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ABSTRACT: The description of genetic population structure over a species’ geographic range can
provide insights into its evolutionary history and also support effective management efforts.
Assessments for globally distributed species are rare, however, requiring significant international
coordination and collaboration. The global distribution of demographically discrete populations
for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of
appropriate management units. Here, we present the first circumglobal assessment of mito -
chondrial genetic population structure across the species’ range in the Southern Hemisphere and
Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region
that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals
sampled across 14 breeding stocks and subpopulations currently recognized by the International
Whaling Commission. We assess genetic diversity and test for genetic differentiation and also
 estimate the magnitude and directionality of historic matrilineal gene flow between putative pop-
ulations. Our results indicate that maternally directed site fidelity drives significant genetic popu-
lation structure between breeding stocks within ocean basins. However, patterns of connectivity
differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal
movements on feeding areas. The number of population comparisons observed to be significantly
differentiated were found to diminish at the subpopulation scale when nucleotide differences
were examined, indicating that more complex processes underlie genetic structure at this scale.
It is crucial that these complexities and uncertainties are afforded greater consideration in man-
agement and regulatory efforts.

KEY WORDS:  Humpback whale · International Whaling Commission · Management unit ·
 Population structure · Southern Hemisphere · Arabian Sea
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INTRODUCTION

Multiple biotic and abiotic factors operating at
 various spatial scales affect connectivity and rates of
gene flow, thereby influencing the genetic popula-
tion structure of a species across its geographic range
(Anderson et al. 2010). Sufficient sampling at the
scale of a species’ range is therefore necessary to test
for the existence of, and explain, geographic pat-
terns. Non-representative sampling may result in a
disproportionate level of importance being afforded
to local processes in terms of their influence on the
spatial structuring of populations, whereas processes
operating over broader spatial scales remain unde-
tected (Petit 2008). For globally distributed species,
hemisphere-wide genetic studies provide an unpar-
alleled perspective on the distribution and connectiv-
ity of population units (e.g. Peacock et al. 2015). As -
sessments of population structure at the hemisphere
scale are rare, however, as they require international
coordination and collaboration between multiple
governmental, managerial, and scientific entities.

Humpback whales Megaptera novaeangliae are
globally distributed baleen whales that undertake
annual long-distance migrations between warm low-
latitude breeding areas and cold, highly productive
feeding areas near the poles (Mackintosh 1942). The
International Whaling Commission (IWC) defines
demographically discrete populations of humpback
whales for management purposes as management
units (or breeding stocks) that ‘are often identified by

[significant] differences in frequencies of [mitochon-
drial DNA] mtDNA haplotypes or nuclear alleles, re -
gardless of the underlying phylogeny, i.e., evidence
of limited gene flow (Moritz 1994), although they can
also be drawn along non genetic lines, e.g. through
geography or demography’ (Jackson & Pampoulie
2012, p. 2). In the Southern Hemisphere, the species
is managed by the IWC as 7 breeding stocks, termed
A (BSA) through G (BSG), that migrate in the sum-
mer to feeding areas in the Southern Ocean (Fig. 1).
An eighth non-migratory Arabian Sea humpback
whale (ASHW) stock occurs in the northern Indian
Ocean and is considered part of our analysis due to
its complete geographical, biological, and evolution-
ary isolation from all other Northern Hemisphere
breeding stocks (Pomilla & Amaral et al. 2014). Evi-
dence from a number of regional genetic studies
 suggests more complex population structure than
accounted for in the current stock designations,
results that echo  similar findings for other highly
migratory cetacean species in both hemispheres (e.g.
Mendez et al. 2011, Costa-Urrutia et al. 2013).

BSA, located off Brazil, shows relatively high di -
versity and no genetic substructure within the stock
in a data set of 9 microsatellites (Cypriano-Souza
et al. 2010), despite direct connectivity (of 1 individ-
ual) recorded between BSA and the distant BSC in
the western Indian Ocean and song similarity
between BSA and BSB in the eastern South Atlantic
(Darling & Sousa-Lima 2005, Stevick et al. 2011). In
contrast, BSB shows evidence of complex population
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substructure. Two substocks, BSB1, which breeds off
Gabon, and BSB2, which seasonally feeds off and
migrates past western South Africa (and which
shows lower than expected direct connectivity with,
and some genetic differentiation from, BSB1 based
on the mtDNA control region and 10 microsatellites),
are recognized (Rosenbaum et al. 2009, 2014, Car-
valho et al. 2014, Kershaw et al. 2017). Fine-scale
temporal genetic substructure has been observed
within BSB, consistent with the temporal segregation
of migrating whales on the basis of age, sex, and
reproductive status (Carvalho et al. 2014). Such vari-
ation may influence the interpretation of the number
of demographically distinct populations due to tem-
poral sampling effects (Carvalho et al. 2014).

BSC is currently divided by the IWC into 4 sub-
stocks (BSC1−BSC4), although evidence of consider-
able migrant exchange between 3 of the substocks
has emerged based on mtDNA control region and
microsatellite data as well as satellite telemetry
(Rosenbaum et al. 2009, Ersts et al. 2011, Fossette
et al. 2014, Kershaw et al. 2017), suggesting rela-
tively fluid exchange between the Mascarene region
(BSC4), the Madagascar ridge (BSC3), and the Mo -
zambique channel (BSC2). Gene flow between BSB
and BSC is also apparent (Best et al. 1998, Pomilla &
Rosenbaum 2005, Rosenbaum et al. 2009, Kershaw et
al. 2017), and further sampling is needed to explore
the possibility of a westward directional bias (i.e.
from BSC to BSB).

Discovery tag recoveries imply that humpback
whales from western Australia (BSD) are likely to
mix with individuals from eastern Australia (BSE1)
on Antarctic feeding grounds (Chittleborough 1965,
Dawbin 1966). Levels of genetic connectivity are
 little known, however, and a better understanding
of relationships between these breeding stocks is
needed; nonetheless, some low but significant levels
of genetic differentiation have been shown based on
mtDNA control region sequences and 10 microsatel-
lite loci (Schmitt et al. 2014).

Populations in the western Pacific Islands of
Oceania, comprising substocks in New Caledonia
(BSE2), Tonga (BSE3), the Cook Islands (BSF[CI]),
and French Polynesia (BSF[FP]), show limited de -
mographic exchange and a high degree of fidelity
to breeding areas based on mtDNA control region
se quences (Olavarría et al. 2007) and extensive
photo-identification data (Garrigue et al. 2002,
2011, Franklin et al. 2014), supporting the designa-
tion of distinct population units in this region. How-
ever, fully resolving the boundaries of these stocks
and subpopulations will require the integration of

acous tic, genetic, photo-identification, and satellite
tele metry data (Garland et al. 2015).

BSG, located off northwestern South America, is
thought to be relatively isolated but represents some
mitochondrial haplotypes that are characteristic of
North Pacific humpback whale populations, suggest-
ing historic or ongoing trans-equatorial gene flow
(Baker & Medrano-Gonzalez 2002). Finally, the ASHW
population is considered to be small and extremely
isolated and shows the greatest genetic differentia-
tion from all the other Southern Hemisphere breed-
ing stocks based on mtDNA control region sequences
and microsatellite data (Rosenbaum et al. 2009,
Pomilla & Amaral et al. 2014).

Despite the information contributed by regional
and local analyses in specific ocean basins, a compre-
hensive understanding of humpback whale popula-
tion structure can only be obtained by considering all
breeding stocks concurrently in the same hemi-
sphere-wide analysis. Here, we combine new data
not previously subject to peer review with published
regional data sets, comprising more than 3000 indi-
viduals sampled across 14 locations, and undertake
the first assessment of humpback whale mtDNA pop-
ulation structure across the entire species’ range in
the Southern Hemisphere and Arabian Sea. We
explore genetic structure at the population (breeding
stock) and subpopulation (substock) scale, with and
without the a priori designation of sampling location,
and interpret the results in the context of existing
information from studies conducted at the regional
and local scales. These analyses provide new insights
into potential circumpolar drivers of humpback
whale population structure that serve to assist the
interpretation of previous findings.

Prior to their protection by the IWC in 1963, some
215 000 humpback whales were hunted in the South-
ern Hemisphere as a result of open-boat (i.e. 18th and
19th centuries) and more recent 20th century modern
whaling, including heavy illegal Soviet whaling
(Rocha et al. 2014). The species is afforded the
strictest trade regulations under Appendix I of the
Convention on International Trade in Endangered
Species of Wild Flora and Fauna and while globally
the species is listed as Least Concern on the Red List
managed by the International Union for Conserva-
tion of Nature, populations in Oceania and the Ara-
bian Sea are each considered to be Endangered.
Recent assessment by the Red List authority in South
Africa also considers the B2 stock to be Vulnerable.
While a number of populations have shown signs of
recovery (Gales et al. 2011), existing uncertainties
regarding the delineation of humpback whale popu-
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lations preclude a robust recovery assessment for all
regions. A secondary aim of this study is to inform
current assessments and the appropriate manage-
ment of this species.

MATERIALS AND METHODS

Sample collection and DNA sequencing

We assembled a database of previously published
mtDNA control region sequences collected from bi -
opsy samples or sloughed skin from 3009 individuals
across 14 sampling sites representing all the known
breeding stocks in the Southern Hemisphere and
Arabian Sea (Fig. 1; no genetic samples were avail-
able from BSC4 at the time for inclusion, and so this
substock is not included in this analysis). All research
undertaken followed local regulations and guide-
lines.

Sample collection, preservation methods, total ge -
nomic DNA extraction, amplification, and sequen-
cing of the mtDNA control region are described else-
where (Olavarría et al. 2007, Rosenbaum et al. 2009,
Anderson 2013), and sample information is detailed
in Table 1. Rigorous error-checking procedures were
carried out by each respective research group,
enabling the integration of these data sets for the
subsequent analysis (Morin et al. 2010). All 3009
sequences were aligned in Geneious Pro 4.6.5 (Bio-
matters) using MUSCLE 3.6 (Edgar 2004) with a
maximum of 10 iterations. The consensus sequences
for the contributing data sets (Olavarría et al. 2007:
470 bp; Rosenbaum et al. 2009: 486 bp; Anderson
2013: 470 bp) do not fully overlap on the mtDNA
genome of Megaptera novaeangliae, and so the final
consensus sequence panel for the combined sample
was trimmed to 311 bp (bp position 15 552−15 863 in
the mtDNA genome [ACCN: AP006467.1]).

Genetic diversity and differentiation

We computed haplotype and nucleotide genetic
diversity for each breeding stock (Nei 1987) by
grouping samples based on their sampling location
using DnaSP v.5 (Librado & Rosaz 2009). Genetic
diversity indices (number of haplotypes, haplotype
diversity, nucleotide diversity with Jukes-Cantor cor-
rection, and average number of average pairwise
nucleotide differences among sequences) were cal-
culated in DnaSP. To account for the effect of differ-
ent sample sizes on the number of haplotypes identi-

fied, rarefaction curves were constructed using the
function rarefaction (Jacobs 2011), which makes use
of the function rarefy in the vegan package (Oksanen
et al. 2016) in R v.3.2.2 (R Core Team 2016). Rarefy
calculates the expected number of species in a sub-
sample of the specified size, as defined in (Oksanen
2016).

We investigated population structure at 2 different
spatial scales. The data were first partitioned accord-
ing to breeding stock (A, B, C, D, E1, E [comprising
E2 and E3], F, G, ASHW) and then into subpopula-
tions within breeding stocks (A, B1, B2, C1, C2, C3,
D, E1, E2, E3, F [CI], F [FP], G, and ASHW; Fig. 1).

The spatial hierarchical structure of the data
among breeding stocks and subpopulations was
evaluated through an analysis of molecular variance
(AMOVA) (Excoffier et al. 1992) in Arlequin v.3.5.1.2
(Excoffier et al. 2005). Pairwise genetic differentia-
tion between stocks and substocks was calculated
using fixation indices based on haplotype frequen-
cies (FST; Weir & Cockerham 1984) and genetic diver-
gence (ΦST; Excoffier et al. 1992). Statistical signifi-
cance was evaluated using the null distribution
generated from 10 000 non-parametric random per-
mutations of the data at the 0.05 significance level.
No correction for simultaneous tests was applied.

We tested for genetic isolation by geographical dis-
tance (isolation by distance, IBD; Wright 1943) by
exploring correlations between FST (and the Slatkin
linear FST) statistics and the shortest geographical
distance between the approximate centroids of all
breeding stocks (Y1 matrix). We used Mantel tests
with 10 000 permutations to evaluate significance of
such spatial−genetic distance correlations, as imple-
mented in Arlequin (Excoffier et al. 2005).

Sequences were collapsed to haplotypes, and the
alignment was converted to Roehl data format (.RDF)
using DnaSP v.5 (Librado & Rosaz 2009). Median-
joining haplotype networks, both with and without
maximum parsimony post-processing, were cal -
culated using NETWORK v.4.6.0.0 (Bandelt et al.
1999, www. fluxus-engineering.com) with ε = 0 (i.e.
zero expected homoplasy showing all possible con-
nections) and all variable sites weighted equally.
Median-joining networks have been recommended
over maximum parsimony approaches in intraspeci-
fic studies, as they capture a greater degree of ambi-
guity, thus enabling more realistic interpretations
(Cassens et al. 2005).

Genetic structuring was further investigated using
both a principal component analysis (PCA) and a
spatial PCA (sPCA) (Jombart et al. 2008). These
analyses are not dependent on an underlying popu-
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lation genetic model and therefore offer a comple-
mentary approach to fixation indices. The 2 methods
were implemented in the ade4 v.1.7-3 (Dray & Du -
four 2007) and the adegenet v.2.0.0 (Jombart 2008)
packages in R (R Core Team 2016), respectively. PCA
is a general method for representing highly dimen-
sional data in a smaller number of dimensions,
thereby unveiling the main factors explaining the
structure of genetic variation in large samples. sPCA
explicitly incorporates spatial information in the
investigation of genetic variability (Jombart et al.
2008). We carried out the sPCA by constructing a
connection network using a matrix of the inverse
Euclidian distance between substock sampling loca-
tions. This network was used for the calculation of
Moran’s I. sPCA optimizes the product of the vari-
ance of individual scores, based on the allelic fre-
quencies of substocks, and of Moran’s I to summarize
genetic variability in a spatial context. Tests for
global and local spatial structure were also imple-
mented with 9999 permutations (Jombart et al. 2008).

Migration rates between breeding stocks

To estimate the degree and directionality of ma -
trilineal gene flow between contiguous breeding
stocks, we used the maximum likelihood procedures
implemented in MIGRATE software (Beerli & Felsen-
stein 2001). MIGRATE provides estimates of M (m/µ)
and θ (2Neµ), where M is the mutation-scaled immi-
gration rate, θ is the mutation-scaled population size,
m is the immigration rate, µ is the mutation rate, and
Ne is the effective population size. The product θ M
results in the number of im migrants per generation
2Nem. We adopted a maximum likelihood analysis
strategy and migration matrix model allowing for
asymmetric migration rates and variable θ between
breeding stocks and variable sub population sizes
(without subsampling). We se lected an inheritance
scaler selected for θ of 1.00. Our data were first tested
with default starting values for the population size
and M parameters in 20 in dependent replicates of
the Markov chain scheme: each replicate employed a
static heating scheme and comprised 15 short chains
(dememorization: 10 000 genealogies; recorded ge -
nealogies: 100; sampling increment: 100) and 3 long
chains (dememorization: 10 000 genealogies; re -
corded genealogies: 1000; sampling increment: 100).
We monitored acceptance rates of genealogies (and
other parameter updates), effective sample sizes,
and autocorrelations between parameters through-
out the run. Using as initial parameters the consis-

tent resulting values from these 20 initial runs, and
employing the same Markov chain scheme, we
launched 100 new runs to estimate the degree and
directionality of gene flow between our stocks of
interest at the breeding stock level. Convergence of
Markov chain Monte Carlo algorithms was assessed
using the program Tracer (Rambaut & Drummond
2007), which plots the log probability of data given
parameters across the run.

RESULTS

Genetic diversity and population structure

A total of 184 haplotypes were identified among
the 3009 samples from the 14 sampling locations
based on 74 polymorphic sites. Because the consen-
sus sequence of the combined data set was of a
shorter length (311 bp) than each of the contributing
data sets (470−474 bp), genetic diversity measures
were lower than those reported for region-specific
analyses in Olavarría et al. (2007), Rosenbaum et al.
(2009), and Anderson (2013). We found genetic di -
versity to vary broadly across breeding stocks at the
regional level (Table 1). The ASHW population
showed the lowest overall diversity (n = 38; number
of haplotypes, H = 8; number of haplotypes after rare -
faction, Hr25 = 6.256 [SE = 1.009]; haplotype diversity,
h = 0.691 [SD = 0.052]; nucleotide diversity, π = 0.024
[SD 0.013]), and BSG showed low diversity relative to
its sample size (n = 148, H = 25, Hr25 = 11.818 [SE =
1.667], h = 0.894 [SD = 0.015], π = 0.023 [SD = 0.012]).
BSB showed high diversity and relatively low vari-
ance for haplotypic diversity despite not being the
largest sample (n = 585, H = 94, h = 0.983 [SD =
0.001], π = 0.021 [SD = 0.011]); however, following
standardization, the number of haplotypes (Hr25 =
19.199 [SE = 1.870]) was comparable to BSA (Hr25 =
18.504 [SE = 1.827]), BSC (Hr25 = 19.339 [SE = 1.831]),
and BSE (Hr25 = 18.264 [SE = 1.846]). At a subpopula-
tion level, BSB2 and BSC1 both exhibited high num-
bers of haplotypes despite their relatively small sam-
ple sizes, including after standardization, although
variances for haplotypic diversity were moderate
(BSB2: n = 119, H = 53, Hr25 = 19.726 [SE = 1.781], h =
0.973 [SD = 0.006], π = 0.028 [SD = 0.014]; BSC1: n =
151, H = 57, Hr25 = 18.676 [SE = 1.865], h = 0.968 [SD
= 0.007], π = 0.029 [SD = 0.015]; Table 1).

At the breeding stock scale, AMOVAs were statis-
tically significant (FST = 0.029, ΦST = 0.166, p < 0.001
for both indices), and most fixation indices from pair-
wise breeding stock comparisons were statistically
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significant (p < 0.05; Table 2). All haplotype-based
indices (FST = 0.005−0.191) and most nucleotide-
based indices (ΦST = 0.003−0.016) were found to be
statistically significant (p < 0.05), except for the com-
parisons between stocks BSA-BSB-BSC-BSD and
BSC-BSD that resulted in non-significance (Table 2).
All subpopulation comparisons based on haplotype
information alone were statistically significant (FST =

0.001−0.191, p < 0.05), whereas sig-
nificance dropped markedly for vari-
ous pairwise comparisons when
nucleotide information was incorpo-
rated (ΦST = 0.003− 0.016), particu-
larly from BSB2 and BSC (Table 3).
No evidence of IBD between breed-
ing stocks was found [FST = p(rY1
rand > rY1 obs = 0.39, Slatkin FST =
p(rY1 rand > rY1 obs = 0.37), where
rand = random value, and obs =
observed value].

Median-joining networks showed
comparable re sults irrespective of
whether or not maximum parsimony
(MP) post-processing was included.
As expec ted, the median-joining
network without MP post-processing
captured a larger number of inferred
nodes and reticulations. However, as

the fundamental relationships be tween haplotypes
were not affec ted, only the more parsimonious net-
work with MP post-processing is shown (Fig. 2). No
geographic clustering of haplotypes was evident
across the network, with all breeding stocks and sub-
populations broadly distributed across the 184 haplo-
types, in cluding for the highly isolated ASHW popu-
lation (Fig. 2).
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A B C ASHW D E E1 F G

A 0.004 0.004 0.102 0.004 0.004 0.011 0.017 0.044

B 0.008 0.003 0.096 0.005 0.011 0.016 0.017 0.040

C 0.013 0.005 0.078 0.003 0.011 0.017 0.023 0.039

ASHW 0.146 0.126 0.112 0.094 0.112 0.127 0.141 0.157

D 0.017 0.013 0.011 0.138 0.009 0.017 0.017 0.038

E 0.020 0.018 0.018 0.140 0.013 0.005 0.010 0.041

E1 0.031 0.029 0.029 0.153 0.030 0.025 0.014 0.042

F 0.046 0.033 0.032 0.170 0.027 0.023 0.049 0.045

G 0.061 0.056 0.056 0.191 0.058 0.054 0.063 0.069

Table 2. Fixation indices among breeding stocks (regional analysis). FST values are
below diagonal; ΦST, above diagonal. All FST indices are significant, as evaluated
through 10000 random permutations of the data matrices (p < 0.05). ΦST values in bold
indicate non-significance. Cells are shaded in increasingly darker gray in proportion
to increasing values to aid visualization. Breeding stock and subpopulation abbrevia-

tions defined in Table 1

 0.004 0.004 0.102 0.004 0.004 0.011 0.017 0.044 

0.008  0.003 0.096 0.005 0.011 0.016 0.017 0.040 

0.013 0.005  0.078 0.003 0.011 0.017 0.023 0.039 

0.146 0.126 0.112  0.094 0.112 0.127 0.141 0.157 

0.017 0.013 0.011 0.138  0.009 0.017 0.017 0.038 

0.020 0.018 0.018 0.140 0.013  0.005 0.010 0.041 

0.031 0.029 0.029 0.153 0.030 0.025  0.014 0.042 

0.046 0.033 0.032 0.170 0.027 0.023 0.049  0.045 

0.061 0.056 0.056 0.191 0.058 0.054 0.063 0.069  

A B1 B2 C1 C2 C3 ASHW D E1 E2 E3 F (FP) F (CI) G

A 0.004 0.005 0.004 0.007 0.003 0.102 0.004 0.011 0.002 0.008 0.034 0.013 0.044

B1 0.009 0.000 0.004 0.001 0.003 0.095 0.005 0.017 0.009 0.015 0.025 0.019 0.041

B2 0.011 0.003 0.002 0.006 0.003 0.107 0.004 0.012 0.011 0.013 0.025 0.021 0.035

C1 0.018 0.006 0.008 0.002 0.000 0.091 0.003 0.014 0.007 0.014 0.036 0.021 0.038

C2 0.015 0.007 0.006 0.005 0.000 0.092 0.007 0.017 0.011 0.017 0.032 0.025 0.037

C3 0.012 0.007 0.006 0.004 0.001 0.074 0.003 0.019 0.008 0.015 0.037 0.020 0.041

ASHW 0.146 0.129 0.124 0.127 0.118 0.112 0.094 0.127 0.103 0.123 0.167 0.133 0.157

D 0.017 0.013 0.016 0.013 0.012 0.011 0.138 0.017 0.007 0.013 0.032 0.014 0.038

E1 0.031 0.029 0.030 0.031 0.031 0.029 0.153 0.030 0.009 0.004 0.027 0.013 0.042

E2 0.017 0.018 0.021 0.021 0.020 0.019 0.143 0.013 0.023 0.006 0.028 0.013 0.041

E3 0.026 0.022 0.025 0.022 0.023 0.023 0.145 0.016 0.030 0.009 0.027 0.005 0.045

F (FP) 0.054 0.041 0.045 0.036 0.048 0.042 0.187 0.039 0.060 0.046 0.031 0.020 0.045

F (CI) 0.049 0.035 0.041 0.030 0.042 0.038 0.175 0.027 0.049 0.032 0.023 0.025 0.054

G 0.061 0.057 0.059 0.059 0.062 0.057 0.191 0.058 0.063 0.055 0.058 0.079 0.073

Table 3. Fixation indices among breeding stocks (subpopulation analysis). FST values are below diagonal; ΦST, above diagonal.
All FST values are significant, as evaluated through 10 000 random permutations of the data matrices (p < 0.05). ΦST values in
bold indicate non-significance. Cells are shaded in increasingly darker gray in proportion to increasing values to aid visualiza-

tion. Breeding stock and subpopulation abbreviations defined in Table 1

 0.004 0.005 0.004 0.007 0.003 0.102 0.004 0.011 0.002 0.008 0.034 0.013 0.044 

0.009  0.000 0.004 0.001 0.003 0.095 0.005 0.017 0.009 0.015 0.025 0.019 0.041 

0.011 0.003  0.002 0.006 0.003 0.107 0.004 0.012 0.011 0.013 0.025 0.021 0.035 

0.018 0.006 0.008  0.002 0.000 0.091 0.003 0.014 0.007 0.014 0.036 0.021 0.038 

0.015 0.007 0.006 0.005  0.000 0.092 0.007 0.017 0.011 0.017 0.032 0.025 0.037 

0.012 0.007 0.006 0.004 0.001  0.074 0.003 0.019 0.008 0.015 0.037 0.020 0.041 

0.146 0.129 0.124 0.127 0.118 0.112  0.094 0.127 0.103 0.123 0.167 0.133 0.157 

0.017 0.013 0.016 0.013 0.012 0.011 0.138  0.017 0.007 0.013 0.032 0.014 0.038 

0.031 0.029 0.030 0.031 0.031 0.029 0.153 0.030  0.009 0.004 0.027 0.013 0.042 

0.017 0.018 0.021 0.021 0.020 0.019 0.143 0.013 0.023  0.006 0.028 0.013 0.041 

0.026 0.022 0.025 0.022 0.023 0.023 0.145 0.016 0.030 0.009  0.027 0.005 0.045 

0.054 0.041 0.045 0.036 0.048 0.042 0.187 0.039 0.060 0.046 0.031  0.020 0.045 

0.049 0.035 0.041 0.030 0.042 0.038 0.175 0.027 0.049 0.032 0.023 0.025  0.054 

0.061 0.057 0.059 0.059 0.062 0.057 0.191 0.058 0.063 0.055 0.058 0.079 0.073  
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The first 2 principal components of the PCA ex -
plained 73.39% of the variance in allele frequencies
among putative populations (Fig. 3). While there are
some unexpected results (the lack of relative sepa-
ration of ASHW, for example; Fig. 3), the PCA re -
solves some broad patterns reflected by the fixation
indices. The first principal component shows a clear
separation of the BSE subpopulations (Fig. 3). In
addition, BSB1 and BSC3 are highly distinct, possi-
bly due to a higher level of variance for these sub-

populations as a result of relatively larger sample
sizes (Table 1). The second principal component fur-
ther shows broad separation of subpopulations by
latitude, with the samples from Oceania and off
Colombia more closely situated with the subpopula-
tions of the South Atlantic and western and northern
Indian Ocean. The subpopulations off eastern Aus-
tralia (BSE1), New Caledonia, and Tonga (BSE3)
again show clear separation from the other subpop-
ulations (Fig. 3).
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A 
B1 

B2 
C1 

C2 

C3 

E3 

ASHW 

D 
E1 
E2 

F (FP) 
F (CI) 

G 

Fig. 2. Haplotype network of mitochondrial control region sequences (population size, N = 3009, number of haplotypes = 186)
created using a median-joining algorithm with maximum parsimony post-processing with ε = 0, where ε is a weighting param-
eter for genetic distance, and variable sites weighted equally. Nodes are shaded according to sampling location. Size of node
corresponds to the frequency of that haplotype among sampled individuals. Internal white nodes represent reconstructed me-
dian haplotypes. Gray notches represent nucleotide differences between haplotypes. Haplotype frequencies are available on
the Dryad Data Repository (doi:10.5061/dryad.8cs4f). Breeding stock and subpopulation abbreviations defined in Table 1
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The sPCA investigated the se-
quence variability using allelic fre-
quencies in a spatial context, which
further resolved some of the inconsis-
tencies de scribed for the PCA (Fig. 3).
The first positive axis had the highest
eigenvalue and was therefore re -
tained. Both global and local tests for
structure were not found to be statisti-
cally significant (simulated p-value:
global = 0.958, local = 0.217). The first
global structure that was retained in
the sPCA shows low variance be-
tween the South Atlantic and western
and northern Indian Ocean subpopu-
lations, as supported by the non-sig-
nificance observed for ΦST (Table 3).
BSC3, however, shows relatively
strong differentiation (Fig. 4); this pat-
tern might also be expected for BSB1
based on the results of the PCA
(Fig. 3), but this was not reflected to
the same degree in the sPCA (Fig. 4).
The ASHW population appears to be
grouped more closely with BSC to the
west than BSD to the east, a pattern
not detectable from the fixation in-
dices alone (Table 2, Fig. 4). A second
grouping occurs for BSD and the sub-
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Fig. 4. Scores from the spatial principal component analysis (sPCA). sPCA optimized the product of the breeding area genetic
variances and of Moran’s I for the first positive eigenvalue (i.e. global structure) retained. The neighboring network was based
on a matrix of the inverse Euclidean distance between sampling locations. Each stock and subpopulation is mapped by color
coding its sPCA lagged score as intensity of the given color channel (first axis: red). Breeding stock and subpopulation abbre-

viations defined in Table 1

Fig. 3. Subpopulation principal components on the first 2 axes. Each subpopu-
lation is color coded and corresponds to the haplotype network key (Fig. 2).
PC1: principal component 1; PC2: principal component 2. Breeding stock and 

subpopulation abbreviations defined in Table 1
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populations of BSE and Oceania; however, there ap-
pears to be some localized variance between the sub-
populations of BSE and BSF, reflecting the relatively
high observed FST values (Table 3, Fig. 4). BSG is
highly distinctive and shows clear separation from
breeding stocks to both the west and the east (Fig. 4).

Migration rates between breeding stocks

Matrilineal gene flow between contiguous breed-
ing stocks was estimated to be asymmetric in all pair-
wise comparisons. Asymmetries ranged from a 1.03-
fold difference in eastward compared to westward
migration in BSF-BSG to a 62-fold difference in BSC-
ASHW (Fig. 5). BSA showed notable asymmetry,
with very little gene flow into BSB and much greater
gene flow from BSB to BSA. The largest directional
gene flow magnitudes were from BSC to ASHW, fol-
lowed by BSC to BSD and BSB to BSA. The ASHW
population is the only stock in this study where no
historical emigration is estimated to any stock, and
only immigration from other stocks is exhibited. BSD,

BSE1, and BSF exhibited intermediate degrees of
gene flow (Fig. 5). BSE showed migration both to and
from BSE1 to the west and BSF to the east (Fig. 5).
Gene flow estimates between BSA and BSG were
very low, with a very slight westward bias (Fig. 5).

DISCUSSION

Our analysis of the genetic structure of the hump-
back whale across its circumpolar range in the
Southern Hemisphere, based on a 311 bp fragment of
the mitochondrial control region, revealed low but
significant patterns of population genetic structure.
Population and subpopulation comparisons confirm
previous observations of complex patterns of genetic
differentiation and gene flow, supporting assertions
regarding the hierarchical nature of humpback
whale population genetic structure (Rosenbaum et
al. 2009, Baker et al. 2013, Kershaw et al. 2017). In
addition, the global context of the study provided an
opportunity to consider potential drivers of circum -
polar genetic structure, thus providing the large-
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Fig. 5. Female-mediated gene flow as in-
ferred from mitochondrial DNA. Direc-
tionality and magnitude of gene flow be-
tween contiguous populations showing
overall (net) gene flow estimates (top
bars) and westbound (bottom bars) and
eastbound (middle bars) gene flow rates.
The ratio between the westbound and
eastbound migration rates is shown in
parentheses. Error bars reflect 95% con-
fidence intervals. Number of immigrants
per generation (Nem) is obtained as
Mi θi, where i is the individual breeding
stock. Breeding stock and subpopulation 

abbreviations defined in Table 1
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scale geographic context required for the interpreta-
tion of existing regional and local analyses.

All pairwise comparisons between breeding stocks
(i.e. BSA−BSG) based on haplotype frequencies (FST)
and the majority of pairwise nucleotide differences
(ΦST) were statistically significant (p < 0.05) (Table 2;
haplotype frequencies are available on the Dryad
Data Repository, doi: 10. 5061/ dryad. 8cs4f), indicating
that population structure at this scale is driven by
maternally directed site fidelity to breeding areas
(Mackintosh 1942, Baker & Medrano-Gonzalez 2002,
Baker et al. 2013). The dominant influence of mater-
nally directed site fidelity at the regional scale has
also been confirmed by comparative assessments of
bi parentally inherited nuclear markers (Ruegg et
al. 2013, Schmitt et al. 2014, Kershaw et al. 2017).
Although significant genetic differentiation was
observed at the regional scale, patterns of estimated
gene flow between breeding stocks were found to be
relatively high and asymmetric in all cases (Fig. 5).

Moreover, no clear phylogeogra phic patterns were
found among the haplotypes analyzed, with all 184
haplotypes broadly distributed across the network,
even for those breeding stocks known to have expe-
rienced significant levels of isolation (i.e. ASHW and
BSG; Fig. 2). At local spatial scales within breeding
stocks, more complex patterns of population struc-
ture have been observed using nuclear markers (Ker-
shaw et al. 2017). A future comparative study em -
ploying microsatellite markers would therefore be
useful to further elucidate circumpolar-scale popula-
tion structure. The relatively high levels of historic
gene flow for some breeding stocks (Fig. 5) and the
absence of phylogeographic signals (Fig. 2) support
the notion of a shared evolutionary trajectory
through out the Southern Hemisphere. These find-
ings support previous suggestions that the Southern
Hemisphere has an independent evolutionary trajec-
tory from the North Atlantic and North Pacific (Jack-
son et al. 2014).

The asymmetries in regional fidelity and mtDNA
differentiation observed in this study are consistent
with findings from North Pacific humpback whale
populations (Baker et al. 2013), indicating that this
may represent a general pattern for humpback whale
population structure globally. The number of statisti-
cally significant comparisons between breeding
areas is also comparable, although the magnitude of
fixation indices is higher in many instances in the
North Pacific (Table 2; Baker et al. 2013, their
Table 4). The lack of clear evidence of fidelity to
feeding areas in the Southern Hemisphere (Schmitt
et al. 2014, Amaral & Loo et al. 2016) and lower mag-

nitudes of genetic differentiation in some instances
(Table 2; Baker et al. 2013, their Table 4) may indi-
cate that interchange of individuals between breed-
ing areas may be greater in some parts of the South-
ern Hemisphere relative to the North Pacific,
possibly facilitated by access to the continuous or
near-continuous circumpolar feeding habitat of the
Southern Ocean.

Connectivity between the South Atlantic and
southern Indian Ocean

While significant genetic differentiation was main-
tained at the subpopulation level for haplotype fre-
quencies, significance dropped markedly for nucleo-
tide-based indices, particularly between BSA, BSB1
and BSB2, substocks BSC1 to BSC3, and BSD
(Table 3). Statistical differences in haplotype fre-
quencies but no statistical support for molecular dis-
tances suggest genetic divergence at the level of a
demographic aggregation of breeding individuals
with small evolutionary divergence (i.e. resulting in
haplotypes that differ by only 1 or 2 mutations). The
relatively high rates of migrant exchange observed
between breeding stocks in the South Atlantic and
southern Indian Ocean (Fig. 5), and the relatively
lower levels of variance between BSA-BSB-BSC-BSD
identified by the sPCA (Fig. 4), support a conclusion
of shallow levels of genetic divergence compared to
other regions (Tables 2 & 3, Figs. 3 & 4). Multiple
lines of corollary evidence support individual move-
ments to broad-scale connectivity between BSA-
BSB-BSC-BSD, including photo-identification (Ste-
vick et al. 2013), genotypic matching (Pomilla &
Rosenbaum 2005), genetic mixed-stock analyses
(Schmitt et al. 2014), population-level comparisons
(Amaral & Loo et al. 2016), and acoustical studies of
song similarity (Darling & Sousa-Lima 2005, Murray
et al. 2012).

Regional-scale contact between, and interchange
of, individuals from different breeding stocks (e.g.
between BSB and BSC) is assumed to take place pri-
marily on shared feeding areas in the Southern
Ocean. Densities of krill, the primary prey of South-
ern Hemisphere humpback whales, are relatively
lower in the Atlantic (3.9 million tons km−2) and the
southwestern Indian Ocean (2.3 million tons km−2)
sectors of the Southern Ocean compared to other
areas (e.g. the Antarctic Peninsula = 131.0 million
tons km−2; Nicol et al. 2000). The lower maximum
krill density in the Atlantic and southwestern Indian
Ocean sectors may provide an explanation for some
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of the individual long-range movements and broad-
scale connectivity observed across BSA to BSD, as
individuals could be forced to undertake long-
 distance longitudinal movements to maximize feed-
ing opportunities. Such movement may increase the
likelihood of mixing with other stocks and/or switch-
ing between breeding grounds.

At the local scale (i.e. within stocks), a more
nuanced interplay of processes appears to be influ-
encing genetic subpopulation structure. Genetic evi-
dence supports the existence of 2 demographically
discrete substocks (i.e. BSB1 and BSB2) off West
Africa; however, an alternative hypothesis proposes
that each substock represents 2 temporal ends of a
single population widely distributed in space and
time (Carvalho et al. 2014, Rosenbaum et al. 2014).
Recent analyses of 9 nuclear microsatellite loci indi-
cate that connectivity between BSB2 and BSC1 may
also be greater than previously supposed (Kershaw
et al. 2017). Animals from BSB2 have been observed
to leave the feeding area of Bouvet Island, directly
south of the African continent, and disperse widely
eastward and westward in the Southern Ocean into
feeding areas generally associated with BSC (0° to
70° E; Seakamela et al. 2015). Divergence between
the substocks of BSC is also relatively shallow, call-
ing into question their current delineation (Ersts et al.
2011). For instance, there is increasing evidence that
BSC2 is likely to represent a mixed stock of animals
from BSC1 and BSC3 (Best et al. 1998, Kershaw et al.
2017). In addition, long-distance movements be -
tween northeastern Madagascar (BSC3) and the
coasts of Kenya and Somalia in northern BSC1
appear more frequent than supposed (Fossette et al.
2014, Cerchio et al. 2016).

Significant structure between western Australia
(BSD) and eastern Australia (E1; FST = 0.030, ΦST =
0.017, p ≤ 0.05; Table 2, Figs. 3 & 4), at levels a mag-
nitude greater than those observed between the sub-
stocks of BSB and BSC (Olavarría et al. 2007, Rosen-
baum et al. 2009), confirms the results of previous
genetic analyses (Anderson 2013, Schmitt et al. 2014)
and resighting data (Dawbin 1966). Gene flow
between BSD and BSE1 has been considered to be
moderate and bidirectional at the regional level
(Anderson 2013); however, at the circumpolar scale,
we estimate female-mediated gene flow to be low
relative to most other pairwise stock comparisons
(Fig. 5). Sporadic bidirectional interchange has been
observed between these 2 stocks (Chittleborough
1965, Noad et al. 2000), potentially due to annual
changes in prey distribution that result in the mixing
of stocks on feeding grounds (Anderson 2013). How-

ever, our results indicate that the westward bias pre-
dominates, at least in terms of long-term maternally
directed gene flow (Fig. 5).

Eastern Australia (BSE1) and the breeding sub-
stocks of Oceania (i.e. New Caledonia, BSE2; Tonga,
BSE3; Cook Islands, BSF[CI]; and French Polynesia,
BSF[FP]) are significantly differentiated from one
another at a magnitude greater than the substocks of
BSB and BSC for FST in most comparisons, despite
being more geographically proximal in some in -
stances (Tables 2 & 3, Fig. 4). These results are con-
sistent with the relatively high site fidelity to each
island and significant population genetic structuring
found in previous studies (Dawbin 1966, Garrigue et
al. 2006, Olavarría et al. 2007). The degree of differ-
entiation between BSE2 (New Caledonia) and BSE3
(Tonga; FST = 0.009, ΦST = 0.006, p ≤ 0.05) is lower
than that between BSE1 (eastern Australia) and
BSE2 (FST = 0.023, ΦST = 0.009, p ≤ 0.05) or BSE1 and
BSE3 (FST = 0.030, ΦST = 0.004, p ≤ 0.05; Table 2).
Genetic and acoustic breaks have previously been
identified that separate BSE1 and BSE2 from the rest
of Oceania (Anderson 2013, Garland et al. 2015);
however, photo-identification matches between BSE1
and BSE2 have been reported (Garrigue et al. 2002),
indicating some level of exchange, and significant
longitudinal displacement of whales from American
Samoa, eastern Australia, and Tonga has also been
observed (Robbins et al. 2011, Franklin et al. 2014, in
press).

Gene flow between New Caledonia and Tonga has
been found to be relatively high (Anderson 2013),
suggesting a more recent link between these 2 stocks
that is supported by photo-identification (Garrigue et
al. 2006, Franklin et al. 2014), genotypic matches (An-
derson 2013), and acoustical studies of song sharing
(Garland et al. 2014). New Caledonia remains clearly
differentiated from eastern Australia and Tonga in
both the PCA (Fig. 3) and the sPCA (Fig. 4), however.
Population-specific analyses suggest that New Cale-
donia may be an area of transience, with whales
briefly passing through the study area and subse-
quently moving in a wide range of directions (Gar-
rigue et al. 2015). A transient area would result in
higher genetic variance relative to BSE1 and BSE3, as
was detected by the PCA and sPCA (Figs. 3 & 4).

The only instance of non-significant pairwise
genetic differentiation across Oceania was observed
between Tonga (BSE3) and the Cook Islands
(BSF[CI]) at the nucleotide level (ΦST = 0.005, p >
0.05; Table 3). Resights in the Cook Islands based on
photo-identification and genotypic matching are rel-
atively low (Constantine et al. 2012), but satellite
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tele metry data have shown 6 individuals moving
directly towards Tonga upon leaving the Cook
Islands (Anderson 2013). While we did observe sig-
nificant genetic differentiation for French Polynesia
and the Cook Islands (Table 3), previous genetic
studies have suggested that these 2 substocks repre-
sent a single panmictic population (Anderson 2013).
The Cook Islands may also be a location where
whales from both BSE and BSF mix, for example as a
migratory corridor for whales wintering in Tonga
(Constantine et al. 2012), or, alternatively, they may
use this location in alternate years (Anderson 2013).
The relatively high levels of gene flow we estimated
between BSE1-BSE2-BSE3 and BSF(CI) and BSF(FP)
support these observations of mixing across Oceania
(Fig. 5). Resolution of feeding areas will assist in the
elucidation of some of the processes driving connec-
tivity across this region.

Genetic isolation of BSG and ASHW and fidelity 
to feeding areas

Genetic structure and gene flow estimates indicate
that BSG in the eastern South Pacific and ASHW in
the Arabian Sea are the most isolated (Tables 2 & 3,
Figs. 4 & 5) and least genetically diverse populations
(Table 1). BSG winters primarily off Colombia and
Ecuador, extending northward to the coasts of Pana -
ma and Costa Rica. Given the northward extension of
the breeding area, and the presence of private haplo-
types found within BSG that may be of northern ori-
gin, levels of isolation for BSG observed here might
decrease if Northern Hemisphere populations were
also considered in the analysis (Anderson 2013). In
the austral summer and fall, whales from BSG
migrate south to feeding areas in the Fueguian
Archipelago, west of the Antarctic Peninsula (Zerbini
et al. 2006, Cypriano-Souza et al. 2010), and recently
also to the Corcovado Gulf, in the northern Chilean
Patagonian channels (Acevedo et al. 2013). Photo-
identification indicates philopatry and an absence of
movements among the 3 feeding areas (Acevedo et
al. 2013), possibly due to high and stable densities of
krill in the vicinity of the Antarctic Peninsula (Nicol
et al. 2000). If the majority of individual interchange
between stocks and substocks does indeed occur on
feeding areas, the fidelity of BSG feeding may be suf-
ficient to drive its isolation from BSF to the west and
BSA to the east. One individual has been observed to
move from BSG to BSA, indicating that long-distance
movements are possible (Stevick et al. 2013). How-
ever, despite their geographic proximity, there is no

evidence of overlap between the feeding areas of
BSG and those of BSA, located in the Scotia Sea.

Gene flow estimates between the ASHW popula-
tion and its contiguous breeding stocks are singular.
The lack of evidence of gene flow from the ASHW
population to any of its contiguous stocks (BSC to the
southwest and BSD to the southeast) corresponds to
the Northern Hemisphere timing its breeding sea-
son, resulting in it being offset by 6 mo from all other
Southern Hemisphere stocks. In addition, the up -
welling system of the Arabian Sea provides year-
round foraging habitat, mitigating the need for feed-
ing-related migration (Pomilla & Amaral et al. 2014).
The very high estimates of gene flow into the ASHW
population from BSC (Fig. 5) present an apparent
contradiction with the population structure para -
meters and can be explained, at least partially, by
the time scale at which these estimations are opti-
mized. The migration rate estimation conducted by
MIGRATE explicitly accounts for the phylogenetic
signal in the data, likely pointing to the historical
connectivity between these currently isolated stocks.
This historic connectivity is also suggested by the
results of the sPCA, which indicate that ASHW is
more closely grouped with the western Indian Ocean
substocks compared to BSD off western Australia
(Fig. 4). Further testing of hypotheses regarding the
origin of ASHW using samples from BSC and BSD is
required (e.g. using approximate Bayesian computa-
tion analysis; Fontaine et al. 2014). Highly asymmet-
ric gene flow from populations in East Africa to Ara-
bia has also been observed for humpback dolphins
(Mendez et al. 2011) and has been attributed in part
to the dominant oceanographic current systems of
these coasts, which facilitate northward connectivity
but not southward movement. While recognizing
that drivers of connectivity for a nearshore small
cetacean and an offshore baleen whale may not be
directly comparable, it may be pertinent to explore
whether this represents a general pattern for ceta -
ceans in the Indian Ocean.

CONCLUSIONS AND MANAGEMENT
 RECOMMENDATIONS

Collectively, these results indicate that patterns of
population genetic structure and connectivity for
Southern Hemisphere humpback whales across their
circumpolar range cannot be generalized across spa-
tial scales. While maternally driven fidelity to breed-
ing areas is the primary influence on population
genetic structure at regional scales, relatively high
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levels of connectivity in some regions indicate that
long-distance movements by females should be af -
forded more consideration as a mechanism facilitat-
ing gene flow between both adjacent and non-adja-
cent stocks and substocks. At the circumpolar scale,
levels of estimated gene flow appear to correlate in
some instances with krill density on feeding areas,
suggesting that an interplay of site fidelity to stable
feeding areas for some stocks (e.g. BSG) versus the
need for individuals from other stocks to undertake
extensive longitudinal movements to fulfill their
energetic requirements (e.g. BSB and BSC) may be
one of the factors influencing humpback population
genetic structure at this scale. More studies into prey
density and distribution on feeding areas at multiple
geographic scales, and particularly in under studied
areas such as those south of Oceania, are needed to
further assess this relationship.

Our study demonstrates that, at least based on the
statistically significant differences at the haplotype
and nucleotide level of a 311 bp sequence of the
mtDNA control region, the breeding stocks (BSA−
BSG) recognized by the IWC represent genetically
differentiated population units that should be con -
sidered as separate units in humpback whale man-
agement and regulatory assessments. Our results
present a strong rationale for the management prior-
itization of BSG and ASHW in light of their genetic
distinctiveness at the circumpolar context. In addi-
tion, the breeding stocks and subpopulations of
Oceania represent the least abundant breeding pop-
ulation in the Southern Hemisphere, with little
detectable recovery from whaling (Constantine et al.
2012), and are in significant need of protection.

We recommend a precautionary approach to the
use of current subpopulation delineations as a basis
for management, however. Some subpopulations may
represent multiple demographic populations (e.g.
BSB2, BSC2, and BSE2), in some cases, for example,
as a mixed-stock migratory corridor, and there are
continuing efforts to appropriately define the bound-
aries of these populations on both breeding and feed-
ing areas (Rosenbaum et al. 2009, 2014, Carvalho et
al. 2014, Garland et al. 2015). Failure to incorporate
underlying genetic structure into population status
assessments can result in significant biases through
over- or under-representation of discrete population
units in management goals. Moreover, levels of
genetic connectivity between many stocks and sub-
populations show complex and asymmetric patterns,
requiring further research.

Some regulatory processes, such as the recent
review conducted by the United States that led to

the species’ down- and delisting under the US En -
dangered Species Act (ESA; Federal Register 2016),
recognize fewer genetically distinct population seg-
ments (DPSs) than the IWC, as the former body oper-
ates under a more stringent set of criteria. Specifi-
cally, the 14 DPSs defined under the ESA do not
capture breeding substock structure in the Southern
Hemisphere, even though studies indicate that some
substocks are as genetically differentiated from one
another as separate DPSs delineated in the Northern
Hemisphere (Bettridge et al. 2015). It is worth noting
that all of the DPSs in the Southern Hemisphere are
listed as Not at Risk under the US ESA, possibly due
to a lack of resolution at the substock level (Federal
Register 2016). Our results demonstrate that the IWC
stocks and subpopulations should represent the min-
imum number of discrete populations taken into con-
sideration until further research has been conducted.
Moreover, uncertainties in stock and subpopulation
boundaries, and how these uncertainties affect esti-
mates of recovery, need to be carefully and transpar-
ently accounted for in any regulatory review of this
species.

Data archive. GenBank accession numbers for the haplo-
types included in this study are as follows: GQ913691−
GQ913852 (Rosenbaum et al. 2009), DQ768307−DQ768421
(Olavarría et al. 2007), and MF174847–MF174851 (Ander-
son 2013). Haplotype frequencies are available on the Dryad
Data Repository (doi: 10. 5061/ dryad. 8cs4f).
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