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Abstract: Wettability is one of the main parameters controlling CO2 injectivity and the movement
of CO2 plume during geological CO2 sequestration. Despite significant research efforts, there is
still a high uncertainty associated with the wettability of CO2/brine/rock systems and how they
evolve with CO2 exposure. This study, therefore, aims to measure the contact angle of sandstone
samples with varying clay content before and after laboratory core flooding at different reservoir
pressures, of 10 MPa and 15 MPa, and a temperature of 323 K. The samples’ microstructural changes
are also assessed to investigate any potential alteration in the samples’ structure due to carbonated
water exposure. The results show that the advancing and receding contact angles increased with the
increasing pressure for both the Berea and Bandera Gray samples. Moreover, the results indicate
that Bandera Gray sandstone has a higher contact angle. The sandstones also turn slightly more
hydrophobic after core flooding, indicating that the sandstones become more CO2-wet after CO2

injection. These results suggest that CO2 flooding leads to an increase in the CO2-wettability of
sandstone, and thus an increase in vertical CO2 plume migration and solubility trapping, and a
reduction in the residual trapping capacity, especially when extrapolated to more prolonged field-
scale injection and exposure times.

Keywords: CO2 injectivity; wettability; contact angle; sandstone; CO2 sequestration

1. Introduction

Carbon geological sequestration (CGS) has been proposed as an efficient method
to reduce anthropogenic CO2 emissions into the atmosphere and thus mitigate global
climate change [1]. In essence, the technique involves capturing CO2 from large stationary
emission sources and locking it into some natural geological formations [1–3]. There
are three geological formations that have attained a wide consideration. They include
(1) depleted oil and gas reservoir, (2) deep saline aquifers, and (3) coal seams [1]. In saline
aquifers and oil and gas reservoirs, CO2 storage is typically placed at depths below 800 m,
where CO2 becomes liquid or supercritical because of the ambient pressure and temperature
conditions [1]. Therefore, the vertical migration of CO2 is the main problem involved in
CO2 injection due to the density differences between the brine and CO2 [4,5]. It is also
essential to assess the different functional trapping mechanisms, which prevent the buoyant
CO2 from flowing upwards [1]. The CO2 can be trapped in geological formations utilising
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four mechanisms, including structural trapping [6,7], capillary trapping [8–11], solubility
trapping [12–14], and mineral trapping [15–17]. Furthermore, coal seams are considered as
another option for the underground storage, in which the CO2 injection into coal seams will
have advantages for both CO2 storage and enhance methane recovery [1,2]. A number of
large-scale CO2 storage projects are currently in operation worldwide. These have captured
and stored millions of tonnes of CO2 annually. Many more projects have been planned.
Specifically, oil and gas companies have been operating geological CO2 storage projects
for a number of years. They have successfully demonstrated that securely storing a large
quantity of CO2 in a deep underground area is possible [1]. For instance, the active CGS
projects are (1) Sleipner (Norway), (2) Weyburn Midale (Canada), and (3) Cranfield (US),
established in 1996, 2000, and 2008, with CO2 capture capacities of 1, 3, and 1.5 Mt/year,
respectively. The planned CGS projects include (1) Gorgon (Australia), (2) Quest (Canada),
and (3) GreenGen (China), established in 2016, 2015, and 2011, respectively [1,5].

In carbon geo-sequestration, wettability is a crucial factor that intensely and directly
influences containment security, injectivity, structural, dissolution, and residual trapping
capacities [18,19]. Five different wettability states can be conceptualised in a real reser-
voir, i.e., strongly water-wet, weakly water-wet, intermediate-wet, weakly CO2-wet, and
strongly CO2-wet (where complete wetting occurs), with approximate contact angles of
0◦–50◦, 50◦–70◦, 70◦–110◦, 110◦–130◦, and 130◦–180◦, respectively [20]. These differences
in wettability are caused by geological and chemical factors, such as surface chemistry (e.g.,
organic content) [21–23], reservoir pressure (the increase in pressure leads to a decrease in
water wettability) [18,24,25], reservoir temperature [26–28], salinity, and ion type (salinity
increases as CO2 wettability increases) [18,29–32]. Therefore, it is essential to understand
the fluid-rock interaction, as these interactions clearly can affect the capillary pressure and
aquifer permeability, and hence the injectivity and storage capacities [33,34].

Injected CO2 forms carbonic acid in the brine phase [35,36]. It interacts with rock
minerals, which leads to mineral alterations and ion dissolution–precipitation [37]. Deep
saline sandstone reservoirs are potential candidates for CO2 sequestration [1]. Sandstones
generally consist of siliceous minerals, clays, and various carbonates, along with quartz [38].
These minerals react differently to the changing environment when CO2 is injected, e.g.,
calcite cement is highly reactive in an acidic environment [35,39,40]. In fact, pH decreases to
3–4 when CO2 mixes with brine at reservoir conditions [41,42], and such an acidic condition
can considerably affect the permeability and pore morphology [43]. Alternatively, CO2 can
be stuck in the target reservoir’s pore space for hundreds or thousands of years because of
the slow dissolution kinetics caused by the partial mixing of CO2 and brine [44].

Some studies have reported that such water–CO2–rock interactions could change the
sandstone pore structures due to fines migration and precipitation or reaction with sensitive
materials [45,46]. Such a change can strongly affect the rock porosity and permeability
performance [36,47,48]. Furthermore, the influence of the temperature and injection rate on
the permeability reduction after CO2 injection have been examined on Berea sandstone [36]
and sandstones from the Pembina Cardium field, Canada [49], whereas other studies
investigated the factors controlling the permeability changes in sandstone during core
flooding [50]. However, the effect of CO2 injection on the wettability changes has received
less attention. Thus, this study analyses how CO2 injection changes sandstone’s wettability.
This change was correlated with a microstructural alteration in the sandstone caused by
CO2 flooding. Subsequently, we determined how CO2 flooding affects the CO2 trapping
capacities (i.e., residual and dissolution) and the amount of free CO2 in saline aquifers (i.e.,
mobile CO2).

2. Materials and Methods
2.1. Materials

Two homogeneous Berea sandstone samples (low clay content) and two Bandera
Gray (high clay content) were used in this study. The sandstones were thoroughly charac-
terised by scanning electron microscopy (SEM) to measure the surface morphology and
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quantitative X-ray diffraction (XRD—Bruker-AXS D8) to measure the mineral composition
before/after the flooding experiment. The samples’ petrophysical properties, including
porosity and permeability, were measured before and after flooding and are reported in
Table 1.

Table 1. Petrophysical and mineralogical sandstone properties.

Sample Porosity a (%) Brine Permeability
(mD)

Length (mm) Diameter (mm)
Mineral Constituents b

Mineral wt%

Before Flooding

Berea 20 69 50.88 30.78

Quartz 84.3
Kaolinite 4.1

Illite 1.9
Albite 4.2

Microcline 4.1
Chlorite 1.4

Bandera Gray 19 9 60.32 30.80

Quartz 58.2
Kaolinite 3.2

Illite 3.6
Albite 12.4

Muscovite 1.6
Chlorite 5.7
Ankerite 15.3

After Flooding

Berea 22 80 50.88 30.78

Quartz 84.9
Kaolinite 3.9

Illite 1.8
Albite 4.2

Microcline 4.1
Chlorite 1.1

Bandera Gray 20 7.3 60.32 30.80

Quartz 58.4
Kaolinite 3.1

Illite 3.2
Albite 12.2

Muscovite 3.1
Chlorite 5.2
Ankerite 14.8

a Porosity was measured with AP-608 Coretest Instrument. b The mineral composition of the samples was measured by X-ray Diffraction
(XRD)Bruker—AXS D8.

2.2. CO2 Core Flooding Experiment

The Berea and Bandera Gray core plugs were wrapped in polytetrafluoroethylene
(PTFE) tape, aluminium foil, and PTFE tape again to be prepared for plugging. Subse-
quently, the samples were sealed with a PTFE heat-shrink sleeve and were placed in a
rubber sleeve in a high-pressure and a high-temperature core holder (Figure 1). The sam-
ples were next vacuumed for more than 20 h [50]. In the next step, the sandstone samples
were saturated with dead brine (5 wt% NaCl and 1 wt% KCL) using a high-precision
syringe pump (ISCO 500D). The dead brine was then displaced by 5 pore volumes of live
brine (5 wt% NaCl and 1 wt% KCL equilibrated with CO2) at 1 mL/min [51]. The injection
rate was reduced to 0.05 mL/min, and the injection continued for 7 days at reservoir
conditions (pore pressure of 10 MPa, confining pressure of 15 MPa, and temperature of
323 K). This simulates the sinking of CO2-saturated brine deep into the reservoir, i.e., the
dissolution trapping [52–54]. Finally, five-pore volumes of supercritical CO2 (scCO2) were
injected to displace the live brine and to simulate the CO2 injection into the reservoir.
Figure 1 presents a schematic of the core flooding apparatus used in this study.
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2.3. Contact Angle Measurements

For the CO2–wettability tests, the samples were cut with a high-speed diamond blade
(5 mm thick cuboids, with a 38 mm diameter), and each sample was exposed to air plasma
(model Diener plasma, Ebhausen, Germany, Yocto) for 5 min to remove any potential
organic surface contaminations [55,56]. Subsequently, the contact angle was measured
using the tilted plate method (as it can quantify simultaneously the advancing and receding
contact angles) [57] at storage conditions. For contact angle measurements, the sample was
placed inside the pressure cell at a set temperature (323 ◦K). CO2 pressure was raised to
the desired pressure (10 MPa and 15 MPa), using a high precision syringe pump (model
ISCO 500D; pressure accuracy of 0.1% FS). A droplet of the brine (5 wt% NaCl and 1
wt% KCl in deionised water) with an average volume of ~6 µL ± 1 µL was released
onto the tilted (tilted angle of 12◦) sample (Berea and Bandera Gray) surface through a
needle. The advancing and receding contact angles were then calculated at the leading and
trailing edge. A high-resolution video camera (with specification of Basler scA (640–70) fm,
pixel size = 7.4 µm; frame rate = 71 frames per second; Fujinon CCTV lens: HF35HA-1B;
1.6/35 mm) recorded the whole process and the images extracted from the video files to
measure the contact angles. Figure 2 illustrates the experimental setup of contact angle
measurement. The standard deviation in the contact angle result was determined as ±3◦

based on replicated measurements.
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3. Results and Discussion
3.1. Controlling Factors on Sandstone Wettability

The wettability of sandstone samples (Berea with low clay content and Bandera Gray
with high clay content) was measured before and after CO2 flooding at 10 and 15 MPa at
a constant temperature of 323 K. The results clearly indicate that the contact angles after
flooding were higher than before the flooding for both samples. This shows that Berea and
Bandera Gray sandstones became more CO2-wet after CO2 injection. Besides, the advancing
and receding contact angles increased with the increasing pressure for both the Berea and
Bandera Gray samples (Figure 3), which is consistent with the literature data [18,20,59,60].
As an example, the advancing contact angle of Bandera Gray before flooding increased
from 86◦ to 105◦ at 323 K, for a pressure of 10 MPa and 15 MPa, respectively. The results
also indicate that Bandera Gray has a higher contact angle, compared with Berea, for all
test pressures and both before and after CO2 flooding conditions.

Clay minerals can be distributed in different ways within the reservoirs—in the form of
laminations in between the grains (laminar clays), dispersed in the reservoir, or structurally
coating the grains (structural clays) [50,61,62]. Moreover, the specific clay type is also crucial
in controlling the petro-physical properties of sandstone [62–64]. The scanning electron
microscopy (SEM) and XRD analysis revealed that the Berea and Bandera Gray sandstones
comprise different clay types and distributions. The clay types present in both sandstone
samples are shown in Table 1. Studies by other researchers have also demonstrated that,
besides smectite, all clay minerals adsorb significant amounts of CO2 [65]. As seen from
the SEM analysis, both sandstone samples contain the CO2-adsorbing clays. Therefore, the
high contact angle in Bandera Gray (CO2-wet) is attributed to its high clay content.

Moreover, changes in albite and ankerite surfaces have been reported earlier [66].
Dissolution textures have been shown on the surfaces of detrital albite grains. Smooth
surface and step-like structures of ankerite grains showed corrosion pits at grain boundaries
post-experiment [66]. The dissolution of illite and chlorite can also occur [67], and chlorite
dissolution following a subsequent reaction with pre-existing calcite can lead to kaolinite
and CO2-rich ankerite production [68]. Since the presence of calcite and its dissolution is a
rate-limiting step of this reaction, kaolinite and ankerite production and their precipitation
depend on the calcite content of the rock samples [68]. Kaolinite precipitation was reported
earlier [66] and was evident in this work for both the Berea and Bandera Grey samples
(Figures 4 and 5). Kaolinite precipitation can also be due to the interaction between CO2-
saturated brine and feldspar (k-feldspar, albite, microcline) present in the rock [66]. Thus,
it can be inferred that a larger content of albite and ankerite in Bandera Gray samples is
responsible for more significant interactions with CO2-saturated brine. This phenomenon
explains the higher brine contact angle, and thus the higher CO2 wetting, for Bandera Gray
as compared to Berea sandstone at the same conditions.

The XRD results (Figure 6) and XRD images (Figure 7) were also employed, showing
no significant change in mineral composition before and after CO2 flooding. This can be
due to the dissolution of minerals corresponding to their stoichiometry, keeping the overall
mineralogy unchanged (or with an insignificant change beyond the detection limit). The
additional peak in the XRD results after the experiments corresponds to NaCl, and thus
salt precipitation post-drying cannot be ruled out.
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3.2. Effect of Clay Content on Sandstone Trapping Capacity

Rock wettability highly affects CO2 vertical migration and CO2 trapping capaci-
ties [6,9]. CO2-wet rock has a significantly higher CO2 upward mobility [69] and a much
lower residual trapping capacity [9,24,70] for formations with adequate flow properties
(such as permeability). Our results, presented in Section 3.1, show that CO2 flooding in
sandstones with a high clay content leads to the reservoir being CO2-wet, which may
lead to the above-listed detrimental mobility and storage effects. For example, based on
the previous simulation study by [71], the CO2 mobility is found to contribute by 0.5%,
dissolution trapping capacity by 18.3%, and residual trapping capacity by 81.2% in the
storage capacity of strongly water-wet rocks. By contrast, the strongly CO2-wet rocks have
a CO2 mobility of 20.7%, dissolution trapping capacity of 28.6%, and residual trapping
capacity of 50.7% after 10 years of storage (Figure 8).
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Figure 8. Percentages of free and trapped CO2 capacities for strongly water-wet, intermediate-wet, and strongly CO2-wet
rocks (modified from [71]).

On the contrary, in formations with low permeability where the biggest challenge is
the injection of CO2, the enhanced CO2 wetting of the rock’s surface could be advanta-
geous for pressure management provided there is a cap-rock that can make a good seal
for containment security. The presence of high clay fractions in such low permeability
formations will be beneficial for the enhanced CO2 storage capacity by an increase in
mobility, dissolution, and residual trapping.

4. Conclusions

Rock wettability has a significant role in carbon geo-sequestration (CGS). This is
because the fluid flow through porous media is strongly controlled by rock wettability.
Despite previous research on the area, the parameters influencing the CO2/brine/rock
wettability variation are still not fully understood. We thus systematically measured the
contact angle (i.e., wettability) of two sandstones (i.e., low clay content (Berea) and high clay
content (Bandera Gray)) before and after CO2 flooding with brine (5 wt% NaCl + 1 wt% KCl
in deionised water), CO2-saturated (live) brine, and supercritical CO2 (scCO2), at 10 MPa
and 15 MPa for a constant temperature (323 K). The results show that CO2 flooding leads to
an increase in the advancing and receding contact angles of both Berea and Bandera Gray
sandstones (i.e., CO2 flooding leads to increased CO2-sandstone wettability). Our results
also show that the CO2/brine/rock contact angle increases with the pressure increase,
which is in line with most of the literature data [18,20,59,60].

Moreover, our measurements demonstrate, for all tested conditions (both before and
after the CO2 flooding scenarios), that Berea sandstone has lower contact angles (i.e., more
water wettability) than Bandera Gray (i.e., Bandera Gray tends to be more intermediate-
wet to CO2-wet), due to the higher clay content of Bandera Gray. Our SEM results show
that the Bandera Gray sandstones, which became more CO2-wet, contained a high clay
content. The published literature indicates that, except for smectites, all clays are CO2-
adsorbing. Hence, sandstones with a high clay content become CO2-wet when flooded
with CO2, which results in the upward mobility of CO2 in the reservoir, and consequently a
reduced capillary trapping capacity. However, low permeability formations with significant
CO2 injection issues, CO2-wetting of the reservoir rock surface, and an adequate seal for
containment security could help improve the pressure management. Therefore, high clay
fractions in such formations will be an advantage for the enhanced CO2 storage capacity.
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