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Figure 7.24. Marginal spatial semivariograms (blue) and fitted semivariogram models (red) of CPUEsNvd 
for individual seasons 2001-2004. 

 

 
Figure 7.25. Marginal spatial semivariograms (blue) and fitted semivariogram models (red) of 
CPUEsNgd for individual seasons 2001-2004. 
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Figure 7.26. Marginal temporal semivariograms (blue) and fitted semivariogram models (red of 
CPUEsNvd for individual seasons 2001-2004. 

 

Figure 7.27. Marginal temporal semivariograms (blue) and fitted semivariogram models (red) of 
CPUEsNgd for individual seasons 2001-2004. 

As for the standardised catch rates, the marginal temporal semivariogram model 

parameters were adjusted to account for the global nugget effect, and were then used, along with 

the marginal spatial semivariogram models and global sill, to construct product-sum 
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semivariogram models (Table 7.10, Figure 7.28 and Figure 7.29) to describe the spatiotemporal 

continuity.  

Table 7.10. Product-sum model parameters semivariograms of CPUEsNvd and CPUEsNgd for individual 
seasons 2001-2004. 

Season 2001 

vd 

2001 

gd 

2002 

vd

2002 

gd

2003 

vd

2003 

gd

2004 

vd 

2004 

gd
Spatial model         

Nugget 0.2 0.5 0.2 0.35 0.25 0.37 0.18 0.4 

1st structure         

Type sph exp sph exp sph exp sph exp 

Range 2 20 4 20 4 20 4 20 

Sill 0.1 0.4 0.07 0.4 0.03 0.42 0.05 0.5 

2nd structure         

Type sph  sph  sph  sph  

Range 20  15  15  20  

Sill 0.3  0.3  0.23  0.6  

Temporal model         

Nugget 0.00 0.10 0.00 0.07 0.00 0.05 0.00 0.03 

1st structure         

Type exp sph exp sph exp sph sph sph 

Range 5 15 8 8 10 6 10 12 

Sill 0.55 0.68 0.46 0.56 0.51 0.77 0.43 0.59 

Global sill 1 1 1 1 1 1 1 1 

k 0.45 0.97 0.12 0.80 0.08 0.94 0.72 0.93 

k range (0,1.7] (0,1.1] (0,1.8] (0,1.3] (0,2] (0,1.2] (0,1.2] (0,1.1] 

 

 
Figure 7.28. Product-sum semivariogram models of CPUEsNvd for individual seasons 2001-2004. 
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Figure 7.29. Product-sum semivariogram models of CPUEsNgd for individual seasons 2001-2004. 

The semivariograms, and their fitted models, of the normal scores of the individual 

seasons 2001-2003 showed strong similarities. The evidence of similarity within these seasons 

supported the development of a model of spatiotemporal continuity for the combined seasons 

2001-2003 to estimate the spatiotemporal continuity of season 2004, as conducted in the 

modelling process of the standardised catch rates. This model would facilitate the geostatistical 

simulation of the catch rates of a subsequent (lunar) month of 2004. Recall that the simulation 

process required normally distributed data, and therefore a model of spatiotemporal continuity 

for the normal scores of the standardised catch rates. The product-sum semivariogram model 

obtained for the combined seasons 2001-2003 (Table 7.11, Figure 7.30 and Figure 7.31) 

displayed similar behaviour to those of the individual seasons 2001-2003. 

Table 7.11. Product-sum semivariogram model parameters of CPUEsNvd for combined season 2001-
2003. 

Marginal Spatial Model Marginal Temporal model 

Nugget  0.20 Nugget  0.00 
1st structure Type spherical 1st structure Type exponential 

 Range 3  Range 10 

 Sill 0.04  Sill 0.52 

2nd structure Type spherical    

 Range 15  Global Sill 1.00 

 Sill 0.3  k (max k) 0.22(1.9) 
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Figure 7.30. Experimental semivariogram (top left), product-sum model (top right), marginal spatial 
semivariogram (bottom left) and (unmodified) marginal temporal semivariogram (bottom right) of 
CPUEsvdN for combined season 2001-2003. 

 

 

 
Figure 7.31. Experimental semivariogram (top left), product-sum model (top right), marginal spatial 
semivariogram (bottom left) and (unmodified) marginal temporal semivariogram (bottom right) of 
CPUEsgdN for combined season 2001-2003. 
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7.5 SELECTION OF SEMIVARIOGRAM MODEL 

In order to estimate or simulate CPUE values for the April to October lunar months of season 

2004, the spatiotemporal models of continuity obtained from the standardised catch rate data 

and normal scores of the seasons 2001 to 2003 was required to estimate the spatiotemporal 

model of continuity for the 2004 season. Ordinary spatiotemporal kriging of each lunar month 

of the 2004 standardised catch rate data can be conducted using the GSLIB program 

kt3dnew.exe along with the product-sum semivariogram model of combined seasons 2001 to 

2003 and the data of the previous lunar month of 2004. In a similar manner, sequential Gaussian 

simulation of the catch rate normal scores can be conducted using the semivariogram model of 

the 2001-2003 normal scores. The CPUEs estimates or simulations are then multiplied by the 

classical decomposition trend model of the combined season 2001-2003 to obtain estimates or 

simulations of the catch rates. The actual CPUE data of each lunar month of season 2004 will be 

used in this study to evaluate the model. In reality, the locations to be estimated/simulated in a 

future season are unknown, so estimates are made on a grid over the entire region in order to 

highlight areas of high of low catch rates, along with their uncertainty. 

Thus far, the spatiotemporal continuity of two catch rate variables (CPUEsvd and 

CPUEsgd) has been modelled. Since the models of spatiotemporal continuity of the two 

variables showed many similarities, it was decided to only proceed with estimation using one 

model. As outlined previously, the model for the combined season 2001-2003 was chosen as a 

(estimated) measure of the spatiotemporal continuity of the 2004 season based on its similarities 

with all three individual seasons involved. Moreover these three seasons occur directly before 

2004 and with no obvious changes in management for the 2004 season there is no reason to 

expect a significant change in the continuity of the catch rates. The question then arose whether 

to use the product-sum variogram model of the CPUEsvd or CPUEsgd of the combined season 

2001-2003 (Figure 7.21). The CPUEsvd model was chosen as the variograms of the CPUEsvd 

data for all seasons show longer ranges and lower nugget effects in both the spatial and temporal 

direction for all individual and combined seasons, indicative of a stronger measure of 

spatiotemporal continuity. This was supported by the associated use of the vd data obtained by 

aggregating by vessel and removed the problems inherent in the data aggregated by grid, which 

combined data aggregation methods when shot data was considered for aggregation by grid with 

data already aggregated by vessel.  
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Figure 7.32. Experimental semivariogram (left) and product-sum models (right) of CPUEsvd (top row) 
and CPUEsNvd (bottom row) for combined season 2001-2003. 

7.6 CHAPTER SUMMARY 

The spatiotemporal continuity of the standardised catch rate variable was modelled by 

considering the spatiotemporal semivariograms of the CPUEsvd and CPUEsgd variables. Both 

variables showed evidence of spatial and temporal continuity for the individual and combined 

seasons. This pattern of continuity was modelled by a product-sum semivariogram model, 

which was constructed from the marginal spatial and temporal variograms along with the global 

sill exhibited by the experimental semivariogram. Relative semivariograms were used to infer 

the parameters of each model.  

A modification of the marginal temporal variogram parameters (nugget and sill) was 

developed to ensure a good fit to the experimental spatiotemporal semivariograms. This 

modification presents an alternative method for the implementation of a global nugget effect in 

a spatiotemporal semivariogram model within a single product-sum model. 

The individual seasons of 2001-2003 showed similar patterns of spatiotemporal 

continuity so it was reasonable to assume that the 2004 season would display a similar pattern. 

This meant that a model of the spatiotemporal continuity for season 2004 could be estimated 

from the behaviour of the seasons 2001-2003. Rather than using a model of a single season or 

averaging the parameters of the three individual models, a model of spatiotemporal continuity 
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was derived for the combined season 2001-2003. This allowed the pooling of data over the three 

individual seasons. The model for the combined season of 2001-2003 showed similar patterns of 

continuity to those seen in the models for the individual seasons. This was deemed the more 

appropriate model to use as an estimate of the spatiotemporal continuity for the individual 

season 2004 that could be used to allow geostatistical estimation and simulation of the 2004 

catch rate values. The semivariogram models for the standardised catch rates of the vd data and 

the associated normal scores were selected for use in a subsequent estimation and simulation 

process for the 2004 catch rates as they displayed the strongest measure of spatiotemporal 

continuity. 
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PART III. 

 

GEOSTATISTICAL SPATIOTEMPORAL 

ESTIMATION AND SIMULATION
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CHAPTER 8 

SPATIOTEMPORAL ESTIMATION 

8.1 INTRODUCTION 

In this chapter we consider estimation of the king prawn catch rate for season 2004 using the 

product-sum semivariogram model obtained in Chapter 7 for the standardised king prawn catch 

rate of the combined season 2001-2003. The model aimed to predict the catch rates of each 

month of the 2004 catch rates using the previous month’s data as conditioning data. With the 

electronic collection of data to become more prevalent in Western Australia fisheries, faster data 

validation and processing will be possible. Therefore, this forecasting method could be a viable 

tool to assist fishery scientists in the monitoring of their fishery. 

The suitability of the model was first assessed for the conditioning data of 2004. The 

cross-validation procedure was used to assess the suitability and predictive ability of the model 

of spatiotemporal continuity for estimation of the standardised catch rates of season 2004. If the 

model could capture the spatiotemporal variation of the catch rates in a lunar month of 2004, 

then it would be reasonable to use that semivariogram model to predict catch rates for the next 

lunar month. The catch rate data of 2004 were transformed to standardised catch rates using the 

global trend model of the combined season 2001-2003 and the cross validation process 

conducted on the lunar monthly standardised catch rate data sets. Cross validation estimates of 

the 2004 standardised catch rates were back-transformed to catch rate values using the trend 

model.  

Estimates of standardised catch rates were then made at the spatiotemporal locations 

(day and spatial location) of the 2004 data using only the 2004 data up to but not including the 

prediction month to assess the forecasting ability of the model. As for the cross-validation 

procedure, estimates were transformed to catch rate values using the global trend model. A 

similar forecasting process was used to compute grid estimates of the catch rates across the 

fishing region for the 2004 season. Daily estimates were obtained over the grid and used to 

create (lunar) weekly averages. Estimates at the data locations and grid estimates compared 

favourably with the actual data values (Denham & Mueller, 2009). This paper was presented at 

the Geostats2008 conference (APPENDIX A). Forecasts were also made incorporating 

additional survey data to help infer catch rate estimates in locations just opened for fishing 
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(Denham & Mueller, 2010) with results presented at the GeoENV VII conference (APPENDIX 

A). 

8.2 KRIGING PROCESS 

The existence of a model of spatiotemporal dependence makes it possible to estimate the values 

of a variable at unsampled locations. Kriging algorithms are a method for deriving least-squares 

linear regression estimates by using the information of nearby data related to the variable being 

estimated. The weight assigned to each datum in the estimation process depends on the kriging 

model chosen, which in turn relates to the model for the local mean. In this study we use 

ordinary kriging (OK) that considers the local mean to be unknown but stationary. 

Spatiotemporal effects are included via reference to the autocorrelation structure of the data set, 

as summarized by the fitted covariance model.  

The kriging process can be used to conduct cross-validation of the estimation process 

with a particular spatiotemporal model of continuity. Cross-validation is the process of 

removing one datum at a time from the data set and re-estimating this value from the remaining 

data using the semivariogram model. It can be repeated to compare different semivariogram 

models or different search parameters. Interpolated and actual values are compared, and the 

model/search parameters that yield the most accurate predictions is retained. If the cross-

validation process validates the use of a kriging process with its associated semivariogram 

model and search parameters then subsequent estimation can be performed at unsampled 

locations. 

8.3 CROSS VALIDATION OF THE SPATIOTEMPORAL 
SEMIVARIOGRAM MODEL 

Cross-validation was performed to assess how well the semivariogram model of the combined 

season 2001-2003 captured the spatiotemporal variation of the 2004 standardised king prawn 

catch rate data. Cross validation was conducted independently on each monthly data set of the 

2004 season by estimating the standardised king prawn catch rate at each spatiotemporal sample 

point of that month in turn after excluding the sample value at that spatiotemporal location. The 

modified GSLIB program kt3dnew.exe (De Cesare et al., 2002) was used along with the 

associated parameter file (APPENDIX G.3).  

Kriging was performed using the standardised king prawn catch rate data for the month 

of 2004 being estimated and the spatiotemporal semivariogram model for the combined 2001-

2003 season (Figure 8.1). After several trials of various values, a minimum of 4 sample data and 
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a maximum of 20 were required to enable estimation. This ensured a relatively consistent 

number of points used for estimation across the region and did not demand excessive 

computation time. Eight lunar months (March-October) of 2004 involving three weeks (L,N,Q) 

in each were estimated via a cross-validation process. Estimates are not made for the week 

surrounding the full moon in all months as the fishing region is typically closed during these 

periods. 

Table 8.1. Product-sum semivariogram model parameters of CPUEsvd for combined season 2001-2003. 

Marginal Spatial Model Marginal Temporal model 

Nugget 0.07 Nugget 0.00 
1st structure   Type spherical 1st structure   Type exponential 

Range 1 Range 12 

Sill 0.03 Sill 0.15 

2nd structure  Type spherical   

Range 20 Global Sill 0.30 

Sill 0.05   

 

 
Figure 8.1. Product-sum model of CPUEsvd for the combined season 2001-2003. 

Identification of the closest 20 data in the search procedure of the GSLIB kt3dnew 

program required the definition of a space–time distance metric by converting absolute 

measures of spatial and temporal separation (i.e. nmil and days, respectively) into relative 

measures based on their proportion of the maximum spatial and temporal search radii. The 

search radii have a dual purpose as they also determine the maximum spatial and temporal 

separation of points to be used in the estimation process. Cross-validation of each month was 

conducted using four search radii combinations to assess their impact (Table 8.2). Moreover, the 

impact of estimating using spatial-only or spatial and temporal information could also be 

assessed. The first search neighbourhood involved only the spatially closest 20 points from the 

same day as the point being estimated, but limited to a 5 nmil radius. A long range (20 nmil) 
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spatial neighbourhood was also used to enable the closest points up to 20 nmil away, which 

effectively meant 20 points would always be used. Two spatiotemporal neighbourhoods were 

considered to weight the relative importance of spatial and temporal information. The first 

neighbourhood allowed both spatial and temporal information whilst the second ensured a 

significant amount of temporal information was included as a temporal separation of 20 days 

was considered “as close” as a spatial separation of 5 nmil. 

Table 8.2. Spatial and temporal search neighbourhoods. 

 Spatial Search Radius Temporal Search Radius 

Spatial only – short range 5 nmil 0 days 

Spatial only – long range 20 nmil 0 days 

Spatial and temporal (1) 20 nmil 20 days 

Spatial and temporal (2) 5 nmil 20 days 

 

Using spatial-only information (spatial radius 5 nmil, temporal radius 0 days) to 

produce cross-validation estimates for a given month allowed only data located on the same day 

to be used to produce the weighted estimate at each location. The estimates produced showed 

relatively small and consistent mean errors, along with reasonable correlations with the actual 

2004 data across the first five months (Figure 8.2). For the last three months the errors and 

correlations, were more variable which was partially due to the reduced number of estimates 

made. Increasing the spatial search radii to 20 nmil enabled more estimates to be made but this 

was achieved at the expense of greater errors and lower correlations with the actual values. 

Cross-validation estimates computed using the spatiotemporal search neighbourhoods 

included the addition of data separated temporally (and spatially) from the location being 

estimated, along with the spatially (but not temporally) separated information. The best results 

were obtained using 20 nmil and 20 days respectively. The spatial radius of 20 nmil was set 

large to give the desired ratio for temporal information. In weeks where the spatial-only 

estimates produced reasonable estimates (small errors/good correlation with actual values), the 

additional temporal information allowed more estimates with slightly smaller errors (Figure 8.2) 

and slightly increased correlation with true values (Figure 8.3). In some cases, the effect was 

negligible. However, in weeks where the spatial-only estimates were unsatisfactory, the 

inclusion of temporal information improved the performance of the estimation with larger 

proportion of estimated locations (Figure 8.3, top row), smaller errors (Figure 8.2) and increased 

correlation with true values (Figure 8.3, bottom row),. It appears that in the absence of closely 
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related spatial information, relevant temporal information can improve the performance of the 

cross-validation estimates.  

The inclusion of temporal information affects the number of spatial-only data included 

as the overall amount of data included does not change (unless specified). An alternative search 

neighbourhood has been implemented in another program (Spadavecchia, 2008) to allow for the 

specification of exact number of data included from each temporal separation rather than 

utilising a pseudo-distance metric. This is recommended for future work. 

 
Figure 8.2. Mean error (top) and mean squared error (bottom) of cross validation results for the lunar 
weeks of 2004 using the four search neighbourhoods outlined in Table 8.2. 

 
Figure 8.3. Percentage of locations estimated (top) and correlation of estimates with actual catch rate 
values (bottom) of cross validation results for the lunar weeks of 2004 using the four search 
neighbourhoods outlined in Table 8.2. 
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Although eight (lunar) months were estimated, results will be shown in this section for 

the months of May and July, with the results for all other months contained in APPENDIX J. 

The weeks of May were chosen as one example as the ENA opens at the beginning of the month 

resulting in relatively high catch rates. The weeks of July were chosen as a second example as 

they are indicative of the second half of the fishing season. 

The standardised king prawn CPUE values have been reproduced over the months of 

May and July (Figure 8.4 and Figure 8.5). This is indicative of the estimates across the 2004 

season (APPENDIX J). Across the month of May, there are regions of high and low values 

which have been reproduced well by the estimates, as have the mainly low values evident in 

July. All sample spatiotemporal locations in May and July have been estimated by the cross 

validation process (Table 8.3). 

Across the season of 2004 only two sample locations did not produce cross validation 

estimates, one in March and one in October (APPENDIX J). The mean and median of the cross 

validation estimates are similar to those of the actual standardised catch rate values whilst the 

variance of the estimates is lower than that of the corresponding sample values for all weeks. 

The smoothing inherent in the kriging process results in the minimum/maximum of the 

estimates being higher/lower than the corresponding sample values. 

Table 8.3. Summary statistics of CPUEs cross validation estimates for the lunar weeks of May and July 
2004. 

 MayL MayN MayQ JulL JulN JulQ 

 Sample CV Est Sample CV Est Sample CV Est Sample CV Est Sample CV Est Sample CV Est

Mean 1.652 1.627 1.228 1.265 0.917 0.911 0.694 0.704 0.700 0.707 0.659 0.654

Med 1.745 1.746 1.213 1.232 0.844 0.810 0.677 0.723 0.684 0.721 0.564 0.573

Var 0.455 0.221 0.152 0.065 0.382 0.219 0.091 0.055 0.086 0.060 0.136 0.068

Skew -0.006 -0.477 0.112 -0.086 1.285 0.927 0.043 -0.385 0.316 0.045 0.818 0.562

Min 0.207 0.577 0.188 0.390 0.036 0.222 0.038 0.164 0.150 0.244 0.063 0.237

Max 3.527 2.557 2.357 1.796 3.271 2.243 1.459 1.095 1.495 1.248 1.668 1.321

N 196 196 203 203 165 165 197 197 202 202 166 166 
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Figure 8.4. CPUEsvd values (top row) and cross validation estimates (bottom row) for lunar weeks of 
May 2004. 

 
Figure 8.5. CPUEsvd values (top row) and cross validation estimates (bottom row) for lunar weeks of 
July 2004. 

The range of cross-validation error values of May and July (top row, Figure 8.6 and 

Figure 8.7) are spread across the Shark Bay region with no obvious pattern of high or low error 

values. Scatterplots of the sample values against the estimated values (second row) show clouds 

close to the first bisector with correlation coefficients varying between 0.6 and 0.8 for May and 
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July indicating strong positive correlation between the estimates and sample values. Histograms 

of the standardised estimation errors (third row) indicate an approximately normal distribution. 

Scatterplots of the estimates against their standardised estimation errors (bottom row) show 

clouds close centred about the zero error line and display no obvious structural bias. The July 

clouds show less spread than those of May. The correlation coefficients vary between -0.09 and 

0.07 for May and July indicating little or no correlation between the estimates and their errors. 

There a few outliers in May but none in July, with outliers being defined as those outside the 

99% confidence limit of a normal distribution. Cross validation estimates for the other months 

of 2004 show similar behaviour (APPENDIX J). 

 
Figure 8.6. CPUEsvd values (top row), scatterplot of actual vs estimated values (second row), histogram 
of standard errors (third row) and standard errors vs estimates (bottom row), May 2004. 
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Figure 8.7. CPUEsvd values (top row), scatterplot of actual vs estimated values (second row), histogram 
of standard errors (third row) and standard errors vs estimates (bottom row), July 2004. 

The strong positive correlation between the estimates and sample values seen in May 

and July is evident in many of the other weeks of the 2004 season (Figure 8.3, second row). 

However, there are also some weeks that show weak positive correlation and one that shows 

little correlation (AugN). The low correlation seen in AugN is most likely due to the small 

number of data points in that week. 

The mean errors of the 2004 season are quite small in magnitude and centred around the 

zero line with the largest magnitudes seen in August to October (Figure 8.2, top row). The mean 

squared errors are also quite small varying between 0 and 0.25 across the season. The errors 

appear quite randomly distributed from March to August however there is some evidence of a 


