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ABSTRACT

The accurate prediction of the mean wave overtopping rate at breakwaters is vital for a safe design. Hence, providing a robust tool as a pre-

liminary estimator can be useful for practitioners. Recently, soft computing tools such as artificial neural networks (ANN) have been

developed as alternatives to traditional overtopping formulae. The goal of this paper is to assess the capabilities of two kernel-based

methods, namely Gaussian process regression (GPR) and support vector regression for the prediction of mean wave overtopping rate at

sloped breakwaters. An extensive dataset taken from the EurOtop database, including rubble mound structures with permeable core, straight

slopes, without berm, and crown wall, was employed to develop the models. Different combinations of the important dimensionless par-

ameters representing structural features and wave conditions were tested based on the sensitivity analysis for developing the models.

The obtained results were compared with those of the ANN model and the existing empirical formulae. The modified Taylor diagram was

used to compare the models graphically. The results showed the superiority of kernel-based models, especially the GPR model over the

ANN model and empirical formulae. In addition, the optimal input combination was introduced based on accuracy and the number of

input parameters criteria. Finally, the physical consistencies of developed models were investigated, the results of which demonstrated

the reliability of kernel-based models in terms of delivering physics of overtopping phenomenon.

Key words: ARD-Mattern5/2-Gaussian process regression (GPR), FFBP-artificial neural network (ANN), kernel-based models, mean wave

overtopping, RBF-support vector regression (SVR), simple sloped breakwaters

HIGHLIGHTS

• Gaussian process regression (GPR) and support vector regression (SVR) methods were employed to predict the mean wave overtopping

rate at simple sloped breakwaters.

• The performances of GPR and SVR models were compared with those of ANN model and existing empirical formulae.

• GPR and SVR models showed better performances compared to those of the ANN model and empirical formulae.

• The optimal input combination with fewer number of input parameters, extracted from sensitivity analysis, and high accuracy was

introduced.

• Physical consistency of developed GPR and SVR models were investigated based on the observed trend between the most effective input

parameter and mean wave overtopping rate.

INTRODUCTION

Breakwaters are designed to protect harbours and infrastructures against wave attacks. Recently, due to the potential impact

of climate change and sea-level rise, the safety and performance of breakwaters have become more important for coastal
engineers. Excessive overtopping can also greatly threaten the stability of a breakwater or cause damage to nearby equipment
or properties. Conventionally, the mean wave overtopping rate (q) as one of the important hydraulic responses needs to be

limited.
During recent decades, several methods have been applied to predict wave overtopping phenomena at coastal structures

including numerical, empirical, and soft computing methods. Numerical models (e.g. Losada et al. 2008; Neves et al.
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2008; Ingram et al. 2009; Zhang et al. 2020) have been used for situations in which empirical test data are limited, or reliable

results may not be obtained (van der Meer et al. 2017). Nevertheless, the application of numerical models is time-consuming
and computationally expensive, especially when high accuracy is required.

The existing empirical formulae to predict mean overtopping rate (e.g. Owen 1980; van der Meer & Janssen 1995; EurOtop

2007; EurOtop 2018; Shaeri & Etemad-Shahidi 2021) have mostly been derived by regression analysis of small-scale exper-
iments. The mentioned formulae correlate the dimensionless mean overtopping rate to dimensionless wave and structural
parameters through physical arguments. However, poor predictions of mean overtopping rate at armoured structures
using empirical formulae have been reported in the literature (e.g. Koosheh et al. 2020). Figure 1 displays the performances

of Jafari & Etemad-Shahidi (2011) (hereafter JE), and EurOtop (2018) (mean approach: Equation (6.5)) (hereafter ET), for-
mulae for simple sloped breakwaters. The dimensionless measured and predicted mean overtopping rates defined as
q� ¼ q=(g �H3

m0,t)
1=2 are shown in this figure. Here, q (m3/s/m) is the dimensional mean overtopping rate per unit width, g

(m/s2) represents the gravitational acceleration, and Hm0,t (m) refers to the significant wave height at the toe of the structure.
In this figure, the data of rubble mound structures with permeable core and simple slope without crown wall, including both
head-on and oblique waves, have been selected from the EurOtop (2018) database. More details of the dataset used are given

in the section of the used dataset. As seen, some predictions lie out of 10 times over/under estimation lines (dashed). The ET
formula remarkably underestimates overtopping rates, which could be misleading for the design procedure.

In recent decades, several applications of soft computing techniques (e.g. artificial neural network (ANN)) for water engin-

eering problems can be found (e.g. Ayoubloo et al. 2010; Kazeminezhad et al. 2010; Cini & Deo 2013; Ghaemi et al. 2013;
Moghaddas et al. 2021). These techniques provide a quick and cost-effective solution that can be useful for complicated pro-
blems. Due to the complex nature of the overtopping process and the existing limitations of empirical formulae, some soft
computing approaches, as alternative tools, have been implemented to predict the mean overtopping rate for a broad

range of coastal structures. Among them all, initially developed within the CLASH (De Rouck & Geeraerts 2005) project
and presented by EurOtop (2007), the ANN model is the most well-known soft computing tool applicable for a wide
range of structures. In the training of this model, dimensional input parameters have been used which may not be appropriate

for all cases with different scales. Recently, Zanuttigh et al. (2016) developed an improved neural network for a broad range
of coastal structures, released in EurOtop (2018) and EurOtop (2018)-ANN, using dimensionless input parameters based on

Figure 1 | Comparison of dimensionless measured and predicted overtopping rates q� ¼ q=(g � H3
m0,t )

1=2 by Jafari & Etemad-Shahidi (2011)
and EurOtop (2018) formulae (the solid line displays perfect agreement and the others demonstrate 10 times over-/underestimations).
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an extended database (Zanuttigh et al. 2014) mainly derived from the CLASH database. However, in terms of the accuracy of

wave overtopping prediction, the recent version does not show a significantly better performance in comparison to CLASH-
ANN (Formentin et al. 2017; Pillai et al. 2017). Besides the mentioned ANN applicable for the wide range of coastal struc-
tures, some other studies focused on specific types of structures using soft computing approaches. For example, Molines &

Medina (2016) applied ANN to derive an explicit wave overtopping formula for breakwaters with crown wall. However, they
achieved the same prediction accuracy compared to CLASH-ANN. The group method of data handling (GMDH) algorithm
was used by Lee & Suh (2019) to develop wave overtopping formulae for inclined seawalls. It was shown that GMDH has a
better performance compared to the empirical formulae, while its accuracy is similar to that of the EurOtop-ANN model.

This study aims to provide an overview of kernel-based methods, as soft computing tools, to investigate their capabilities for
the prediction of mean wave overtopping rate at simple sloped breakwaters. Gaussian process regression (GPR) (Rasmussen
& Williams 2006) and support vector regression (SVR) (Vapnik 1995) as kernel-based methods are flexible, as they can

handle nonlinear problems. These methods have been recently used in different fields of engineering problems representing
promising performance compared to the other soft computing methods (e.g. Ghazanfari-Hashemi et al. 2011; Grbic ́ et al.
2013; Sun et al. 2014; Roushangar & Koosheh 2015; Roushangar et al. 2016; Najafzadeh & Oliveto 2020). To the best of

the authors’ knowledge, SVR and GPR methods have not been implemented for the prediction of the mean wave overtopping
rate so far. To develop the models, an extensive dataset selected from the EurOtop (2018) database was used. Also, to evaluate
the performances of the kernel-based methods, the results of the analysis were compared with those of ANN, as a benchmark

tool for overtopping problems, as well as recently proposed empirical formulae. Moreover, the key variables of overtopping,
representing structural and wave conditions features at rubble mound breakwaters, were determined based on sensitivity
analysis. To evaluate the reliability of used kernel-based models, a physical consistency test between the key input parameter
and mean overtopping rate was investigated. This evaluation was based on a parametric analysis between the most effective

input parameter and output one to recognize the existing trend and compare it with the identified physical pattern of
overtopping.

MATERIALS AND METHODS

Support vector regression

Initially proposed by Vapnik (1995), the support vector machine (SVM) is commonly implemented for classification purposes
in statistical learning problems. In contrast to the conventional neural networks in which empirical risk is minimized, the

SVM approach minimizes an upper bound on the expected risk. This equips SVM with a greater ability to generalize,
which is the goal of statistical learning (Gunn 1998). In the SVM formulation, the original training data are transformed
into a higher dimensional space using nonlinear mapping functions to make data easily separable. Here, the purpose is to
find an optimal hyperplane that separates the samples of two classes by considering the widest margin between them

within the new space. SVR is an adaption of SVM which can be used as a predictive tool for regression problems. SVR
tries to find as flat an optimal function as possible that has the most deviation from the training data while balancing
model complexity and prediction error. Since SVR uses a symmetrical loss function with equal penalties for the high and

low misestimation, a tube with the radius of 1 is formed around the estimation function. In this manner, the points outside
of the tube are proportionally penalized to their distance regarding the function. The significant advantage of SVR is that its
computational complexity is independent of the dimensionality of input spaces (Awad & Khanna 2015).

The general SVR formulation can be written as follows:

f(x) ¼ ww(x)þ b (1)

where w represents the weight factor, w(x) is known as a nonlinear function in the feature of input x, and b is called the bias.

By minimizing regularized risk function, these factors can be obtained as follows:

MinR ¼ C
1
N

XN
i¼1

L1(ti, yi)þ 1
2

wk k2 (2)
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The constant C is the cost factor for performing the trade-off between the weight factor and approximation error. The term

wk k2 represents the norm of the inner product of the w vector and its transposed form (wT :w). L1(ti, yi) is the loss function in
which yi is the predicted value and ti is the observed value in period i. To ensure the convergence of the optimization process
within the finite number of steps, the loss function needs to be symmetric and convex. The simplest loss function is provided

in Equation (3) where, for the data out of the tube, the loss will increase linearly:

L1(ti, yi) ¼ jti � yij � 1: jti � yij � 1
0: otherwise

�
(3)

The slack variables (j, j�) are defined to specify the upper and lower training errors subject to an error tolerance ε. Hence,

Equation (2) can be re-written in the below form:

MinR ¼ C
XN
i¼1

(jþ j�)þ 1
2

wk k2 (4)

Subject to: ti �wiw(xi)� b � 1þ ji
wiw(xi)þ b� ti � 1þ j�i
ji, j

�
i � 0

The dual Lagrangian form can then be obtained by applying Lagrangian multipliers (ai and a�
i ) and Karush–Kuhn–Tucher

condition:

maxL(ai, a�
i ) ¼ �1

XN
i¼1

(ai þ a�
i )þ

XN
i¼1

ti(ai � a�
i )�

1
2

XN
i¼1

XN
i¼1

(ai � a�
i )(aj � a�

j )K(xi, xj) (5)

subject to:
PN
i¼1

(ai � a�
i ) ¼ 0

0 � ai � C i ¼ 1, 2, . . . , N
0 � a�

i � C i ¼ 1, 2, . . . , N

As the inner product of two vectors, xi and xj in the feature space w(xi) and w(xj), kernel function K(xi, xj) transforms data
into the new space. Several kernel functions, which have their own variable parameters to adjust the flexibility of the
regression function, have been implemented in the literature. Obviously, the selection of kernel functions depends on the

nature of the data and the problem. However, radial basis function (RBF) was selected for the present study which has
been publicly accepted as a good kernel especially for cases without prior knowledge of the data characteristics (Roushangar
& Koosheh 2015):

K(xi, xj) ¼ exp � xi � xj
�� ��2

2s2

 !
(6)

where s stands for the kernel parameter. By calculating ai and a�
i , the regression function is obtained as follows:

f(x) ¼
XN
i¼1

(ai � a�
i )K(xi, xj)þ b (7)

The implementation of SVR entails the allocation of an optimization where several parameters such as 1 and kernel vari-
ables need to be adjusted. Hence, the SVR developed in the MATLAB software was used, and has been equipped with an
automated optimization tool.
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Gaussian process regression

As a generalization of Gaussian probability (GP) distribution, GPR is a nonparametric and probabilistic approach that can be
applied for a variety of nonlinear problems (Rasmussen & Williams 2006). Based on the assumption that the learning sample

follows the prior probabilities of GP, the corresponding posterior probability is calculated. GPR uses a kernel to define the
covariance of a prior distribution over the target functions. Here, the covariance function plays an important role, as it
encodes the prior assumptions about the underlying process that generated the data (Hu & Wang 2015). Assuming X�Y
represents the input and output domains from which n pairs (xi, yi) are drawn independently and identically distributed.

Let f represent an unknown function which maps X ! Y. Hence, the regression functional form can be described as follows:

yi ¼ f(xi)þ 1i (8)

where 1 is the Gaussian noise with variance s2
n. The function f can be expressed as a Gaussian process (GP):

f(x) � GP(M(x), K(x, x0)) (9)

GP is a distribution over functions defined by a mean and a covariance function. Conventionally, for the basic GPR,
M(x)¼ 0 is assumed to avoid expensive posterior computations (Aye & Heyns 2017). K (x, x0) is the covariance (kernel) func-
tion by which the dependence between the function values at input points x and x0 can be modelled. The expected

smoothness and likely patterns in the used data should be considered for the selection of an appropriate kernel (Schulz
et al. 2018). After testing different kernels to find a suitable one leading to accurate results, ‘ARD (automatic relevance deter-
mination) Matern 5/2’ kernel was selected for the GPR modelling, the expression of which is as follows:

K(x, x0) ¼ s2
f 1þ

ffiffiffi
5

p
r þ 5

3
r2

� �
exp �

ffiffiffi
5

p
r

� �
(10)

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
m¼1

(xm � x0m)
2

s2
m

vuut (11)

where sf represents the single standard deviation, sm is the length scale for each predictor m (m¼ 1, 2, …, d).
By knowing the observation dataD¼ {X, Y}, the predictions for the new input X* should be obtained by drawing f* from the

posterior distribution P( f/D). The distributions of f* and Y, which follow a normal distribution, can be written as follows:

Y
f�

	 

� N 0, K(X , X)þ s2

e I K(X , X�)
K(X�, X) K(X�, X�)

	 
� �
(12)

where I is an identity matrix and s2
e stands for the noise level of observations. By imposing restrictions on the joint prior dis-

tribution, the posterior distribution over f* can be derived.

f�jX , Y , X� � N (�f�, cov( f�)) (13)

where

�f� ¼ E[ f�jX , Y , X�] ¼ M(X�)þ K(X�, X)[K(X , X)þ s2
e I ]

�1(Y –M(X)) (14)

cov( f�) ¼ K(X�, X�)�K(X�, X)[K(X , X)þ s2
e I ]

�1K(X , X�) (15)

After determining mean and covariance functions, the corresponding hyper-parameters (u) are still unknown in the GPR
formulation and need to be obtained from the training dataset. To estimate the parameters of the GPR model, maximum
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likelihood estimation is commonly used (Melo 2012). Based on Bayes’ rule, the marginal likelihood can be written as follows:

P(Y jX) ¼
ð
P(Y jf, X)P( f, X)df (16)

Maximizing the log-marginal likelihood gives:

log(Y jX , u) ¼ �1
2

(Y –M)T [K(X , X)þ s2
e I ]

�1(Y –M)� 1
2
logjK(X , X)þ s2

e Ij �
N
2
log 2p (17)

Eventually, the optimal hyper-parameters (u0) can be calculated using the conjugate gradient algorithm (Rasmussen &
Williams 2006):

u0 ¼ argmaxu logP(Y jX , u) (18)

It should be mentioned that the automatic optimization of GPR was developed in the MATLAB software for this study.

Artificial neural network

ANN is a well-known artificial intelligence (AI) model which is based on the framework of the biological human nervous

system. It can be used for finding a relationship between the inputs and output called regression. The regression is performed
through configuring a flexible architecture of ANN, which consists of input, hidden, and output layers. These layers are con-
nected by neurons where the number of neurons in the input and output layers corresponds to the number of used parameters

as inputs and output, while the number of neurons in the hidden layer can be varied to find the best architecture for the pro-
blem. In the present study, the criteria used by Pourzangbar et al. (2017) for selecting the optimum number of neurons were
applied. A three-layer feed-forward (FF) network with the Levenberg–Marquardt back-propagation (BP) training algorithm

was utilized for the modelling process. In the feed-forward back-propagation (FFBP) neural network, the term FF illustrates
how the neural network process works when the neurons are connected forward, while the BP term points out how the
weights of different layers are adjusted in the training procedure using the output estimated by model (Zanganeh et al.
2016). The mathematical expression of this network is as follows:

yo ¼ f
Xn
i¼1

(wiopi � bo)

 !
(19)

where yo is the output of neuron o, wio represents the weight vector, pi is the input vector for neuron i (i¼ 1,…, n), bo rep-
resents the bias for neuron o, and f is the network transfer function. The tangent sigmoid function is selected, which can

be defined as follows (Haykin 2009):

f(x) ¼ 2
(1þ e�2x)

� 1 (20)

Used dataset

An extensive collected dataset of CLASH (De Rouck & Geeraerts 2005), updated and reorganized later within EurOtop
(2018), was employed in the present study. The details of used dimensionless input parameters are given in Table 1.

It should be mentioned that these input parameters were selected based on the EurOtop (2018)-ANN (hereafter ET-ANN)
inputs without the berm indicators. In Table 1, Hm0,t and Lm�1,0,t represent significant wave height and wavelength at the toe
of the structure, respectively. Here, Lm�1,0,t is 1.56T2

m�1,0,t where Tm�1,0,t is the spectral wave period at the toe of the structure.

h is the water depth at the toe of structure, ht is the toe submergence depth, and Bt is the toe width. The parameters Rc, Ac, and
Gc are the crest freeboard, crest height, and crest width, respectively. In addition, D stands for the average size of the struc-
tural elements in the run-up/down area. The symbols relevant to the overtopping are shown in Figure 2.
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To refine the permeable simple sloped breakwaters, small-scale records (Hmo,t � 0:5) with the roughness factors gf , 0:6

(except gf ¼ 0.55) and mild slope (1.33�cota �2) were chosen. The factors RF and CF, varying from 1 to 4, represent the
reliability and complexity level of given data. These factors somehow describe the measurements accuracy of each test or
how well the geometry of a structure could be described by the geometrical parameters. Records with the lowest reliability

(RF¼ 4) and the highest level of complexity (CF¼ 4) were ignored to consider only good quality data in the analysis (see
also Etemad-Shahidi & Jafari 2014; Shaeri & Etemad-Shahidi 2021). Low overtopping rates (q �1� 10�6 m3/s/m) were
also removed, as they may be affected by measurement errors (e.g. Verhaeghe et al. 2008; Etemad-Shahidi et al. 2016).
The records with the emerged crest (Rc. 0) and simple slopes (cotau ¼ cotad), without berm (B¼ 0), and the crown wall
(Rc� Ac) were selected. In this way, a total number of 1,220 small-scale records remained for further analysis: 70% of
these selected for the training, and the rest were used for the testing. It should be mentioned that the selected data for per-

meable simple sloped rubble mound structures include rock permeable straight slopes denoted by the label ‘A’, armour units
straight slopes represented by the label ‘C’, and oblique wave attack with the label ‘G’ (see Zanuttigh et al. (2016) for details).
Table 2 provides the details of used data.

As the perfect reproduction of wave and structure interaction is not possible in the small-scale physical models in a labora-

tory, the existence of scale effects is unavoidable. This is because the simultaneous fulfilment of scaling laws or similarity
principle (i.e. Froude and Reynolds) is unachievable in the physical modelling. Therefore, a significant difference between
field and model measurements of overtopping rate on rubble mound structures, especially for low rates, has been reported

in EurOtop (2018). This difference is more considerable for the longer and flatter slopes where the zero overtopping is pre-
dicted in the laboratory for an overtopped prototype situation (Koosheh et al. 2021). Thus, using field measurements along

Table 1 | The range and definitions of dimensionless used input parameters

Input Type Representation of Range

Sm�1,0,t¼Hm0,t/Lm�1,0,t Wave attack Wave steepness (breaking) 0.002–0.071

β (°) Wave attack Wave obliquity 0–60

h/Lm�1,0,t Wave attack Shoaling parameter 0.009–0.731

ht/Hm0,t Geometry Effect of the toe submergence 0.949–14.404

Bt/Lm�1,0,t Geometry Effect of the toe width 0–0.14

Rc/Hm0,t Geometry Relative crest freeboard 0.096–2.617

Ac/Hm0,t Geometry Relative armoured freeboard 0.096–2.617

Gc/Lm�1,0,t Geometry Relative crest width 0–0.425

m Geometry Foreshore slope 12–1,000

cota Geometry Slope of the structure 1.33–2

γf Structural features Roughness factor 0.38–0.5

D/Hm0,t Structural features Indication of structure stability 0.131–2.682

Figure 2 | Schematic diagram of simple sloped breakwater.
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with small-scale data to develop the models can lead to model confusion due to scale effects (e.g. Jafari & Etemad-Shahidi
2011; see Supplementary Appendix A for details). For this reason, the large-scale and field measurements were excluded,

and only small-scale laboratory tests were selected to develop the models. To generalize the developed models for the
large-scale and field measurements, the scale effect correction proposed by EurOtop (2018) for rubble mound structures
can be applied. This correction is derived from the prototype and laboratory observations and suggests an increasing ratio
(fq � 1) for upscaled wave overtopping only when the discharge (qup) is smaller than about 1� 10�3 (m3/s/m). This adjust-

ment factor also depends on the slope of the structure (see EurOtop (2018) for details).

Modelling overview

When sea waves run-up above the coastal structures and water overflows, wave overtopping occurs. The mean overtopping
rate is defined as the average discharge per metre width of the structure and commonly expressed in m3/s/m. This parameter
as the response of structure against incident wave depends on its geometrical features such as crest freeboard and seaward

slope but also on local wave conditions such as wave height, wave period, and water depth. The dimensionless mean over-
topping rate (q� ¼ q=(g �H3

m0,t)
1=2

) is usually correlated to the dimensionless form of the shown parameters to generalize the
results. The mentioned dimensionless overtopping rate is employed based on the assumption of critical flow conditions on the

crest of the structure (Altomare et al. 2020). The selection of input parameters is an important step for modelling. The appro-
priate combinations of the most effective parameters can enhance the performance of models. Table 3 shows the used input
combinations to feed GPR, SVR, and ANN models. These input combinations are taken from ET-ANN (combinations a and
b) and existing empirical formulae such as JE and ET (combinations c and d). Regarding the specific studied structure, the

berm indicators were excluded for configuring the input combination a. The key point for the configuration of the used dimen-
sionless input parameters in the combination a, as the most comprehensive one, is using the significant wave height (Hm0,t) to
scale the structure heights (Ac, ht, and Rc) as well as using wave length (Lm�1, 0 ,t) to scale structure widths (Bt and Gc). The

wave dissipation caused by breaking wave on the toe of structure (ht) and possible wave overtopping (Rc and Ac) can be con-
sidered using Hm0,t as a height-scaling parameter. In addition, two key procedures such as breaking by steepness and shoaling
described by Sm�1, 0 ,t and h=Lm�1, 0 ,t, respectively, were considered in this input combination. To achieve the modelling with

Table 2 | Details of used data extracted from the EurOtop (2018) database

Data label Number of data Data label Number of data

A-2 32 C-25 5

A-3 84 C-26 6

A-5 4 C-27 6

A-14 3 C-28 6

A-33 13 C-29 6

A-35 146 C-30 6

A-36 2 C-31 5

A-38 62 C-40 14

A-39 60 C-41 47

A-42 18 C-44 10

A-43 8 C-45 5

C-1 12 C-46 6

C-2 12 C-47 1

C-3 10 C-51 107

C-5 12 C-58 25

C-6 13 G-2 192

C-8 25 G-3 157

C-9 11 G-4 56

C-10 13 G-10 3
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as few as possible input parameters, the most influential parameters reported in the literature (Pillai et al. 2017) and extracted

from sensitivity analysis were considered to configure input combination b.
The results of sensitivity analysis to identify the key governing parameters are shown in Table 4. According to this table, the

prediction errors were estimated by eliminating each parameter one by one. If the elimination of a parameter does affect the

results marginally, that parameter could be neglected for further modelling; otherwise, the parameter needs to be included.
For example, by elimination of some input parameters such as Ac/Hm0,t, D/Hm0,t, m, Bt/Lm�1,0,t, ht/Hm0,t, no significant
change was observed in the accuracy metrics. On the other hand, by the elimination of parameters such as wave steepness

(Sm�1,0,t) or oblique wave factor (gb), centred pattern-root-mean-square error (c-RMSE) increases by 23 and 50%, respectively.
This implies that the mentioned parameters should be used in the modelling as key parameters. Among all input parameters,
the relative crest freeboard (Rc/Hm0,t) is the most effective one as modelling excluding this parameter can lead to large pre-

diction errors (Model 13: c-RMSE¼ 0.54 and BIAS¼�0.06).
Input combinations c and d were selected to fairly compare soft computing models with empirical formulae (JE and ET,

respectively) using the same input parameters. Here, the mathematical expressions of used formulae are given. For rubble
mound structures, EurOtop (2018) proposed a simple exponential formula as follows:

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g �H3

m0

q ¼ 0:09 � exp � 1:5
Rc

Hm0 � gf � gb

 !1:3
2
4

3
5 (21)

Table 3 | Used input combinations for developing the GPR, SVR, and ANN models

Input combinations

(a)
D

Hm0,t
, m,

Ac

Hm0,t
,

Bt

Lm�1,0 ,t
,

ht

Hm0,t
,

h
Lm�1,0,t

,
Rc

Hm0,t
,

Gc

Lm�1,0,t
, Sm�1,0,t, tana, cosb, gf

(b)
h

Lm�1,0,t
,

Rc

Hm0,t
,

Gc

Lm�1,0,t
, Sm�1,0,t, tana, cosb, gf

(c)
Rc

Hm0,t
,

Gc

Hm0,t
, tana, R�

d)
Rc

Hm0,t � gb � gf

Table 4 | Results of sensitivity analysis

Models

1 2 3 4 5 6 7 8 9 10 11 12 13

Inputs Ac/Hm0,t
p � � � � � � � � � � � �

D/Hm0,t
p p � � � � � � � � � � �

m
p p p � � � � � � � � � �

Bt/Lm�1,0,t
p p p p � � � � � � � � �

ht/Hm0,t
p p p p p � � � � � � � �

h/Lm�1,0,t
p p p p p p � p p p p p p

Gc/Lm�1,0,t
p p p p p p p � p p p p p

Sm�1,0,t
p p p p p p p p � p p p p

tana
p p p p p p p p p � p p p

gb
p p p p p p p p p p � p p

gf
p p p p p p p p p p p � p

Rc/Hm0,t
p p p p p p p p p p p p �

Error metrics BIAS 0.01 0 0 0 0.01 0 0 �0.04 �0.02 0 �0.02 0 �0.06
c-RMSE 0.26 0.26 0.26 0.28 0.28 0.28 0.32 0.35 0.32 0.30 0.39 0.31 0.54
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where gb and gf are the reduction factors of wave obliquity and structure’s surface roughness, respectively. For head-on

waves, gb is assumed equal to one, and gb can be calculated as follows:

gb ¼ cos2(jbj � 10�) with aminimumof gb ¼ 0:6
1 for jbj ¼ 0–10�

�
(long� crested) (22)

Likewise, for smooth structures, the roughness factor (gf) is equal to one and for other types can be determined based on
used materials and the structure’s permeability (EurOtop 2018). The roughness factor also needs to be modified when
Irm�1,0 . 5:0 which increases linearly up to 1 at Irm�1,0 ¼ 10 as below:

g fmod ¼ gf þ
(Irm�1,0 � 5)(1� gf)

5
(23)

where Irm�1,0 demonstrates the Iribarren number based on Tm�1,0,t defined as tana=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sm�1,0,t

p
where Sm�1,0,t is the wave steep-

ness defined by Hm0,t/Lm�1,0,t. It should be mentioned that the Iribarren number represents the wave breaking condition
(Irm�1,0 , 1:8) and non-breaking condition (Irm�1,0 . 1:8) (EurOtop 2018). Based on Equation (23), the roughness factor

for the data with Irm�1,0,t .5 (around 6% of all data) was modified for all input combinations applied in this study.
Jafari & Etemad-Shahidi (2011) suggested multi-conditional formulae for rubble mound structures using the CLASH data-

base as follows:

if
Rc

Hm0
. 2:08 and

Gc

Hm0
. 1:51;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g �H3

m0

q ¼ exp (�0:6396R� � 0:7085 tana� 11:4897)

ifR� � 0:86;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g �H3
m0

q ¼ exp (�6:18R� � 3:21)

ifR� . 0:86;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g �H3
m0

q ¼ exp (�3:1R� � 6:05 tana� 2:63)

8>>>>>>>>>><
>>>>>>>>>>:

(24)

where Hm0 is the significant wave height at the toe of structure and R� is defined as follows:

R� ¼ Rc

Hm0 � gb � gf
�

ffiffiffiffiffiffiffi
Sop

p
tana

(25)

As seen, all used input parameters are dimensionless to unify the whole dataset regardless of different model scales of tests.

Moreover, employing dimensionless parameters improves the analysis, fitting, and interpretation of results as well as the gen-
eralization capacity of the developed model. It should be mentioned that the dimensionless wave overtopping rate in the form
of q� ¼ q=(g �H3

m0,t)
1=2 was selected as the output of the models.

Performance measures

The capabilities of the models were evaluated using the discrepancy ratio (DR) and accuracy metrics of modified Taylor’s

diagram (Elvidge et al. 2014), i.e. standard deviation (s), Pearson’s correlation coefficient (R), c-RMSE, and BIAS. Taylor’s
diagram, initially proposed by Taylor (2001), is a mathematical diagram which graphically illustrates how realistic the
models are and simplifies the comparison process. This is obtained by finding a geometric relation between standard devi-
ation, c-RMSE, and Pearson’s correlation coefficient. c-RMSE defined as mean-removed RMSE and represented by E can

be calculated as follows:

E2 ¼ 1
n

Xn
i¼1

[(logq�pi � �Y)� (logq�mi � �X)]2 (26)
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Indeed, c-RMSE can be equated with the standard deviation of the model error based on the mathematical operations

applied to the above equation as follows:

E2 ¼ 1
n

Xn
i¼1

[(logq�pi � logq�mi)� (�Y � �X)]2 (27)

E2 ¼ 1
n

Xn
i¼1

[(logq�pi � logq�mi)� (Y �X)]2 (28)

where q�m and q�p are dimensionless measured and predicted overtopping rates, n is the number of records, and �X and �Y are
the average values of log q�m and logq�p, respectively. c-RMSE is always non-negative where a value of zero represents the per-
fect fit of prediction to the measured data. In addition, given that c-RMSE is a scale-dependent parameter and the target

parameter in the present study is dimensionless (q�), the c-RMSE value will be dimensionless.
The used metrics in Taylor’s diagram are related by the following equation:

E2 ¼ s2
p þ s2

m � 2spsmR (29)

where sp and sm represent the standard deviation of predicted and measured values, respectively, and R is the Pearson cor-
relation coefficient. These parameters are expressed as follows:

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(logq�pi � �Y)
2

vuut (30)

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(logq�mi � �X)
2

vuut (31)

R ¼

Pn
i¼1

(logq�mi � �X)(logq�pi � �Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(logq�mi � �X)
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(logq�pi � �Y)
2

s (32)

Standard deviation represents the amount of dispersion of a set of values in comparison to the average expected value. A
low value of standard deviation points out the closeness of values to the mean of the set, while a high standard deviation

illustrates that there are widespread values around the average value. R is a measure of linear correlation between two
sets of data. The value of the correlation coefficient shows the strength of the relationship between the measured values
and predicted ones.

The law of cosines (Pickover 2009) defined by c2 ¼ a2 þ b2 � 2ab cosw (where a, b, and c represent triangle sides and w is
the angle between the sides a and b) is a key to forming the geometrical connection between four quantities (sp, sm, R, and E)
which underlie the Taylor diagram (Figure 3).

Elvidge et al. (2014) proposed a modified Taylor’s diagram in which BIAS as a complementary accuracy metric was added
in contours. The BIAS can be calculated as follows:

BIAS ¼ 1
n

Xn
i¼1

(log q�pi � log q�mi) (33)

BIAS is a systematic error that is achieved from an estimation process not giving accurate results on average. The positive
and negative BIAS values show the overestimation or underestimation of the modelling where for the best fit, the BIAS value
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will be equal to zero. Also, the mathematical formulation of another used metric, namely DR, can be expressed as follows:

DRi ¼
q�pi
q�mi

(34)

where DRi¼ 1 means that there is an exact match between the measured and predicted values.

RESULTS AND DISCUSSION

The scatterplots of measured values against the predicted ones for all input combinations and the test data using all applied
models (GPR, SVR, and ANN) and empirical formulae (JE and ET) are given in Figure 4. Here, the solid line shows the per-

fect agreement, and the dashed lines represent 10 and 0.1 times over-/underestimations, respectively. As can be seen, for all
input combinations, predicted values by soft computing methods are less scattered than those by empirical formulae. The plot
given for input combination b is slightly more scattered than that for input combination a. In the case of input combinations

of a and b, all predicted values by the GPR model lie between over-/underestimation lines which show its higher accuracy.
Figures 4(c) and 4(d) compare the prediction performance of soft computing models against empirical formulae using the
same input parameters. As can be seen, the ET formula underestimates the low overtopping rates significantly, while

slight underestimations and some overestimations were observed for the JE formula.
The accuracy metrics of GPR, SVR, ANN models, and empirical formulae for both all and test datasets are presented in

Table 5. Here, lowercase letters a, b, c, and d correspond to the input combinations given in Table 3. The capital letters
G, S, and N also denote GPR, SVR, and ANN methods, respectively.

According to Table 5, it could be inferred that models using input combinations of a and b (taken from EurOtop (2018)-
ANN) provide better results in comparison to other models (using input of empirical formulae). As an example, both G(a)
and G(b) models with c-RMSE¼ 0.24 and 0.25 are more accurate compared with G(c) and G(d) models with c-RMSE¼
0.31 and 0.62, respectively. Models with input combination b, as the reduced form of input combination a, show an accep-
table accuracy. For G models, almost similar accuracy metrics were obtained for input combinations a and b with a slight
difference in the c-RMSE. Since the eliminated parameters in the input combination b are mostly the less influential ones

in the overtopping process (at least for study case), the results could be expected. The input combination b consists of all con-
ventionally known effective parameters namely Rc=Hm0,t, Sm�1,0,t, tana, cos b, and gf . Besides the mentioned parameters, the
parameter (h=Lm�1,0,t) has an effective contribution in the modelling which is supported by the findings of Cheon & Suh

(2016) and Pillai et al. (2017). In addition, since breakwaters have a permeable crest, the position of the box collecting over-
topping on it can be a significant factor for the measurement (Jafari & Etemad-Shahidi 2011). This issue can be considered by
using the relative crest width (Gc=Lm�1,0,t) by the increase of which the overtopping is expected to decrease as water perco-
lates into the permeable surface (Pillai et al. 2017). The comparison of models with input combination b demonstrates the

highest accuracy for model G (c-RMSE¼ 0.25). However, the good performance of model S with BIAS¼ 0 should not be
overlooked. The improvements of the model G(b) compared to N(b), JE, and ET formulae can be accounted for 22, 60,
and 79% in terms of c-RMSE value.

In general, soft computing models show better performance than empirical formulae. This superiority can be seen even in
the cases where the same input parameters are used. For example, the models G(c), S(c), and N(c) have the c-RMSE values of
0.31, 0.37, and 0.4, while JE gives c-RMSE¼ 0.63. Comparing the accuracy metrics of the most accurate soft computing

Figure 3 | Geometrical relationship between metrics plotted on Taylor’s diagram based on the cosines law.
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Figure 4 | Measured versus predicted overtopping rates using JE and ET formulae as well as ANN (N), SVR (S), and GPR (G) models for the
input combinations a (a), b (b), c (c), and d (d); test data.

Table 5 | Accuracy metrics of different developed models (GPR, SVR, and ANN) and empirical formulae for test (all) data

Models

Error metrics

c-RMSE BIAS

G(a) 0.24 (0.19) �0.02 (�0.01)

G(b) 0.25 (0.22) �0.02 (�0.01)

G(c) 0.31 (0.27) �0.02 (�0.01)

G(d) 0.62 (0.63) �0.04 (�0.01)

S(a) 0.26 (0.22) 0.01 (0.01)

S(b) 0.28 (0.24) 0 (0.01)

S(c) 0.37 (0.33) �0.01 (0)

S(d) 0.63 (0.63) �0.07 (�0.04)

N(a) 0.28 (0.24) 0.01 (0.01)

N(b) 0.32 (0.30) �0.01 (0)

N(c) 0.40 (0.40) �0.02 (0)

N(d) 0.63 (0.64) �0.04 (�0.01)

JE 0.63 0.13

ET 1.20 �0.29
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method for the input combination c, G(c) with the JE formula representing the improvements of about 51 and 85% in terms of

c-RMSE and BIAS, respectively. Developed models using input combination d (taken from the ET formula) result in a better
accuracy metrics compared to ET. For example, c-RMSE has been reduced from 1.20 (ET) to 0.62 (G(d)). However, the com-
parison of Figure 4(d) and other panels demonstrates the unsuitability of this input combination, as it lacks some key

parameters compared to other input combinations. It should also be mentioned that for input combinations c and d, GPR
models outperform SVR and ANN models. Besides the better performance of JE than ET formula, soft computing models
fed by input combination of c, taken from the JE formula, perform better compared with the input combination in which
ET parameters have been used (input combination d). This can be explained by overlooking some parameters in the input

combination d such as Sm�1,0,t, tana, and Gc=Hm�1,0,t.
Overall, considering both accuracy and the number of input parameters, input combination b can be introduced as the opti-

mal one. In addition, comparing the results of the analysis of all applied models for the test dataset represents the good

capability of kernel-based models compared to ANN and empirical formulae. It can also be seen that the GPR model per-
forms slightly better than the SVR model.

Figure 5 shows the used modified Taylor diagram which graphically summarizes the results of the analysis. The advantage

of using modified Taylor’s diagram is plotting all meaningful accuracy metrics in one diagram, which can be more helpful for
the comparison of the models. In this diagram, (1) the azimuthal angle shows the correlation coefficient, (2) the radial dis-
tance represents the standard deviation of models, (3) the blue-coloured dashed line shows the standard deviation of

measured values, (4) the red-coloured circular dashed lines with the centre of measured standard deviation inside the diagram
display the c-RMSE, (5) BIAS is presented by contours. Predicted patterns, which are in good agreement with the obser-
vations, will lie nearest the point marked ‘Measured’ on the horizontal axis. This point is the representation of the highest
correlation (R¼ 1) and lowset c-RMSE (¼0) and a similar dispersion pattern of predicted values compared to the measured

ones (sp ¼ sm ¼ 0:72).
As can be seen, each diagram (a, b, c, and d) refers to the used input combinations in this study. According to diagram (a), it

is evident that the GPR and SVR models agree best with observations by the lowest c-RMSE and highest correlation coeffi-

cient (R), respectively. However, the spatial variability of the ANN model is lower compared to the others, as it is close to the
blue-dashed line. Also, the ANN and SVR models in yellow show few overestimations, while the GPR model in green indi-
cates the underestimation. Attending to diagram (b), the relative merit of kernel-based models, especially GPR, can be

inferred from the location of the models. As seen, the GPR model is in the nearest spot to the measured point on the hori-
zontal axis in the case of either radial distance (close standard deviation to the measured values) or azimuthal angle (lowest
c-RMSE and highest correlation coefficient). However, according to the BIAS contour, SVR and ANN models show slight
overestimations, while GPR is underestimated. Given that the differences of BIAS values for the models regardless of

their over-/underestimations are negligible, the GPR model can be considered as the most accurate one for the input combi-
nation b. In diagrams (c) and (d), the applied soft computing models are compared with the empirical formulae. Based on
diagram (c), the location of the JE formula, standing further than those of the applied soft computing models with respect

to the optimal point on the horizontal axis, confirms its unreliable estimation. Also, the superiority of used soft computing
models can be obviously seen in diagram (d) where the point representing the ET formula is in the furthest location from
the measured point on the horizontal axis.

Overall, Figure 5 demonstrates the higher capability of kernel-based models in comparison to ANN and empirical formulae
in the prediction of wave overtopping at simple sloped breakwaters. G(a) and G(b), as the most accurate ones, are the nearest
to the measured point on the horizontal axis.

The distribution of log(DR) for the predicted values using the input combination b was further analysed (Figure 6). The
narrower distribution of predictions using all soft computing methods especially GPR (�1, log DR, 1) in comparison
with JE (�2, log DR, 2) and ET (less than �2, log DR, 2) formulae can be observed. Also, as seen all models (except
the JE formula) have negative skewness indicating underestimation, while the JE formula with positive skewness illustrates

overestimation.
A good model is a model with errors that are independent of the input parameters (Sahay & Dutta 2009) and has no sys-

tematic error. Hence, the variation of DR as a function of the relative crest freeboard (Rc=Hm0,t) is shown in Figure 7 for the

input combination b as optimal one using different models (JE, ET, ANN, SVR, and GPR). As shown, it can be concluded that
the relative crest freeboard (Rc=Hm0,t) has been used appropriately in all models except the ET formula where a systematic
error is observed. DR values of applied models (GPR, SVR, and ANN) are less sensitive to the change of relative crest
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freeboard as well as more symmetric than those of the ET formula. In addition, comparing the dispersion of the data points
around DR¼ 1 for all models indicates the good capability of soft computing methods especially the GPR for the prediction of
overtopping rate.

To investigate the physical consistency of developed GPR and SVR models, a parametric analysis showing the relationship

between the most important input parameter (Rc/Hm0, t), mentioned in the literature and extracted from sensitivity analysis,
and overtopping rate was conducted. Figure 8 represents the predicted values of dimensionless mean overtopping rate against
relative crest freeboard (Rc/Hm0, t) for GPR and SVR using the input combination b as the optimal one. As seen, a decreasing

Figure 5 | Modified Taylor’s diagrams for the input combinations a (a), b (b), c (c), and d (d); test data. Please refer to the online version of this
paper to see this figure in colour: http://dx.doi.org/10.2166/hydro.2021.046.
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trend between the relative crest freeboard and mean overtopping rate is observed for both developed models demonstrating

good agreement with the existing physical pattern.
To introduce an appropriate model, different criteria such as accuracy, simplicity, and computational cost should be con-

sidered. For developing kernel-based models, the manual adjustment of structure is not required where the optimal structure
is obtained through an automatic process. This feature makes them more user-friendly, especially for those who are not quite

familiar with the optimization process. In addition, regarding the good prediction accuracies of the kernel-based models com-
pared to ANN, these models can be applied as efficient soft computing tools for the estimation of wave overtopping at coastal
structures. Moreover, similar to most of the other soft computing models (e.g. Zanuttigh et al. 2016), the kernel-based

models do not provide formulas but can be used in practice considering dimensionless parameters as the input. The
m. file (MATLAB) of the developed models is provided as the supplementary file to be used by practitioners.

SUMMARY AND CONCLUSION

In this study, kernel-based methods (GPR and SVR) were employed to estimate the mean wave overtopping rate at simple
sloped breakwaters. To investigate the capability of kernel-based models, the ANN method as a well-known soft computing
tool as well as recently proposed empirical formulae (JE and ET) were applied as benchmarks. The existing laboratory tests

from the EurOtop (2018) database were used for the modelling process. Conventionally used wave and structural parameters
in the existing models were selected to define different input combinations. A sensitivity analysis was performed to recognize
the most important parameters to configure the optimal input combination. To evaluate the reliability of kernel-based models

in terms of physical consistency, a parametric analysis representing the simulated trend between the relative crest freeboard
(Rc=Hm0,t), as the most important parameter, and overtopping rate using GPR and SVR was carried out.

According to the obtained results, the main findings of this study can be summarized as below:

• Input combinations taken from EurOtop (2018)-ANN can lead to more accurate predictions in comparison to those
obtained from empirical formulae.

Figure 6 | Histogram of log DR for input combination b, different soft computing methods (ANN, SVR, and GPR) and empirical formulae
(JE and ET); test data.
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• The kernel-based models, especially GPR, perform better than the ANN and empirical formulae (JE and ET).

• The input combination b, with acceptable accuracy and as few as possible parameters obtained from sensitivity analysis,
was introduced as the optimal one for modelling.

• In addition to commonly known effective parameters such as the relative crest freeboard (Rc=Hm0,t), relative crest width
(Gc=Lm�1,0,t) and relative water depth at the toe of structure (h=Lm�1,0,t) were recommended to be considered in the predic-
tion of overtopping.

Figure 7 | Variation of DR as a function of the relative crest freeboard for the input combination b using (a) JE, (b) ET, (c) ANN, (d) SVR, and (e)
GPR models; test data.
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• The GPR and SVR models can be used as reliable models, as the physics of overtopping phenomenon is preserved in
modelling.

• The implementations of both GPR and SVR models are simple, as the structural parameters are optimized automatically.

Hence, they are recommended for other similar studies.

• Among all models, considering both the simplicity of application and accuracy criteria the GPR model can be applied as an
alternative tool for the prediction of wave overtopping rate at simple sloped breakwaters.

This study was conducted for simple sloped breakwaters. Investigating the capability of the kernel-based models for a larger
database covering a variety of coastal structures can be the aim of future studies.
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