps not so much influenced by past experiences than by current interests, the hypothesis that the non-experienced nurses would have higher gain scores was also supported. It would be fair to say the non-experienced nurses would have viewed this course with a deal of ambiguity. A pre-reading package was supplied but this would perhaps have raised more questions than it provided answers, as they would not have been able to rely upon past experiences to help them problem solve. Hence, consciously, or subconsciously, learning needs would have been recognised along with the need to do something about them, remembering that these nurses were
adult learners who had a great investment and interest in what they were learning. These non-experienced nurses would be motivated to reduce this ambiguity by perceptual organization.

Gestalt psychology would propose that the more experienced nurses, dealing with much less ambiguity, would not feel the same degree of motivation to learn as they would have already ordered the situation in their mind.

One may also consider that experience may act to block learning. As Knowles (1980) maintains "Fixed habits and attitudes are hard to unlearn and efforts to change these may be resisted" (Knowles, in Hamilton and Gregor, 1986, p. 95).

However, that the experienced nurses did not gain as much in their results could also be explained by the fact that they already knew a great deal when they came into the course. They were closer to 'saturation point' than the non-experienced nurses, whose results could only but gain.

Despite the non-experienced nurses having higher gain scores than those nurses with experience, the results for both groups were statistically significant. In
fact, the non-experienced nurses had a gain score of nearly two standard deviations whilst the experienced nurses had a gain score of almost one standard deviation. This is indeed very significant and indicates that, regardless of amount cardiac nursing experience, both groups of nurses benefited from undertaking the course.

When the results of current CCU experience, an extraneous variable, were examined in light of learning outcomes, it was found that it did not make a difference to scores if they currently worked in an acute coronary care unit.

Conclusions
The results gained from this study are able to answer the research question. That is, both groups of nurses, those who have less than six months post-basic cardiac nursing experience and those who have six months or more post-basic cardiac nursing experience, benefit from such a course. However, past cardiac nursing experience played a significant role in determining the actual scores of the participants. This is demonstrable from the measured cognitive learning outcomes discussed in the results.
The conceptual model used in this study allowed the author to clarify the independent and dependent variables and concepts involved with the study. It also provided a means to propose and test the relationship between the variables. This was done via the hypotheses, which were supported. In this model, the antecedent, or independent variable, identified was the amount of prior post basic acute cardiac nursing experience. The outcomes, or dependent variables, that were measured were the learning outcomes in the cognitive domain of the participants.

Stake's conceptual model and adaptations of it, would be useful in further studies examining the assessment of learning outcomes. This has been demonstrated by its use in this study and by the others cited previously.

In terms of formative evaluation, the post-test scores indicated that learning had taken place, thereby fulfilling perceived learning needs of the participants.

Continuing education is frequently identified as a necessary component of professional competence (Roberts et al., 1986, p. 115). It follows that in this age of rapid change and technological growth, acquisition of new knowledge is critical for performance. This course has attempted to adequately prepare a
newcomer to the field of cardiac nursing so that he or she may be able to function effectively and safely by drawing upon the knowledge gained from the course. At the same time, the course has challenged the experienced practitioner in cardiac nursing to further development.

Implications for Nursing and Nursing Education

The author believes that the influence of past relevant clinical experience on positively affecting learning outcomes, may be generalized to fit many other short nursing courses whose participants are also influenced by past experience. For example, accident and emergency, medical/surgical, intensive care and operating room short courses which are readily available to nurses wishing to pursue continuing education. This needs to be taken into consideration by nurse educators when planning and implementing such nursing courses. Ideally, for a participant to have maximum gain from a course where both experienced and non-experienced nurses are present, provisions may need to be made for the experienced nurse to quickly advance through familiar subject matter on to less familiar material. Alternatively, two continuing education courses may need to be offered on a particular clinical area - one for nurses experienced in the field, the other for nurses who are not experienced. The author also recommends the approach suggested by Kaye et al. (1987) where pre-
tests are given to participants to determine major deficiencies and the course designed using that information (p. 55).

The results of this study suggest that if such approaches in continuing education were implemented, nurses would have the optimum opportunity for increasing their cognitive knowledge base, which presumably would be reflected in better client care.

Recommendations for Further Research

The author recommends replication of this study with a larger sample size with the addition of a remote post-test. A remote post-test would measure the knowledge retention over a longer time. Additionally, this course could be thoroughly evaluated using Stake's model by examining all components in the antecedent, transaction and outcomes phases. The measuring tool used would also need to have reliability and validity tested over a longer period of time than this study was able to afford. Research exploring the process of transfer between cognitive learning and clinical practice, that is, a programme evaluation based on practice change, is also suggested.
REFERENCES

Nursing, 15, 9-11.

STAKE'S COUNTENANCE MODEL

(Stake, 1973, in Fojtasek, 1985, p. 59)
LETTER OF EXPLANATION FOR PROPOSED PILOT STUDY
RE: Cardiac Nursing and ECG course to be held at
Fremantle Hospital September 4th-29th, 1989.

Dear

The above cardiac nursing course has been chosen for a pilot study to assess the learning outcomes of its participants, that is, to see if the participants actually learn from the course. It will be an important study as the results will help the programmers to plan for future courses and will assist in formally evaluating the course. This is important in all courses, especially where participants are asked to pay for their tuition.

In particular the researcher is interested in knowing whether post-basic cardiac nursing experience makes a difference to the learning outcomes.

What you will be asked to do is complete two questionnaires. One on the first morning of the course and the other on the last afternoon of the course. The questions will be prepared from the course material and will be multi-choice or short answer in format. Both questionnaires will take approximately half an hour to complete. The first questionnaire will also have some questions on demographic details, for example, your past nursing experience. You will be allotted a number on the questionnaires so that data may be analysed confidentially.

The study is being conducted by a registered nurse undertaking her degree and has the full backing of the Education Centre and has approval from the Clinical Nursing Research Committee. Please note that should you not wish to participate in the study, your place in the course will not be jeopardized. If you agree to participate in the study please indicate on the form below and forward it as soon as possible to the Education Centre using the stamped, self-addressed envelope provided.

Yours sincerely,

C. Piercey (Acting Coordinator, Nursing Education) A. Whittle (researcher)

I will/will not consent to participate in the above study (delete which is not applicable)
Name _____________________(please print)
Signature __________________
Please forward as soon as possible using envelope provided
Please circle correct response

1. A pleural friction rub has all the following characteristics except:
 a) they are caused by the rubbing together of inflamed parietal and visceral linings
 b) they are best heard in the anterior and lateral lung field
 c) they have a superficial squeaking or grating quality
 d) they disappear after coughing

2. Light crackles heard on inspiration in left or right lung bases are usually:
 a) wheezes
 b) rales
 c) rhonchi
 d) bronchovesicular breath sounds

3. The mitral valve is heard best:
 a) at the 5th intercostal space in the midclavicular line on the left side
 b) at the junction of the 2nd rib and the sternum
 c) at the 5th intercostal space to the right of the sternum
 d) over the left ventricle

4. Light crackling is heard in a lung field. After coughing these crackles are still present. You suspect;
 a) heart failure
 b) atelectasis
 c) asthma
 d) pneumothorax

5. The two components of S2 are produced by closing of
 a) the aortic and pulmonic valves
 b) the mitral and tricuspid valves
 c) the aortic and tricuspid valves
 d) the aortic and mitral valves

6. A defibrillator restores the heart's normal pumping action by;
 a) resetting the S-A node's natural timer
 b) re-establishing the electrical pathways in the heart
 c) dislodging the blockages of the arteries
 d) forcing the heart muscle into a unified contraction

7. Number the following six steps for the preparation and use of a defibrillator, in the order in which they should be performed;
 ___ discharge the defibrillator
 ___ determine and set the proper electrical dose
 ___ make a visual check and give a verbal warning
 ___ prepare paddle with gel or apply defib pads
 ___ charge the defibrillator
 ___ apply the paddles to the chest with firm even pressure
8. Most of the blood volume at any given time is in the;
 a) heart
 b) capillaries
 c) pulmonary vessels
 d) veins
 e) arterioles

9. Pulmonary systolic pressure is normally about ___mmHg;
 a) 8
 b) 22
 c) 58
 d) 80
 e) 120

10. If a patient has a cardiac output of 5700ml/minute, her pulse rate, assuming a normal stroke volume, would be approximately;
 a) 125
 b) 85
 c) 76
 d) 52
 e) none of these are correct

11. The tension of the ventricle immediately preceding systole is referred to as;
 a) preload
 b) afterload
 c) peripheral vascular resistance
 d) systemic vascular resistance

12. A patient's blood pressure is 170/100. Her mean arterial pressure is likely to be;
 a) 135
 b) 153
 c) 100
 d) 123

13. An acyanotic defect in the heart which produces weak or absent femoral pulses, dizziness, headaches, fainting and epistaxis in a child is called;
 a) atrial septal defect
 b) aortic stenosis
 c) coarctation of the aorta
 d) tetralogy of Fallot

14. The ___________ division of the autonomous nervous system responds to reduced cardiac output.

15. By which mechanical means can we measure left heart pressures? ________________

16. The chief cause of right heart failure is
 a) acute pulmonary oedema
 b) peripheral oedema
 c) pulmonary hypertension
 d) cellular hypoxia from congestive cardiac failure
17. Secretion of the hormone ________ causes sodium retention and potassium excretion.

18. A nuclear diagnostic test in coronary artery disease that allows one to examine video screen images of a heart beating to assess whether myocardial wall motion is normal is termed;
 a) coronary angiography
 b) radiopharmaceutical testing
 c) thallium imaging
 d) gated heart scan

19. With external ventricular pacemakers, the most common cause of increased myocardial threshold is;
 a) battery failure
 b) infection
 c) myocardial puncture
 d) fibrosis at the tip of the catheter

20. A pacemaker’s sensitivity control adjusts the;
 a) patient’s maximum heart rate
 b) pacemaker’s ability to sense the R wave
 c) sensitivity of the heart to the pacing waves
 d) amount of time permitted between contractions

21. On a rhythm strip, which of the following measurements would be considered normal for the P-R interval;
 a) 0.06 sec
 b) 0.16 sec
 c) 0.24 sec
 d) 0.32 sec

22. Depolarisation of the ventricle causes which wave of the ECG?
 a) P
 b) QRS
 c) T
 d) PQ

23. An arrhythmia characterized by cycles in which the P-R interval progressively lengthens until a QRS complex is dropped is called;
 a) Wolff-Parkinson-White syndrome
 b) Wenkebach phenomenon
 c) Mobitz II
 d) 3rd degree heart block

24. Complete heart block is characterized by;
 a) a ventricular rate faster than the atrial rate
 b) P waves occasionally conducted to the ventricles
 c) a total loss of conduction through the A-V junction
 d) an irregular ventricular rhythm
25. Ventricular ectopic beats warrant immediate attention if;
 a) R on T phenomenon is present
 b) conduction is abnormally slowed across the A-V junction
 c) it results from failure of the S-A node
 d) the P wave is widened.

26. Tall, peaked T waves are characteristic of which electrolyte disturbance;
 a) hyponatraemia
 b) hypercalcaemia
 c) hypokalaemia
 d) hyperkalaemia

27. In the event of ventricular fibrillation occurring in a hospital, what is the best method of treatment?
 a) lignocaine I.V. 50-100mg followed by an infusion 1-4mg/min
 b) digoxin and/or quinidine
 c) atropine 0.6mg I.V. and cardiac pacing if it still persists
 d) as for cardiac arrest, with defibrillation

28. The most common adverse reaction to bretylium when given I.V. for dysrhythmias other than ventricular fibrillation is;
 a) hypertension
 b) sinus bradycardia
 c) hypotension
 d) sinus tachycardia

29. The proper pressure point for external cardiac compression in small children is not the same as in adults because (circle one answer);
 a) their chest is smaller and more pliable
 b) their ventricles lie higher in the chest
 c) their liver is positioned higher under the lower sternum
 d) all of the above

30. What event occurs immediately after depolarization?
 a) stimulation
 b) contraction
 c) repolarization
 d) nothing occurs

31. The earliest change seen on ECG that signifies myocardial injury is;
 a) depressed T waves
 b) depressed ST segments
 c) elevated ST segments
 d) Q waves
32. In acute MI the cardiac enzyme that elevate most quickly and return to normal the earliest is;
 a) SGOT
 b) LDH
 c) CPK
 d) SGPT

33. When evaluating the 12 lead ECG of a patient recently admitted, you note;
 ST elevation in leads I, II, and AVF
 large Q waves in leads I, II, and AVF
 ST depression in leads I and AVL
 You suspect the patient has a;
 a) normal ECG
 b) anterior wall MI
 c) subendocardial MI
 d) Inferior wall MI

34. This drug depresses conduction in the Purkinje fibres, decreases the sinus rate and has a positive inotropic effect on the heart;
 a) Bretylium Tosylate
 b) Verapamil Hydrochloride
 c) Digoxin
 d) Lignocaine

35. This drug is a class IV anti-arrhythmic drug which acts as a calcium antagonist and a slow channel-blocking drug;
 a) Amiodarone Hydrochloride
 b) Flecainide Acetate
 c) Dopamine
 d) Verapamil Hydrochloride

36. Visken, inderal, tenormin and lopressor are all;
 a) cardiac glycosides
 b) class III anti-arrhythmics
 c) beta-adrenergic drugs
 d) psychotrophiics
<table>
<thead>
<tr>
<th>Q</th>
<th>A</th>
<th>Q</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>6,1,5,2,4,3</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>d</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>b</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>b</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>b</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>d</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>c</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>sympathetic</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>15</td>
<td>Swan Ganz</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>c</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>aldosterone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECIFICATION GRID FOR INSTRUMENT DESIGN

<table>
<thead>
<tr>
<th></th>
<th>RECALL</th>
<th>COMPREHENSION</th>
<th>APPLICATION</th>
<th>ANALYSIS</th>
<th>SYNTHESIS</th>
<th>EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANATOMY & PHYSIOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFE SUPPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTROCARDIOGRAPHY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NURSING CARE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATHOPHYSIOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAGNOSTIC TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREATMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content areas are the major headings in the course curriculum.
COURSE PHILOSOPHY, OBJECTIVES AND CONTENT

The following information on the course philosophy, objectives and content has been reproduced in entirety from literature supplied to the course candidate in his/her pre-reading package. Permission for reproduction was granted by the Coordinator of Nursing Education, Fremantle Hospital.

PHILOSOPHY

We believe that patients with coronary artery disease and other cardiac disorders should have expert care available when they need it. This programme has been designed for Registered Nurses from all parts of Western Australia. The course is dedicated to the idea of the pursuit of excellence in the delivery of patient care.

COURSE METHODOLOGY

The course is very intensive and demanding. It requires a high degree of commitment by the R.N. from the time of receipt of the pre-reading material to the completion of the four-week programme. The responsibility for learning is placed on the student though the teaching methodology is facilitory. Assertiveness is encouraged. Opportunity is provided for discussion of the establishment of protocols and policies for the delivery of advanced nursing skill.

EXPECTED OUTCOMES FOR COURSE REGISTERED NURSES

The R.N. will be able to;
1. Recognise, analyse and determine appropriate nursing measures for common cardiac rhythms and dysrrhythmias.
2. Competently perform Basic and Advanced Life Support measures including the use of the Defibrillator.
3. Recognise the clinical manifestations of heart failure, hypertension, myocardial infarction, and other cardiovascular disorders and institute appropriate nursing care.
OBJECTIVES OF COURSE

1. To provide a practical short course in cardiac nursing for R.N.'s working in this field or wishing to enter it.

2. To provide straight forward explanation of important aspects of cardiovascular anatomy and physiology.

3. To develop an understanding of Coronary Artery Disease and risk factors.

4. To develop understanding of electro-physiology and the conduction system of the heart.

5. To describe common cardiac rhythms and dysrhythmias.

6. To aid the recognition of the lethal arrhythmias and those potentially lethal.

7. To discuss the significance and management of cardiac arrhythmias and conduction defects.

8. To describe and demonstrate basic and advanced life support measures including the use of the defibrillator.

9. To test, evaluate and certify the competence of the participants in resuscitation methods.

10. To develop an understanding of the mechanism of cardiac failure, its clinical manifestations, and its treatment.

11. To develop an understanding of the mechanism of blood pressure, hypertension and its management.

12. To develop an understanding of the use, action and side effects of cardiac drugs.

13. To constantly evaluate the progress of the student in the programme and reiterate as necessary.

14. To enhance the R.N.'s appreciation of the important of her skill in the management of the cardiac patient
OUTLINE OF CURRICULUM

A. Anatomy and Physiology
Heart - Gross anatomy lecture 2
- dissection 1
- physiology 2
Autonomic nervous system 2
Mechanisms of blood pressure 2
Body fluids and acid base balance 4 15

B. Nursing
The adult learner 2
Physical assessment of the patient 6
Clinical practice (each student) CCU 4
Cardiology 2
Venepuncture 2
IV insertion 2

Admission and care of the patient with an M.I. including rehabilitation 3
Legal issues in nursing 2
Management of Tempory Pacing wires 2
Talking with patients having cardiac surgery 1 26

C. Life Support
Basic life support - lecture/demonstration 3
CPR practice 2
Advanced life support - lecture 2
DC shock - lecture 1
- practice 2
Return demonstration CPR and Defibrillation 2 12

D. Electrocardiography
Characteristics of; Rates and measurements 4
Assessment of ECG 1
Sinus rhythm - lecture 2
- practice 2
12 lead ECG - explanation 4
Recognition of bundle branch block 1
Myocardial infarction 1
Drug changes 1
Introduction to ectopics - lecture 2
- practice 3
Ventricular - lecture 2
- practice 3
Atrials - lecture 2
practice 3
Junctionals - lecture 1.5
- practice 2
A.V. Junction Conduction disturbance - lecture 2
- practice 3
Arrhythmias review 2
ECG test (final) 4 45.5
APPENDIX F

E. Pathology, Diagnostic Tests, Treatment
Coronary Artery Disease - pathology
Risk Factors
Clinical changes in M.I.
Trends in management
Video - Coronary Artery Disease Bypass
Video - Bedside Cardiac Monitoring
Current management of C.A.D.
Nuclear Medicine in Cardiac Disease
Discussion of C.V. lines and pulmonary wedge pressure monitoring
The mechanisms and management of heart failure

F. Drug - Physiology, Actions, Uses, Unwanted Effects
Alpha and beta adrenergic
Alpha and beta blockers
Atropine, tensilon, Morphine, GTN, anticoagulants
Potassium and Digitalis
Antiarrhythmias
Diuretics

G. Homework Class Discussion
(Other than ECG rhythms)

H. Private Study
Test - Basic life support
Test - Advanced life support
Homework - private
Private study in class

TOTAL HOURS: 174.5