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Quantifying techno-economic
indicators’ impact on isolated
renewable energy systems

Muhammad Shahzad Javed,1,2 Tao Ma,1,2,6,* Navid Mousavi,3 Salman Ahmed,1,2 Henrik Lund,4 Hongxing Yang,5

and Yanjun Dai1,2

SUMMARY

Addressing climate change with the rising global energy usage necessitates
electricity sector decarbonization by rapidly moving toward flexible and efficient
off-grid renewable energy systems (RESs). This paper analyzes the wind and solar
micro-grids, with batteries and pumped hydro storage for a robust off-grid RES
techno-economic operation, while considering diverse multi-objective optimiza-
tion cases. This research has considered the RES variable operational losses in
the developed methodology and relations between different indicators are eval-
uated, revealing a basic understanding between them. The results reveal that the
reliability index is inversely related to the oversupply index, while directly related
to the system self-sufficiency index. The cost of energy is more sensitive to tech-
nical indicators rather than the storage cost and so can be used as a primary mon-
etary index. Energy and cost balance analysis showed that 16%–20% of the used
energy was drained in RES operational losses, which were usually ignored in pre-
vious studies.

INTRODUCTION

Many countries aim to meet 100% of their electricity demand from renewable or zero-carbon sources by

2040–2050 to meet the Paris agreement goals (Dowling et al., 2020; Rogelj et al., 2016; Mitchell, 2016;

Jacobson et al., 2017). Literature studies have seen renewable energy (RE)-based electricity systems as

an important and integral part of achieving a fully decarbonized solution (Hansen et al., 2019; Menapace

et al., 2020; Connolly et al., 2016; Thellufsen et al., 2020). Meanwhile, intermittent RE integration at a large

scale in the national grids may cause serious reliability issues within transmission systems, i.e., blackouts,

congestion, and high network impedance (Murdock et al., 2019; Sepulveda et al., 2018; Luo et al., 2015;

Khare et al., 2016). The failure of national grids can significantly affect the lives of people living in metro-

politan cities and urban areas, where around 3.5 billion people from the global population live and

consume two-thirds of the global primary energy that makes 71% of the worldwide greenhouse gas emis-

sions (Perera et al., 2020).

Off-grid renewable energy systems (RES) with electricity storage are crucial to safeguard national grids as

large penetration of intermittent RE is out of jurisdiction owing to grids’ stability and congestion issues.

Meanwhile, some studies suggested the coupling of different energy sectors and continent-wide energy

transmission (i.e., Europe) for the high share integration of RE in national grids (Brown et al., 2018). How-

ever, these approaches require the agreement of more decision makers and are also not viable for all re-

gions, especially the countries having border disputes. Off-grid RES can also play a significant role in social

and economic growth of 1.3 billion people who have no access to electricity, as most of them live in remote

areas (Mondiale, 2008; Pimm et al., 2021; Ma and Javed, 2019).

Solar and wind energy are two major pillars of renewable energy resources with the largest (97 GW) and

second largest (59 GW) electricity generation capacity in 2019, respectively (Stocks et al., 2020). Moreover,

the cost of producing electricity from these technologies has dropped consistently where it is lowest in

many regions and is expected to further reduce in the coming decade (Gul et al., 2016; Trancik et al.,

2015; Fu et al., 2016; EIA, 2016; Mills and Wiser, 2012; Ziegler et al., 2019; Schmidt et al., 2017). However,

for independent solar and wind-based energy systems, some parallel arrangements are required that may
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include back-up generation, expansion of national grid transmission infrastructure, time-of-use manage-

ment, and inclusion of appropriate energy storage system (ESS) (Denholm andMargolis, 2007a, 2007b; Sol-

omon et al., 2016; Hirth, 2013; Ma et al., 2015; Fyke, 2019; Tong et al., 2020; Ahmed et al., 2021). These can

substantially affect the energy supplying cost, especially for off-grid RES. Moreover, energy systemmodels

have been developed with the focus on taking a smart energy system cross-sectoral approach to the anal-

ysis of ESS (Chang et al., 2021; Lund et al., 2021). Recent literature studies on national and global levels have

identified that EES will be vital to increase the RE penetration either in the grid connected mode or the off-

grid mode (Jacobson et al., 2017; Blakers et al., 2017; Esteban et al., 2012). Besides that, the utilization of

ESS with off-grid RES becomes more favorable to the areas that are very far from national grids and grid

extension is not viable due to the terrain issues or grid transmission infrastructure costs (Denholm and

Margolis, 2007a; Hemmati and Saboori, 2016; Luo et al., 2015; Evans et al., 2012). Some studies proposed

the diesel generator, a back-up generation source for off-grid RES, as a cost-effective and reliable solution

for off-grid RES. However, this solution is not in line with the electricity sector’s decarbonization goals (Sun-

dararagavan and Baker, 2012; Braff et al., 2016; Kousksou et al., 2014).

For off-grid RES, the most often used ESS is battery storage (BS)—for small scale—and pumped hydro stor-

age (PHS)—for large scale—owing to their maturity level and low levelized cost of storing energy compared

with other available ESS options (Yang and Jackson, 2011; Zhang et al., 2018; May et al., 2018; Schoenung

and Hassenzahl, 2003; Krishnakumar et al., 2019; Stocks et al., 2020). PHS has recently emerged and is seen

as a benign option for the assessment of energy mix options with the high penetration of low-carbon sour-

ces. A recent study investigated the global off-river locations for PHS and identified 616,000 potential lo-

cations, revealing the available excessive storage options to exploit the solar and wind potential, especially

for the remote sites (Stocks et al., 2020). On the other hand, many literature studies have proposed BS for

RES owing to its advantages over other ESS such as high efficiency, fast response time, and scaling feasi-

bility due to modular structure (Hesse et al., 2017). However, these ESS have rarely been explored as hybrid

storage for the off-grid RES, which can significantly enhance the system’s reliability level owing to the com-

plementary characteristics between them (Javed et al., 2020; Abdelshafy et al., 2020). Many literature

studies have comprehensively reviewed the weaknesses, strengths, and application of the BS and PHS

regarding the RE environment (Beaudin et al., 2015; Kocaman and Modi, 2017; Ibrahim et al., 2008; Javed

et al., 2021; Guezgouz et al., 2019a, 2019b; Abdelshafy et al., 2020; Jurasz et al., 2020). For example, BS has

a high response time (Luo et al., 2015); it can be used to cover the instantaneous and small demand-supply

gaps until PHS starts operation with constant output voltage, which is due to the PHS lag time. Further-

more, BS would cover small demand-supply gaps, whereas PHS would be used to manage large deficits

(and surplus); thus, low-efficiency PHS power output can be avoided at partial loads, i.e., when RE directly

covers a portion of the baseload (Javed et al., 2020).

The methodologies proposed in the literature for off-grid RES may notably lead to reliability issues since

previous studies disregarded the ESS operational losses by either ignoring or considering as constant (Ma

et al., 2014). The optimal sizing that is performed while considering these approaches may not be robust,

and the designed RES would not meet the outlined objectives, especially when RE sources are being used

as base energy source, i.e., off-grid RES. Moreover, previous optimization studies often only considered

one aspect at the design stage, either technical or economic, that would lead to the issues like loss of

load or high initial capital cost, which are the major obstacles in the widespread propagation of off-grid

RES. Considering the aforementioned issues, in this study we first extended an experientially verified

PHS model (Mousavi et al., 2019) that considered all types of hydraulic, mechanical, electrical, and effi-

ciency losses, by integrating a BS and RE generators model to effectively evaluate the techno-economic

performance of hybrid storage-based off-grid RES that has not been documented before. Then, the devel-

oped mathematical model with the proposed energy management strategy (EMS) is assessed considering

different system evaluation indicators. Furthermore, different multi-objective optimization cases are devel-

oped to ensure robust capacity sizing and RES operation to alleviate RE sources’ vulnerability.

The robust techno-economic capacity sizing based on the developed EMS for off-grid RES is indispens-

able. Considering the intermittent RE as a base source for off-grid RES and high initial investment cost,

robust optimal sizing is indispensable that considers all types of losses and system evaluation indicators

like RE self-sufficiency, reliability level, oversupply index, and ESS cost. This study developed a methodol-

ogy for operational and economic analysis of off-grid RES, focusing on considering all operating losses and

various RES evaluation indicators simultaneously. We investigated the relationship between technical and
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economic RES evaluation indicators, their comparative tendency in multi-objective optimization, and their

impact on the off-grid RES performance.

This study provides a basis for designing and deploying a robust off-grid RES with storage by keeping in

view the defined technical (reliability level, self-sufficiency, oversupply) and economic (storage cost and

cost of energy) project objectives. To the authors’ knowledge, there are very rare studies that systematically

explore the techno-economic feasibility of off-grid RES and provide a path to achieve the decarbonization

goals in the electricity sector. The robust and comprehensive findings may increase the confidence

regarding off-grid RES deployment, especially remote places where extension of national grids is either

expensive or out of the jurisdiction. Moreover, off-grid RES can ensure affordable and reliable energy pro-

vision to 1.3 billion people who have no access to electricity owing to lack of electricity infrastructure, espe-

cially in developing regions like India and sub-Saharan Africa.

RESULTS

We have presented the results in three subsections. At first, we discuss the diverse bi-objective, tri-objec-

tive optimization cases considering different reliability levels, and the objectives (technical-economic,

economic-economic, and technical-technical) relationships are assessed. Then, off-grid RES energy and

cost-share analysis at different reliability levels is accomplished. It provides operators and researchers a

way to analyze the newly installed energy systems where blackouts are not an option. After that, the effect

of operational losses, i.e., mechanical, electrical, efficiency, and hydraulic, is visualized to ensure the reli-

able working of hybrid storage based off-grid RES by developing a generalized methodology that has

not been documented before. This is followed by the method details used in this study.

Multi-objective optimization of RES considering different set of objectives

Several previous studies focused on optimizing off-grid RES; however, those studies considered either a

limited number of objectives (one or two) or limited RES components (one source with one storage).

Moreover, results from those studies did not provide a framework for investors/policymakers to select

appropriate objectives for robust optimization of RES, especially when RES is off-grid and significant initial

investment is involved. We considered several cases for a range of objectives (both technical and eco-

nomic), and multi-objective optimization is performed to assess the synergies between different objec-

tives. All cases are simulated considering 90% and 95% reliability level assuming that 5%–10% load is a

part of the demand side management and can be taken care by strategies like time of use.

Optimization with two objectives reveals no specific solution (Figure 1). There is always a trade-off zone with

a set of solutions; however, a compromise can be made based on the defined priorities, i.e., level of reli-

ability, maximum investment available (see Videos S1 and S2: Demonstration of multi-objective optimiza-

tion simulation and Demonstration of exploration and exploitation phases in multi-objective optimization).

Furthermore, the results can be altered by forcing the optimizer toward a particular direction (see optimizer

description—Section S4). For instance, a remote place is too hot, where high ESS capacity is not desir-

able—batteries performance degrade at high temperatures and water will evaporate exponentially from

PHS reservoirs—the lower and upper bounds of ESS decision variable can be changed accordingly by

the operator, and optimizer will provide a set of non-dominated solutions that contain high RSR with the

least cost of energy (COE) for the same reliability level (see Figure S6 for optimizer application with devel-

oped EMS). In multi-objective optimization, non-dominated solutions, also called Pareto front, refer to a

set of solutions across the feasible region of the design variables that are not dominated by any other

solution set during optimization. It allows decision makers to anticipate the accurate approximation and

select one of the obtained solutions based on the defined objectives. It is worth noting that the oversupply

index (SDR) has a high value, even though the two RE sources and two ESS are employed, revealing that off-

grid RES has to be oversized up to a specific limit due to RE variability, disharmony between demand and

supply, and to prevent blackouts. The oversupply index value in our study (Figure 1A: 1.8–2.2 and see Data

S1) is higher than in previous literature studies (Shabani et al., 2020) (1.3–1.5). It is because we considered all

types of losses that occurred during the RES operation, and the optimizer makes sure to have enough en-

ergy to satisfy both energy losses (see Figure 3) and load demand.

Analysis with three objectives shows that two technical indicators (DSF and RSR) are more sensitive to COE

compared with the storage cost (SC) (see Figures 2A and 2B and supplemental spreadsheet: Data S2) and

reveals that appropriate selection of objective functions for robust optimization is essential. Furthermore, it
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is also important to note that ESS can play a key role in compromising between the oversupply index and

the reliability index. It also reveals that, to date, adding RE generators capacity is economical compared

with ESS to satisfy a certain reliability level for off-grid RES (see Figures 2A and 2C). On the other hand,

the addition of RE generators capacity leads to high oversupply (see Figure 2D), leading to an increase

in overall non-used RE electricity (See Figure 3). The results of tri-objective optimization with a 90% reli-

ability level are presented in the supplemental information (see Figure S1). Recent literature studies

show that the cost reduction trend of ESS is expected to continue in the future, and the deployment of

off-grid RES will gain upsurge shortly. The results indicate two ways to meet the load demand for off-

grid RES to meet the required reliability level. It can be achieved either by an increment in RE generators

size or by adding more ESS; however, it cannot be done impulsively and will depend on other indicators

defined by policymakers. For instance, if one country’s government provides subsidies for the deployment

of RE only and high ESS capacity causing the increase in initial capital cost, then a certain reliability level can

be achieved by enhancing the range of RSR indicator and SDR indicator can be ignored. Similarly, if there

are remote places where available RE sources are not sufficient, consideration of ESS size will be the key to

satisfy the certain DSF. However, at the same time, SC and RSR will become essential indicators for robust

optimization.

Based on multi-objective optimization cases, we draw relationships between all the considered technical

and economic optimization objectives based on the comprehensively performed analysis (see Table 1).

This table can provide a deep insight into all designers/policy makers to select optimization objectives

because RES problems come up with complex, non-linear, and non-convex objective functions. It will

become computationally costly to consider all the cases simultaneously, especially when the system is iso-

lated and many decision variables are involved, i.e., losses, penstock sizes, and RE generators. In such a

case, additional results can be drawn seeing the relative behaviors of objective functions. For instance,

SDR has an inverse relation with DSF, whereas it behaves linearly with RSR. Similarly, our analysis also
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Figure 1. RES optimization with two objectives at different reliability levels

(A) 90% (B) 95%

DSF, demand-supply fraction; RSR, ratio of energy directly supplied by RE to RES to cover load; SDR, oversupply index.

The definitions of optimization objectives are provided in the supplemental information (see Section S5). The left vertical

axis represents the two objectives (DSF, RSR), and the right vertical column contains SDR objective value. The figures

show that there is a set of non-dominated solutions for each multi-objective optimization case. There is a trade-off zone

(represented with arrows) where decision makers have to compromise between the cost of energy (COE) and defined

project objectives. These trade-off areas are selected based on the percent increment in COE with respect to the

respective objective value and reflect the least percent increment in COE value concerning the specified reliability level.

The reliability level constraint is only set for RSR and SDR cases, as DSF is an index for reliability and thus its compromise

zone is the same for both scenarios. The effect of different reliability levels on SDR and RSR is evident from figures and it

can be noted that the compromise zone shifted to high oversupply (2.02–2.19) and high COE (0.19–0.24 $/kWh), as the

reliability level of RES changed from 90% to 95%. In the COE-RSR case, the optimizer found a limited number of non-

dominated solutions in each scenario, which shows the importance of ESS in off-grid RES. It also highlights that, despite

employing more than one RE source, energy directly supplied by RE generators to cover the load demand is not enough

to meet the required reliability level, i.e., the value of RSR is 80% for 90% DSF and 76%–77% for 95% DSF, illustrating the

consideration of ESS to mitigate the disharmony between demand-supply. Corresponding decision variable values of

non-dominated solution sets of all optimization cases are presented in the supplemental spreadsheet: Data S1.
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revealed that SC is less sensitive to technical indicators than COE; thus, COE can be a primary economic

index for robust techno-economic optimization (see Figures 2A and 2C).

Energy and cost balance for off-grid renewable energy system

We next performed a detailed energy share analysis of a techno-economically optimized configuration at

different reliability levels. It reveals that there is still a significant amount of non-used electricity (see Fig-

ure 3). The energy analysis unveils that RE sources’ variable nature will remain challenging to off-grid

72 74 76 78 80 82 84 86 88
1

2

3

4

5

6

7

8
 DSF_90%
 DSF_95%

R
D

S

RSR (%)

D

A B

C

Figure 2. RES optimization with three objectives at reliability level of 95%

(A) In this scenario, each case considered the two economic objectives (storage cost and COE) and one technical

objective. There is no reliability constraint for the cases that contain the DSF as the optimization objective. XZ, YZ

projections show the direct relationship of the respective two objectives seeing the third objective value. The figure

illustrates that COE is more sensitive to DSF than the SC, revealing that RE generators’ appropriate size is essential to

achieve the required reliability level in the off-grid RES. Similarly, no significant changes are observed in RSR with the

increment in SC value; however, it is susceptible to COE illustrating policymakers’ role in defining the priorities for robust

optimization to gain the predefined project goals.

(B) This figure shows that the oversupply index (SDR) has an inverse relation with SC and direct with COE.

(C) In this scenario, each case considered the one economic objective (COE) and two technical objectives. The figure

shows that RSR and DSF have an inverse relationship and optimizer preferred to compromise the system reliability

compared with the RSR and lessened the system COE value significantly, revealing that adding RE generators capacity is

more economical than the ESS, which is in line with the findings of Figure 2A. This figure also demonstrates the SDR and

DSF proportional relationship.

(D) Optimization results of COE-SDR-RSR are shown in this figure. The SDR and RSR relationship at different reliability

levels is represented in this figure, whereas their relationship with COE can be observed in Figures 2A and 2C.

The decision variable values of non-dominated solution sets of all cases are presented in the supplemental spreadsheet:

Data S2.

Also see Video S2 (demonstration of multi-objective optimization simulation) to comprehend the presented multi-

objective optimization results.

DSF, demand-supply fraction; RSR, ratio of energy directly supplied by RE to RES to cover load; SDR, oversupply index;

COE, cost of energy; SC, storage cost (for detailed description of indicators, see supplemental information Section S5).
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RES, even though the RES is precisely modeled—considering all operation losses—and optimized (consid-

ering all techno-economic indicators). As the reliability level increases, the share of non-used electricity

rises and vice versa. It also reflects that the DSF indicator is key at the design stage of off-grid RES, which

affects not only the size of RE generators (see Table S1) but cost as well (see Figure 4). Meanwhile, DSF

cannot be varied impulsively, and its relation with other RES evaluation indicators must be considered.

For instance, it may increase SC significantly and eventually leads the RES to be more dependent on

ESS. However, sometimes there are periods when RE is not available for more extended periods, and

the system may face blackouts/shutdown that is the point where RSR comes in. However, literature studies

have shown that wasted RE energy due to curtailment can be reduced to 0%–14% by deploying RES with

firm low carbon sources (Sepulveda et al., 2018).

Energy analysis also reveals that a significant amount of energy is consumed to cover the system losses dur-

ing operation that are either ignored or considered constant in previous studies, particularly those that per-

formed the optimization and techno-economic analysis for off-grid RES. In both cases—either losses are

ignored or considered as constant—capacity sizing of RES components may not be robust, and deployed

RES may not perform at the required reliability level, thus can affect the growing deployments of RES to

meet the goal of deep carbonization of the electricity sector. Notable changes occurred in losses at

different reliability levels, which shows setting constant value is firmly inappropriate (see Figure 3). For

example, PHS losses are high at a lower reliability level (90%)—increased from 14.6% to 18.9%—because

pump/turbine machine efficiency degrades when it operates at partial loads (see supplemental informa-

tion, Section S6, data provided by manufacturers). At the same time, this is not the case in battery storage,

Due to supply-demand
mismatch, energy
storage capacity issue 
and RE intermiƩency

54.9%
Non-used RE electricity

45.1%
Used RE electricity

Served Load

28.7% 10.7%

3.9%

Total efficiency
losses

Pipe + fiƫng
losses

1.4%
BaƩery
losses

0.6%
Inverter
losses

A

Due to supply-demand
mismatch, energy
storage capacity issue
and RE intermiƩency

45.0%
Non-used RE electricity

55.0%
Used RE electricity

Served Load

34.2% 13.9%

5.0%

Total efficiency
losses

Pipe + fiƫng
losses

1.2%
BaƩery
losses

0.7%
Inverter
losses

B

Figure 3. Energy share analysis of total energy produced by RE generators at different reliability levels

(A) 95% (B) 90%

The figures illustrate the division of total energy produced by RE generators for 1 year. Themathematical modeling of RES

electricity generation components is presented in the supplemental information (see Section S2), WHILE for ESS and

losses modeling see method details. The analysis assumed that total energy produced by RE generator components is

100% and then energy consumed during RES operation by each component is calculated separately using developed

components and losses models. The input data, i.e., solar irradiance, wind speed, and load design, are presented in the

supplemental information (see Section 2). The specifications of configurations used for energy share analysis are shown in

Table S1. Configurations are selected from the COE-RSR-SDR case at DSF constraints of 90% and 95% with the least COE

value.
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and losses decreased with reliability level. The developers/designers can perform this type of detailed en-

ergy analysis for on-site working RES or newly designed RES, and robust operation of off-grid RES can be

assured. Moreover, this energy analysis can be replicated for other RES configurations; for instance, if only

one RE source or ESS is there, other components can be removed from modeling and vice versa.

We also analyzed each RES component’s cost share in the total net present cost (NPC) incurred on off-grid

RES during the whole project lifetime (Figure 4). The detailed investigation reveals that a major part of the

RES total cost comprises the initial capital cost (ICC) and is a major hindrance for the deployment of off-grid

RES. In both cases, more than 80% of total RES expenses are incurred in the form of ICC, which reveals the

critical role of governments/organizations that certain level of subsidies should be provided to enhance the

off-grid RES deployment and thus meet the deep decarbonization electricity sector goal. Cost analysis also

illustrates that more than 50% of the total NPC is used to cover the SC and makes the deployment of small

isolated RES infeasible. However, different low carbon power supply options can be considered initially

with off-grid RES that can substantially reduce the ICC and increase the demand-supply flexibility (Ma

et al., 2015). The inclusion of firm low-carbon resources—these resources can be varied depending on

the region, available resources, and local government policies—will substitute ESS for the specified

time. Hence, it may allow authorities to integrate ESS stepwise. This approach can considerably increase

the share of off-grid RES in the electricity sector without influencing the national grids, i.e., congestion,

and finally, the utilization rate of carbon-free energy resources will upsurge.

Working presentation of developed methodology to evaluate the robustness of designed

renewable energy system

It is a fact that RE sources—especially wind and solar due to mature technology and least expensive among

available RE—will be the key to decarbonizing the electricity sector. However, RE sources’ intermittent na-

ture is themain hindrance to the widespread application, especially when they have to use as a base source,

i.e., in remote places or off-grid. Therefore, a firm operating strategy—not only at the control level of RES

but also at the individual component level—for the robust RES operation should be developed to alleviate

the heavy dependence of the electricity sector on fossil fuel-based energy, especially remote places where

most of the energy needs are still met either using diesel generators only or as back up with RE sources.

First, we developed a detailed and comprehensive mathematical model for hybrid storage (see method

details)—battery and PHS are mature and recommended storage for off-grid RES (Guezgouz et al.,

2019b; Javed et al., 2020)—and integrated with wind and solar model (see supplemental information, Sec-

tion S2). To validate the performance of the developed mathematical model, we gathered the technical

and economic details of all RES components frommanufacturers (see supplemental information) and simu-

lated the optimized configuration, at a reliability level of 95% (Table S1), for a designed small load of 1 year

(Figure S3). Furthermore, all types of losses incurred during the operation of RES, including ESS losses, are

considered, making the performed simulation more realistic and providing a framework for designers to

validate the optimized RES before placing significant investments. Such compact mathematical modeling

of RES will assure the RES working at designed objectives, enhance the investors’ confidence, and thus in-

crease the deployment of off-grid RES. The proposedmathematical model can be imitated at any scale and

any type of isolated RES configuration, i.e., solar-battery, solar-PHS, and wind-battery-PHS.

Table 1. Relationship between objective functions in multi-objective optimization

COE DSF RSR SDR SC

COE – U U Ua –b

DSF – – ✕c U U

RSR – – – U U

SDR – – – – ✕✕

✕, inverse; ✕✕, strong inverse; U, linear.

DSF, demand-supply fraction; RSR, the ratio of energy directly supplied by RE to RES to cover load; SDR, oversupply index;

COE, cost of energy; SC, storage cost.
aInverse relationship between COE and SDR is observed in two objective optimizations; however, when the system is

optimized considering three objectives, COE and SDR reflect strong linear behavior.
bThe relationship between SC and COE cannot be defined as it depends on many variables simultaneously, i.e., RE gener-

ators cost and capacity, level of system reliability.
cRSR and DSF are linearly proportional to a specific limit, i.e., at very low DSF, which is always undesirable.
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The complementary functionality of PHS and battery storage is visible from the working presentation (Fig-

ures 5C and 5D) and reveals the effectiveness of hybrid storage for robust operation of off-grid RES. For

example, battery storage recharged when a small amount of net energy was available (between 3,775

and 3,780 h) and then for the following hours (3,780–3,785 h), the controller drives the PHS due to the

high net surplus energy. Furthermore, considerable variation in pump/turbine machines efficiency and

head losses can be observed with respect to the available net energy and available head that makes the

proposed model and simulation more realistic (Figure 5B). It is important to note that most of the literature

studies assumed the available head for pump/turbine as constant by saying that the reservoir surface area

is big enough; however, this cannot be the real case always, for instance, closed-loop PHS for small village/

community. About 10.7% of the total served energy consumed to meet the RES efficiency losses are often

disregarded in the literature techno-economic studies (Figure 3A). Moreover, head losses due to pipes and

fittings are also shown in Figure 5B that accounts for 3.9% of the served energy (see Figure 3A). The PHS

models used in literature studies for feasibility and techno-economic optimization often overlooked

them that may undermine the optimal sizing of RES (Makhdoomi and Askarzadeh, 2020; Simão and Ramos,

2020; Al-Ghussain et al., 2020; Bhayo et al., 2020).

Finally, we performed a 1-year simulation to assess the optimal design of RES, keeping in view the evalu-

ation indicators used as optimization objectives (Figure 6). Figure 6A also verifies the relation between

technical objectives that are drawn in Table1. For example, in August DSF has the least value, but at the

same time, SDR is also at a minimum level, revealing the linear relationship between them. Meanwhile,

for the same month, RSR is high, which reflects the inverse relation with DSF. Designed RES has the lowest

demand in February and peak energy demand in August due to added seasonal randomness (Figure S3),

where the techno-economically optimized RES effectively covers the substantial demand-supply gap

without violating any defined system objectives range beside that all type of losses were also designed

as a variable. Overall, the proposed framework effectively covers how to set design objectives and their

range, relation between different technical and economic evaluation indicators, how to model an off-

grid RES with operational losses, how to assess the techno-economic performance of an off-grid RES

ICC
81.4 %

13.1 %
PV

22.1 %
WT

2.9 %
BS

38.9 %
PHS civil work

1.9 %
converter

1.1 %
pump

REP
6.1 %

3.0 % 6.1 %

6.1 %

3.1 %

-1.2 %

O & M
12.5 %

0.3 %Salvage
-1.2 %

Total NPC = 36310 (100%)
Storage cost = 19541 (54.5%)

1.4 %
turbine
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37.4 %
PHS civil work

2.4 %
converter

1.4 %
pump

REP
3.9 %

3.6 % 5.9 %

3.9 %

4.1 %

-1.5 %

O & M
13.8 %
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-1.5 %

Total NPC = 27432 (100%)
Storage cost = 13931 (50.8%)

1.9 %
turbine

Figure 4. Cost share analysis of an off-grid RES at different reliability levels

(A) 95% (B) 90%

The figures show the division of cost incurred on the off-grid RES during the whole project lifetime (20 years in this study).

All future cash flows and expenditures are converted into the net present cost (NPC) using a discount rate concept (Javed

et al., 2021). The economic parameters of RES components are provided in the supplemental information. All costs

presented are in USD. Total RES cost (NPC) is considered 100% and then each type of cost expense of RES components is

simulated in MATLAB. The percent of storage cost represents its share in the total NPC used for ESS. Each color of the

figures represents a specific RES component, and each row illustrates one type of cost. The last row shows the salvage

value with a negative sign, representing positive cash flow and subtracted from NPC at the end of the project lifetime.

Specification of the configurations used for economic analysis is the same as used for energy share analysis (see Table S1).

ICC, initial capital cost; REP, replacement cost; O&M, operation and maintenance cost; PV, photovoltaic; WT, wind

turbine; BS, battery storage; PHS, pumped hydro storage.
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comparatively, and, finally, the evaluation of the robustness of an off-grid RES to safeguard the investors’

investment.

DISCUSSION

Off-grid RES is essential for many reasons: reduce the increasing grid stability concerns due to the large

integration of variable RE, deeply decarbonize the electricity sector to mitigate climate change, and

improve the economic and living conditions of remote areas. For the efficient working of off-grid RES,

ESS is crucial to alleviate the RE intermittency (Arent et al., 2020) and demand-supply gap and achieve a

certain reliability level and monetary benefits in the long run. The methods and strategies about the

cost-containing of off-grid RES are frequently presented in previous studies; however, their proposed

models were not comprehensive and did not account for all types of losses incurred during the operation

of RES that questions the robustness of their proposed solutions. In the proposed study, we extended an

Figure 5. Working presentation of the developed methodology for an off-grid RES

The figures illustrate the RES operation during three consecutive days in June. The proposed working presentation is based on the developedmethodology

and EMS (see method details) that considered all types of losses, i.e., mechanical, electrical, hydraulic, and efficiency, to make simulation results more

realistic. The specifications of the RES configuration selected for simulation are presented in Table S1 (with 95% reliability level). The PHSmodel employed in

this study is experimentally verified and substantially extended for integration with proposed RES.

(A) Figure shows the load demand (based on Figure S3), net energy, and ESS charging/discharging periods during the mentioned days.

(B) Efficiency variations in pump/turbine at partial loads (for the data provided by the manufacturers, see supplemental information, Section S6) are visible in

the figure that often has been ignored or assumed constant in literature studies. The left vertical axis represents the head losses for pump/turbine due to the

penstock and fittings (see method details). The actual available head (see supplemental information for the description of different PHS head terms, Section

S3.1) and the efficiency of the pump/turbine are shown on the right vertical column.

(C) Continuous charging and discharging periods, variation in water flow rate for available net energy and state of charge (SOC) of the PHS are illustrated in

this figure.

(D) Battery storage is used as supplementary storage in the proposed EMS, and its role to cover the small shortages and consume small surplus’s

(see method details) is visible in the figure.

hLp, pump head loss; hLt, hydro turbine head loss; Effp, pump efficiency; Efft, turbine efficiency.
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experimentally verified PHSmodel and a battery storagemodel is integrated along with RE generators and

small designed load, to evaluate the relation between different RES evaluation indicators—technical (reli-

ability, RE self-sufficiency, over-supply index) and economic (cost of energy, storage cost)—and provide a

framework for the investors and policymakers regarding the deployment of off-grid RES. The proposed

framework also provides a mechanism and idea to designers about selecting a different set of evaluation

indicators (technical and economic) for multi-objective optimization and then how to assess the optimally

designed configuration in terms of useful energy, energy used to cover losses, and unused energy.

We analyzed the diverse multi-objective optimization cases by considering the different sets of technical

and economic indicators simultaneously. Relationships between them are derived to provide an idea for

the robust design of off-grid RES. The most often developed RES optimization problems are non-linear

and involve several decision variables that make the optimization more complicated, computationally

expensive, and time-consuming. The relationships derived in this study between technical and economic

objectives can help designers to select appropriate optimization objectives and obtain a robust
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Figure 6. Monthly average variations in objective values and losses of RES at reliability level of 95%

The figures illustrate the RES performance to assess the optimized RES against defined objectives. Specifications of the

configuration used for this analysis are presented in Table S1. The developed methodology is simulated in MATLAB for a

whole year.

(A) Figure shows the monthly average values of RES evaluation indicators and SOC of ESS. The left vertical axis represents

all values in terms of percentage, and only SDR values are presented on the right vertical axis. The average value of DSF is

more than 95% for the entire year except August owing to peak summer load during that month. However, the whole year

average DSF is more than 95% that satisfies the designed reliability objective, i.e., 95%. No significant changes are

observed in RSR average value throughout the year that illustrates the significance of ESS for off-grid energy systems to

achieve the required reliability level. The average SOC of PHS lay between 60% and 100% during the whole year, whereas

the average SOC of battery lay between 55% and 80%, revealing that the designed RES is robust and substantially met the

designed RES objectives. It is worthwhile to note that RES has the least oversupply in summer owing to the high load

demand (See Figure S3) and vice versa.

(B) Figure illustrates the load served by RES during each month and how much percent of the served load is consumed to

satisfy the RES operation losses. The pump and turbine machine losses include penstock losses, efficiency losses, and

motor/generator losses (see method details). Notable variations in all types of losses throughout the year are visible,

making the simulation results more realistic and practical.

DSF, demand supply fraction; RSR, ratio of energy supplied by RE to total energy supplied by the system; SDR, oversupply

index; SOCp_avg, average SOC of PHS; SOCb_avg, average battery storage SOC (for definition of all indicators,

see supplemental information, Section S5).
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configuration without optimizing the RES repetitively considering the different set of objectives each time.

It means that RES can be optimized considering one or two objectives, and the trend of other objectives

can be estimated.

Furthermore, the proposed relationships are developed considering a comprehensive mathematical

model based on off-grid RES that considered all types of losses (electrical, mechanical, efficiency, and

hydraulic losses) and ensures the developed relationships’ robustness. The PHS and battery storage are

employed for this study because these storages have been repetitively used in the literature for the off-

grid RES and are mature technologies compared with other available ESS. Moreover, these two storages

have the highest share of the total installed worldwide energy storage capacity (Javed et al., 2019a). The

roadmap proposed in this study can also be followed to comparatively evaluate the different sets of con-

figurations and select the best RES configuration for remote/off-grid places in terms of useful energy, en-

ergy consumed for losses, non-used energy, and techno-economic performance, seeing the preset project

objectives.

A thorough techno-economic studied and optimized RES is critical to achieve deep decarbonization in the

electricity sector, as energy systems are long-lived assets and installed capacity during the next decade is

likely to persist until 2050. Recognition of the off-grid RES—to increase the penetration of RE and reduce

the cost of deep carbonization—has instant implications and requires an inclusive future planning of elec-

tric power systems to meet the climate change mitigation policies and for further advancement in RE and

ESS technologies research. Although heavy subsidies and public policies support variable RE’s growth, a

more compact and reliable EMS for off-grid RES tomeet the targeted goals is indispensable; otherwise, the

target of deep decarbonization in the electricity sector will be out of jurisdictions. Our results illustrate that

different sets of objectives for RES have a significant impact not only on components size (decision vari-

ables) but on system evaluation indicators as well, for instance, initial capital cost and oversupply. If the

off-grid RES is the need of the day, proposed detailed methodological energy analysis of an optimized

system can provide a way to accomplish the goals.

Limitations of the study

This study can be extended further by considering several aspects in the future. First, a wide range of sce-

narios by replacing/adding all available energy sources and ESS options—keeping in view the geograph-

ical, monetary, and social constraints—can be developed, and location-specific best RES configurations

can be attained. Our study presents a pathway to design, model, and simulate the off-grid RES considering

Figure 7. Developed hybrid storage mathematical model presentation with all involved losses

All equations involved in the modeling of hybrid pump hydro battery storage are illustrated in this figure. Besides that, the mathematical model working

mechanism is described for easy understanding. Full names of all involved parameters are provided in the nomenclature table.
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all operational losses. Consideration of the cross-sectoral approach (i.e., heating/cooling load demand) is

beyond the scope of this study. Still, it can be considered in future studies and the ESS model presented in

this work can be used. Second, this work considered a finite set of techno-economic indicators that can be

extended/improved to analyze further the off-grid RES role in achieving the carbon neutrality goal. Third,

this analysis can be extended for amix of RE technologies with other low-carbon power generation sources,

given that RE generators put forward as the primary source of power, and certain flexibility can be attained

to make sure the high system reliability for sensitive off-grid dispatch zones, i.e., commercial zones. Tech-

nology mix-specific policies can be considered a short-term option in the way of deep decarbonization of

the electricity sector. Fourth, this work considered only 1-year resource data that would not reflect the

spatiotemporal and inter-annual RE sources variability. In future work, the presented energy systemmodel

is expected to integrate with decadal RE sources data to examine the resource complementarity impact on

off-grid RES reliability; thus, robust and absolute dependable zero-carbon power systems can be

developed.
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Materials availability
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Data and code availability

The M-script files are available for academic purposes upon reasonable request.

METHOD DETAILS

Nomenclature

The specifications of all symbols used below in energy system modeling are presented in the following

table.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Hydraulic parameters of pump/hydro-turbine

i.e., head, efficiency-power curve

Mousavi et al. https://doi.org/10.1016/j.apenergy.2019.03.015

Darcy-Weisbach model for available water-head modelling Shammas & Wang et al. Shammas, N. K., & Wang, L. K. (2015).

Water engineering: hydraulics, distribution and

treatment. John Wiley & Sons.

Technical figures of pump/hydro-turbine Mousavi et al. https://doi.org/10.1016/j.apenergy.2019.03.015

PHS reservoirs water volume calculation model Javed et al. https://doi.org/10.1016/j.apenergy.2019.114026

Penstock losses modelling parameters Mousavi et al. https://doi.org/10.1016/j.apenergy.2019.03.015

Battery storage charging and discharging parameters Ma et al. https://doi.org/10.1016/j.enconman.2018.12.059

Technical specification of solar module Javed et al. https://doi.org/10.1016/j.energy.2019.03.131

Technical specification of wind turbine Manufacturer https://www.windpowercn.com/products/21.html

Irradiance and wind speed input data Javed et al. https://doi.org/10.1016/j.apenergy.2019.114026

Cost figures of pumped hydro storage components

i.e., pipes, civil work, pump/turbine

Based on local market N/A

Cost figures of battery storage including O&M cost Ma et al. https://doi.org/10.1016/j.apenergy.2014.01.090

Capital and O&M cost of solar module Guezgouz et al. https://doi.org/10.1016/j.enconman.2019.112046

Capital and O&M cost of wind turbine Manufacturer https://www.windpowercn.com/products/21.html

Data for synthetic design of load demand Javed et al. https://doi.org/10.1016/j.energy.2019.03.131

Hourly and daily added randomness in load profile Javed et al. https://doi.org/10.1016/j.apenergy.2019.114026

Software and Algorithms

Grey wolf optimizer algorithm Mirjalili et al. https://doi.org/10.1016/j.advengsoft.2013.12.007

Matlab MathWorks https://www.mathworks.com
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Symbol Definition

Abbreviations

at area of hydro turbine pipe (m2)

aPV temperature coefficient of power

AC annual cost ($)

BSc available charging power for BS

BSd power discharged from BS (watt)

D diameter of the penstock (m)

Dp pump pipe diameter (m)

Dt turbine pipe diameter (m)

F friction factor

ENS total energy not served (kWh)

GPV(t) incident irradiance (kW/m2)

GSTC standard irradiance (kW/m2)

G acceleration due to gravity (9.8 m/s2)

ha active head (m)

hlr lower reservoir height (m)

hlrw lower reservoir water height (m)

hp available pump head (m)

hpl pump head loss (m)

hs vertical distance between LR and UR

ht available turbine head (m)

hydro turbine head loss (m)

hur upper reservoir height (m)

hurw height of water in upper reservoir (m)

Ib nominal battery current (ampere)

IC initial capital cost ($)

Kfittings resistance coefficient of fittings

L length of the penstock (m)

Lp pump pipe length (m)

Lt hydro turbine length (m)

Nb battery storage decision variable

Nt number of hydraulic turbines

Pb available battery power (watt)

Pdump power dumped (unused)

PESS/l power supplied by ESS to load (watt)

Pl load demand (watt)

Plosses power incurred to cover RES losses (watt)

Pm power sent to motor unit of pump (watt)

Pn Available net power (watt)

hs vertical distance between LR and UR (m)

PNS deficit power not served (watt)

PoutPV solar array output power (kW)

Pp power available for pump(watt)

Ppr pump rated power (watt)

Ppv power produced by solar subsystem

PRE/l power directly supplied by RE generators to load

(Continued on next page)
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Continued

Symbol Definition

Pti net deficit power sent to hydro turbine unit (watt)

Pto hydro turbine power output (watt)

Ptr hydro turbine rated power (watt)

Pwt power produced by WT subsystem

Qp pump flow rate (m3/sec)

Qt hydro turbine flowrate (m3/sec)

Qtr hydro turbine rated flowrate (m3/sec)

Re reynold number

R interest rate (%)

SOCb battery storage SOC

SOCmin minimum SOC

SOCmax maximum SOC (100 %)

Tamb ambient temperature (
�
C)

TPV PV module cell temperature (
�
C)

TSTC PV module cell temperature under standard test conditions(
�
C)

tvlo turbine valve openness

M dynamic viscosity of water (8.9 * 10-4 pa.s)

V water velocity (m/s)

Vb nominal battery voltage

YPV solar array rated power (kW)

hc BS charging efficiency (%)

hd BS discharging efficiency (%)

hm motor efficiency (%)

hp pump efficiency (%)

ht hydro turbine efficiency (%)

cb BS energy capacity

cur volume of water in the upper reservoir (m3)

curv upper reservoir volume (m3)

P water density (997 kg/m3 at 25 oC)

E absolute roughness (mm)

Acronyms

BS battery storage

COE cost of energy

DSF demand-supply fraction

EMS energy management strategy

ESS energy storage system

GWO grey wolf optimizer

LR lower reservoir

NPC net present cost

PHS pumped hydro storage

PV solar photovoltaic

BS battery storage

COE cost of energy

DSF demand-supply fraction

EMS energy management strategy

(Continued on next page)
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Input data

The input data, i.e., wind speed, solar irradiance and load demand, is presented in the supplemental infor-

mation (see Section S2). Themathematical modelling of PV and wind energy generation is comprehensively

discussed in the supplemental information (see Section S2 & (Javed et al., 2019b; Adaramola et al., 2014)).

System description

An off-grid RES is employed for the developed methodology. The proposed RES contains RE generators

(solar and wind), ESS (PHS and BS), an inverter, and a charge controller. The charge controller’s function is

to regulate, maintain and implement the developed methodology and take care of the whole system, i.e.,

avoid system breakdown/blackouts and voltage stability. Besides, based on the fed EMS, the charge

controller will drive the ESS seeing the available net energy, i.e., periods of energy surplus/deficit. Finally,

it will be decided whether there is a need for charging/discharging the ESS or no ESS will be activated for

that period. Frequent cyclic charging and discharging of ESS will occur, and RES will guarantee a sustain-

able power supply. The methodology is discussed in detail in the following subsections.

Battery-PHS model

This section contains each ESS component mathematical modeling details considering all types of opera-

tional and efficiency losses. The proposed mathematical model is an extended form of the model pre-

sented by Mousavi et al.(Mousavi et al., 2019). In the previous study, the PHS model is only presented

and experimentally validated. Meanwhile, in this study, the battery model is integrated. Design parameters

are optimized, and the developedmodel is embedded with a designed load to investigate the significance

of the created model for defined technical and economic indicators. Furthermore, the proposed model is

easy to replicate, and researchers can easily replicate the generated model for future studies.

Pump model

The flow rate of the pump (Qp) is a function of net surplus power provided by the charge controller. The

motor converts the available electrical input power (Pm) into mechanical pump power (Pp) with efficiency

hm. The motor efficiency hm is also a function of available power obtained from the efficiency-power curve

(provided by the manufacturers). The motor and pump efficiency curves can be easily found in the product

manuals (see Section S6). The available pump power can be modelled as:

Pp = Pm:hm (Equation 1)

hm = f ðPmÞ (Equation 2)

Continued

Symbol Definition

ESS energy storage system

GWO grey wolf optimizer

LR lower reservoir

NPC net present cost

PHS pumped hydro storage

PV solar photovoltaic

RE renewable energy

RES renewable energy system

RSR energy supplied by RE to energy supplied by system ratio

SC storage cost

SDR oversupply index (supply to demand ratio)

SOC state of charge

UR upper reservoir

WT wind turbine
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Qp is a function of mechanical power, available pump head (hp) and efficiency of the pump (hp). It is impor-

tant to note that pump efficiency is also a function of the flowrate and will be attained from the efficiency-

flowrate curve.

Qp =
Pp:hp

r:g:hp
(Equation 3)

hp = f
�
Qp

�
(Equation 4)

hp = ha + hpl (Equation 5)

In Equation 5, ha is the active head and hpl is the pump head loss that is explained in the penstock losses

model.

Hydro turbine model

The proposed hydro turbine model calculates the flowrate (Qt) required to satisfy the net deficit power (Pti)

indicated by the controller. This model starts with defining the level of openness of the turbine valve (tvlo)

that is placed at the outlet of UR. The turbine flow rate using the Bernoulli equation (for detailed descrip-

tion, see Section S3.2) can be modelled as:

tvlo =
Pti

Ptr
3 0:14 (Equation 6)

Qt = tvlo 3 at 3
ffiffiffiffiffiffiffiffiffiffi
2ght

p
(Equation 7)

ht = ha � htl (Equation 8)

Pto = Qt :ht :r:g:ht (Equation 9)

ht = f ðQtÞ (Equation 10)

where Ptr is the turbine rated power (w); ht is the available turbine head (m); htl is the turbine head loss that is

explained in the penstock losses model; and ht is the hydro turbine efficiency that is a function of turbine

flowrate, i.e., efficiency-flowrate curve. The value 0.14 is defined based on the employed hydro turbine

rated flowrate and efficiency range, i.e., efficiency-flowrate curve. The employed pump and hydro turbine’s

technical specifications are provided in supplemental information (Table S4).

Reservoir model

Figure 7 illustrates each subsystem model of ESS with all the equations used and inputs needed to run the

proposed model. A brief methodology is also described beside the figure that interprets the developed

PHS-BS model’s stepwise functioning. The reservoir model calculates the available water volume in the

UR that is a function of incoming and outgoing flow.

curðtÞ = curðt�DtÞ+Qp:Dt �Qt :Dt (Equation 11)

Active head (ha) for the pump and hydro turbine can be calculated using the water level in the reservoirs.

ha = hs + hurw + hlr � hlrw (Equation 12)

hurw =
curðtÞ
curv

3 hur (Equation 13)

The specifications of all head terms used in the mathematical modelling of PHS are described in supple-

mental information (Section S3.1). This model also considers the water level in the LR (hlrw) but depends

on the incoming and outgoing flow from LR, geographical feature, and LR area, i.e., island, well, or small

canal. If the LR water level does not change, the related terms can be ignored from the reservoir model.

Penstock losses model

The penstock losses model calculates the head losses (hpl,htl) that are the function of pipe flowrate and

fitting losses (The numerical value of fitting losses largely depends on the type of fitting, degree of open-

ness, i.e., fully/partially open valves, and diameter to flowrate ratio. The specification of penstock employed

in this study for the pump and the hydro turbine is given in the supplemental information [Table S13])

(Shammas and Wang, 2015).

hlosses =

�
f
L

D
+

X
Kfittings

�
:
v2

2g
(Equation 14)
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where f is a friction factor and can be calculated using well known Colebrook equation (Application of Co-

lebrook equation for the proposed PHSmodel is discussed in the supplemental information [Section S3.2]);

L is the length of pipe; D is the pipe diameter; Kfittings is the resistance coefficient of fittings and v is the

velocity of water. Figure 7 shows all the equations needed to calculate penstock losses as well as inputs

and outputs of the model.

Battery storage model

Batter storage is used as supplementary storage in the proposed PHS-BS model to strengthen the off-grid

RES reliability. Many literature studies have reported the complementary characteristics of BS and PHS(Ma

et al., 2015; Javed et al., 2020). For instance, the battery has a high power density and response time that

can be used tomeet small surplus/deficit power. Meanwhile, it will reduce the start/stop numbers of pump/

turbine and increase PHS machinery life, as PHS accounts for high storage capacity. In the proposed setup,

BS will be derived by the controller based on the available net power and state of charge (SOC) of the BS.

There will be continuous charging and discharging cycles of BS based on the defined maximum and min-

imum battery power (Pb) constraints (For technical figures of employed battery, see supplemental informa-

tion Table S5).

Pb =

�
Pmin =Nb:min½0; ðVb:Ib:ðSOCmin � SOCbÞÞ�
Pmax =Nb:max½0; ðVb:Ib:ðSOCmax � SOCbÞÞ� (Equation 15)

where Nb is the optimization decision variable for BS. Available BS energy capacity and state of charge are

modelled as:

cbðtÞ =

8>>>><
>>>>:

cbðt � DtÞ+
Z t

t�1

BSc :hc :dt ðPn
+ Þ

cbðt � DtÞ+
Z t

t�1

BSd :hd :dt ðPn
�Þ

(Equation 16)

SOCb =
cbðtÞ
cb

3 100 (Equation 17)

Energy management strategy

Energy management strategy for off-grid RES has vital importance, especially when there are more than

one dispatchable sources and a significant demand-supply mismatch. The mathematical models of solar

and wind turbine subsystem are discussed in supplemental information (Section S2.1). The off-grid sys-

tem’s energy management is governed by the charge controller to regulate, improvise, and alarm during

unusual situations, i.e., blackouts or failures. Figure 7 shows the required inputs to the controller and starts

with calculating the available net power (Pn).

Pn =

�
Pn

+ for Ppv +Pwt>Pl

Pn
� for Ppv +Pwt<Pl

(Equation 18)

Positive net power ðP +
n Þwill drive the ESS in chargingmode and ðP�

n Þ shows that there is a power deficit and

additional power needed from ESS to meet the demand. During the periods of surplus and deficit power,

the pump and turbine will be activated based on the allowable power range that can be presented as (Sha-

bani et al., 2020; Javed et al., 2020):

Pm =

�
max

�
Pn

+ ;0:253Ppr

�
min

�
Pn

+ ;1:253Ppr

� (Equation 19)

Pti =

�
maxðjPn

�j ; 0:253Ptr Þ
minðjPn

�j ; 1:253Ptr Þ (Equation 20)

The BS will cover the net power that the pump and hydro turbine did not cover due to the power range and

SOC of the PHS. Moreover, besides the power range, the net power partially covered by the hydro turbine/

pump (due to losses and SOC) will also be satisfied by the BS. If BS is unable to meet the power deficit due

to low SOC, it will be considered as energy not served.

BSc =

�
Pn

+ � Pm for
�
Pn

+>1:25Ppr

�
Pn

+ for
�
Pn

+<0:25Ppr

� (Equation 21)
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BSd =

� jPn
�j � Pto for ð0:25Ptr%jPn

�jÞ
jPn

�j for ðjPn
�j<0:25PtrÞ (Equation 22)

It is important to note that the controller will derive the BS as the primary storage for the period when the

SOC of PHS is 100% or at a minimum level. Finally, the power balance of the whole RES can bemodelled as:

Pl + Pm +BSc +Plosses +Pdump =Ppv +Pwt +Pto +BSd (Equation 23)

where Plosses refers to the power incurred to cover the whole RES losses, i.e., penstock and efficiency.

Multi-objective optimization

Many literature studies have recently used heuristic algorithms to optimize the capacity sizing of distrib-

uted RES(Khare et al., 2016). In this study, different multi-objective optimization cases are developed

and optimized using the grey wolf optimizer (Mirjalili et al., 2014, 2016). A thorough discussion about

the employed optimizer’s structure and working mechanism in the multi-objective environment is pre-

sented in supplemental information (Section S4). Figure S6 briefly illustrates the functioning of the opti-

mizer with the integration of the developed methodology (see also the attached Video S1: Demonstration

of exploration and exploitation phases in multi-objective optimization). A multi-objective minimization

problem can be defined as:

minf ðxÞ : G/Rk =

8<
:

f1ðxÞ : G/R

:::
fkðxÞ : G/R

for kR2 (Equation 24)

where G/R represents the feasible region defined by the range of decision variable values and applied

constraints, while f1. fk are the set of objective functions. Several sets of objective functions are optimized

to evaluate the variation in their values with respect to each other, the relation between them and the

optimal configuration size. Three technical and two economic objectives are considered. The technical ob-

jectives are the maximization of the demand-supply fraction (DSF), minimization of over-supply (SDR), and

maximization of the ratio of energy supplied by RE to the energy provided by the RES (RSR); while economic

objectives are minimization of cost of energy and storage cost.
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Supplemental results  S1 

 Supplemental results 

 

Table S1. Specification of the configurations used for energy and cost-share analysis [Related to 

Figure 3]. 

 PV/WT UR Dp/Dt BS Pump/turbine COE/SC SDR/RSR 

 (kW) (m3) (mm) (kWh) (W) $/kWh (ratio) 

DSF = 95% 5.3/8.0 1010.6 91.5/90.5 3.9 3300/768 0.27/0.16 3.4/80.0 

DSF = 90% 4.8/5.9 733.0 96.3/90.1 1.9 3300/768 0.22/0.13 2.9/81.8 

  

      

Figure S1. RES optimization with three objectives at reliability level of 90%. The 

description of the figure is presented with Figure 2 [Related to Figure 2]. 



Mathematical modelling of system components  S2 

S2 Mathematical modelling of system components 

S2.1 Photovoltaic module 

The solar PV array with 1 kW capacity is assumed in this study. The technical and cost details of 

the solar module are provided in Table S2. The relationship between incident irradiance and PV 

module output can be modelled as (Adaramola et al., 2014; Javed et al., 2019): 

 
 

 . . . 1
PV

outPV PV PV PV PV STC

STC

G t
P t Y f T T

G


 
      

 
    

 
   20

800

PV STC

PV amb

G t T
T t T

 
        

where  outPVP t  is the output power of a PV array;
PVY  is the rated power of PV array (kW); PVf  

is the solar module derating factor (%);  PVG t  is the incident irradiance (kW/m2); STCG  is the 

standard irradiance (1 kW/m2); PV  is the temperature coefficient of power  %
C

; 
PVT  is the 

PV cell temperature  C ; 
STCT  is the temperature of PV cell under standard test conditions  C

; and ambT  is the ambient temperature  C . Sometimes, for normal temperature areas like islands, 

the PV module's surface temperature can be neglected and PV  assumed zero (Adaramola et al., 

2014). Therefore, PV output power equation can be simplified to; 

 
 

. .
PV

outPV PV PV

STC

G t
P t Y f

G

 
  

 
    

   PV PV outPVP t N P t      

where PVN  is the decision variable and will be optimized with the developed objective function 

and  PVP t  represents the total output power of the PV subsystem. 

 



Mathematical modelling of system components  S2 

Table S2. Specification of solar subsystem [Related to STAR Methods] (Guezgouz et al., 2019; 

Javed et al., 2019).  

Parameter Value unit 

Model polycrystalline 

Rated power 1 kW 

Derating factor 80 % 

Capital cost 896 $/kW 

Operation and maintenance cost 15 $/kW-year 

Lifetime 25 years 

Efficiency 16.9 % 

 

S2.2 Wind turbine 

A 2 kW rated capacity WT is employed for this study. All WT specifications obtained from the 

manufacturer are provided in Table S3. Figure S2 illustrates the accuracy of the eight-degree 

polynomial equation used in this study to obtain the output power using available wind speed data.   
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Figure S2. Wind turbine power curve used in study. The equivalent polynomial equation of the 

provided curve was made and employed in the model [Related to STAR Methods]. 

 



Mathematical modelling of system components  S2 

Table S3. Specification of wind turbine subsystem [Related to STAR Methods]. 

Parameter Value unit 

Model SW-2kW 

Rated power 2000 watt 

Maximum power 2950 watt 

Cut-in wind speed 2.5 m/s 

Cut-off wind speed 25 m/s 

Capital cost 998  $/kW 

Operation and maintenance cost 20  $/kW-year 

Lifetime 20 years 

 

S2.3 Input data 
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Mathematical modelling of system components  S2 
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Figure S3. Designed load demand considering the daily and hourly randomness (a) Hourly load 

profile of a typical day (b) one-year load demand profile [Related to STAR Methods]. 
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Figure S4. One-year renewable energy sources data used in this study (a) one year monthly solar 
irradiance (b) one year monthly wind velocity [Related to STAR Methods]. 



Pumped hydro storage model  S3 

S3 Description of pumped hydro storage model 

Table S4. Technical parameters of PHS components * [Related to STAR Methods]. 

Component Parameters 

Pump 
Southern cross, type: MfD47A 

Impeller diameter: 211mm, Motor: 3kW 

Turbine 
Power spout, Type: TRG 

Rated: 768 watt, 15.3 liter/sec, 10m 

Penstock 
Material: carbon steel, Roughness   : 0.005, 

Length: 12.5 m 

Reservoir Height: 2m, 8.5 msh    

 

 

S3.1 Specification of head terms 

ah    total/net available head for pump/turbine 

lrwh    available water height in the LR 

lrh    total height of LR 

sh    static vertical distance between reservoirs 

urh    total height of UR 

urwh    available water height in UR 

 

 

                                                           
* The technical specifications of the PHS components used in this study can be obtained from the authors for academic 

purpose. 
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Figure S5. PHS reservoirs layout  

[Related to Figure 7]. 



Pumped hydro storage model  S3 

S3.2 Calculation of hydro turbine flow rate 

Bernoulli equation (Mousavi et al., 2019): 

 
2 2

1 1 2 2
1 2

1 22 2
tl

P v P v
h h h

g g g g 
         

It is important to note that hydro turbine output is considered as point 1  1 0h   and point 2 is the 

water surface of the UR (Figure S5). Moreover, atmospheric pressure is assumed at point 2 and 

2 0v  . Meanwhile, the pressure at point 1 is a function of water height in LR. Therefore, Bernoulli 

equation can be simplified to: 

2

1
2

2
lrw tl

v
h h h

g
         

Now, ah  for the turbine can be calculated as: 

 
2

1
2 1 2 2

2
a tl lrw a tl t t

v
h h h h v g h h v gh

g
            

where 
1v  represents the hydro turbine water velocity  1 tv v . 

 

Colebrook Equation (Shammas and Wang, 2015): 
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Pumped hydro storage model  S3 

Table S5. Technical parameters of battery storage (Ma and Javed, 2019) [Related to STAR 

Methods]. 

Parameter Value 

Battery nominal voltage  bV   2 V 

Battery nominal current  bI   1000 A 

Maximum depth of discharge 70% 

Roundtrip efficiency 86% 

Lifetime throughput 3326 kW 

Lifetime 5 years 

 



Gray wolf optimizer  S4 

S4 Grey wolf optimizer 

Table S6. Pseudocode of multi-objective grey wolf optimizer [Related to STAR Methods]. 

algorithm: Multi-objective grey wolf optimizer* 

1:  input: Irradiance, wind and load data, cost and technical details of  system components 

2:  GWO parameters: a = [2,0], nVar = 7, max iter = 100, Archive size = 50 

3:  initialization: population =  1,2,3,...,iX i n , A, and C  

4:                         Calculate objective function values for each population search agent 

5:                         Archive the non-dominated solutions 

6:                         Select the leaders  , ,    from archived solutions  

7:  while   the end condition is not met 

8:           for  1,2,3,...,iX i n  

9:                  update the position 

10:        end for 

11:  update A and C 

12:  calculate the objective values with updated positions for  1, 2,3,...,iX i n  

13:  get non-dominated solutions and update the archive 

14:       if   the archive is full (maximum size = 50) 

15:               omit current archive member using a grid mechanism and add a new solution 

16:       end if 

17:       if the added archived solution is located outside the hypercubes 

18:            update the grids to cover the new solution 

19:       end if 



Gray wolf optimizer  S4 

20:  select the leaders  , ,    from archived solutions 

21:  t = t+1 

22:  end while 

23:  return archive 

*For more details of GWO, besides the given description, readers are also advised to consult the reference literature 

studies (Mirjalili et al., 2014; Mirjalili et al., 2016). 
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Figure S6. Application of gray wolf optimizer with developed energy system model [Related to 

Figure 7 & STAR Methods]. 



Description of objectives  S5 

S5 Description of objectives 

S5.1 Demand-supply fraction (DSF) 

This objective reflects the reliability/autonomy of the RES. Each time, the optimizer will maximize 

its value by seeing the range of decision variables and constraints. A set of non-dominated 

solutions will be archived (due to the multi objectives). 

24 365

H
DSF 


   

where H is the number of hours in a year during which the RES covered the demand. 

S5.2 Oversupply index (SDR) 

SDR is a ratio of the total energy generated/supplied by the RES to the energy demand met for a 

given period. It shows the amount of energy generated by RE generators not used to meet the load 

or stored in the ESS due to 100% SOC. 
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S5.3 Renewable energy system self-sufficiency (RSR) 

RSR is a ratio between the useful energy directly supplied by the RE generators to meet the load 

demand and the RES’s total useful energy to satisfy the demand during a specific period. In other 

words, it is an index to check the mismatch between available RE sources and the demand of a 

particular place. It also shows the role of ESS in the RE environment, especially when RES is off-

grid. 

RE l

RE l ESS l

P
RSR

P P



 





 

   

 

 



Description of objectives  S5 

S5.4 Cost of energy (COE) 

COE is a benchmark index for off-grid RES and has been extensively used in literature to assess 

the monetary benefits (Javed et al., 2021). COE estimates the cost of energy (in $/kWh) produced 

by the RES during a specific period (20 years for this study) and can be modelled as: 
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where D NSE E  is the net served energy. COE can be calculated by dividing the whole system 

cost, i.e., initial, replacement, operation and maintenance cost, with the systems’s total useful 

energy. 

S5.5 Storage cost (SC) 

Storage cost is considered as an economic parameter in this study to analyze the significance of 

ESS in off-grid RES and its relation with other system evaluation indicators/objectives. SC of a 

RES can be modelled as: 

ESS ESS

ESS

C S
SC

E


    

where ESSC
is the storage capital cost (it includes all types of cost, i.e., maintenance and 

replacement); ESSS
 is the storage capacity (kWh); and ESSE

 is the total energy stored in the ESS 

during a given period. 

Table S7. Economic parameters of the energy storage subsystem [Related to STAR Methods]. 

Component Value* 

Pump (3.3 kW) + pipe cost 388 $ 

PHS civil work + BOS cost 14 $/m3 

Hydro turbine (768 watt) + pipe cost 526 $ 



Description of objectives  S5 

PHS O&M cost** 20 $/kW-year 

BS cost 274 $/kWh 

BS O&M cost 2 $/kWh-year 

Inverter cost 336 $/kWh 

*The cost values of ESS components are based on the Chinese market and information provided by the manufacturers. 
**O&M cost refers to operation and maintenance cost. 
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S6 Pump and hydro turbine data provided by the manufacturers 

 

 
Figure S7. Pump flowrate-efficiency curve provided by the manufacturer [Related to STAR 

Methods]. 
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Figure S8. Pump motor data report provided by the manufacturer [Related to STAR Methods]. 
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Figure S9. Hydro turbine data provided by the manufacturer (output against available flow rate 

and head [Related to STAR Methods]. 
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