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Abstract. Pit lakes may form when open cut mining leaves a pit void behind that fills with ground and 9 

surface water. Often replacing terrestrial ecosystems that existed prior to mining, the pit lake may offer 10 

an alternative ecosystem with aquatic biodiversity values that can be realised through planned 11 

restoration. Restoration theory and mine closure regulatory requirements guides us toward restoring 12 

disturbed systems towards landscapes that are of regional value and relevance. But how do we identify 13 

a restoration target for a novel aquatic habitat that did not exist prior to the new post-mining landscape? 14 

This paper presents a process of first identifying and then surveying local analogue aquatic systems to 15 

provide a direction for pit lake restoration efforts and achievement criteria for pit lake relinquishment. 16 

We illustrate this process using a case study from a sand mining operation located amongst wetlands in 17 

south-western Australia. The company mines silica sands following mechanical removal of topsoil and 18 

then extraction of the ore from below the water table by dredging. Assessment of wetland and riparian 19 

vegetation in the surrounding area was completed through the establishment and measurement of 20 

temporary monitoring transects across five natural wetlands in the Kemerton area with several more 21 

visited and observations made. Distinct zonation of vegetation was found across each wetland, although 22 

typically wetland basins were unvegetated or filled with younger woody plants with patchy 23 

distributions. Fringing riparian vegetation consisted of few species (commonly Melaleuca 24 

rhaphiophylla and Lepidosperma longitudinale) but community composition and structure were 25 

variable between wetlands. The pattern of vegetation seen across natural wetlands was best explained 26 

by topography and soil chemistry with low lying areas more likely to experience regular flooding and 27 

accumulate organic matter and nutrients. We consider that, with good planning, rehabilitation, 28 

monitoring and management interventions to achieve a restoration trajectory, these new mining pit 29 

lakes can positively contribute to regional ecological values. 30 

Key words: Pit lake, restoration goals, wetland, riparian, vegetation, mine closure 31 
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Introduction 32 

Increasingly frequent, and of growing scale, open-cut/cast mining has left a legacy of many thousands 33 

of mining pit voids worldwide (Klapper and Geller, 2002). Restoration of habitats following mining has 34 

become a well-researched and standard practice that borrows from both disciplines of ecology and 35 

engineering and which often scales across entire landscapes and regions where mining is active 36 

(McCullough and Van Etten, 2011). However, this restoration typically ceases at the edge of these pit 37 

voids (Van Etten, 2011), unless the potential for backfill and/or landscaping can incorporate the pit into 38 

the terrestrial system (Lund and McCullough, 2011b). Backfill of pits is often promoted as best practice 39 

for managing pit voids at mine closure (Puhalovich and Coghill, 2011). Moreover, backfill is often not 40 

an economic or feasible option, and if the pit extends into the water table then pit lakes with aquatic 41 

ecosystems of varying value will form (Castro and Moore, 2000; McCullough et al., 2013). 42 

Internationally, closure planning can best be described as a “land redevelopment” exercise (Jones, 43 

2012). In most Australian states, the primary objective is to leave the site in a condition suitable for the 44 

agreed final land use, along with other goals relating to making the site safe, stable, non-polluting and 45 

maintenance free (Clark, 1999). Early consideration of the land redevelopment goals can provide clear 46 

direction to both company and stakeholders on what risks and/or beneficial end uses are expected from 47 

the post-mining landscape following closure (McCullough et al., 2009). Typically, closure outcomes 48 

(objectives) and how they will be measured (criteria) are required at least in a preliminary stage early 49 

on in a mining project development (Laurence, 2006). Leading international mine-closure guidance and 50 

practice both internationally, e.g. ICMM (2008), and domestically ,e.g. DMP/EPA (2011), is therefore 51 

to identify clear closure objectives and criteria. Mine closure planning for pit lakes specifically is no 52 

different in this sense (Jones and McCullough, 2011). 53 

A first step in the development of a pit lake ecosystem of environmental value is to recognize an 54 

‘Identifiable Desired State‘ (c.f. Grant, 2006) as a restoration goal (McCullough and Van Etten, 2011). 55 

Importantly, for the pit lake and its catchment to contribute value to the environment, this should 56 

proceed by establishing restoration targets for aquatic through to terrestrial ecosystems that are 57 

considered of ecological value and that are regionally representative (Jones and McCullough, 2011).  58 

Setting appropriate goals and objectives is the most important stage of planning restoration projects and 59 

critical to the success of restoration. Objectives should be focussed, achievable and measureable, 60 

whereas goals should specify the desired outcomes over both the short and long term (SERI, 2004). 61 

Restoration goals typically address multiple attributes including biodiversity, aesthetics, safety, 62 

production, sustainability and social benefits, and should incorporate the concerns and expectations of 63 

stakeholders and the wider community. It is common practice in ecological restoration to select 64 

reference ecosystem(s) to use as restoration targets and to help gauge the success (or otherwise) of 65 

restoration efforts (SERI, 2004). Reference ecosystems may represent a historical or pre-disturbance 66 

state, a nearby ecosystem or a synthesis of attributes deemed desirable (Brewer and Menzel, 2009). 67 



However selection of appropriate reference systems is fraught with difficulties and complexities, much 68 

of which stems from inherent variability of natural ecosystems over a range of temporal and spatial 69 

scales (White and Walker, 1997; Hobbs, 2007). 70 

Even though, in a pit lake context, an aquatic ecosystem may not have been present before disturbance, 71 

development of wetland environments in the face of global (Kundzewicz et al., 2008), national (Hobday 72 

and Lough, 2011) and regional (Horwitz et al., 2008) aquatic habitat loss may be justified as preferred 73 

restoration targets, especially where there are regionally rare aquatic species or ecosystems present 74 

(Brewer and Menzel, 2009). However, restoration of a representative and functional amphibious 75 

ecotonal ecosystem is often most challenging for shallow pit lakes that may ecologically resemble 76 

wetlands, and for the riparian margins of lakes proper. The absence of riparian vegetation around new 77 

pit lakes above certain thresholds may often be unrelated to water quality (Fyson, 2000) and may more 78 

likely be a consequence of initial bank instability and/or unsuitable soils for seedling establishment 79 

(Van Etten, 2011). Further, profound variation in topography, hydrology and soil across aquatic-80 

terrestrial ecotones needs to be taken into account (Naiman et al., 2005). Indeed, wetland margins 81 

typically experience pronounced zonation in response to a seasonal flooding regime, which is further 82 

complicated by inter-annual and longer-term variability in water levels. These ecotones of riparian 83 

zones, are therefore, noted for their acute spatial heterogeneity which results in high levels of species 84 

turnover across their perimeters (Naiman et al., 2005; Ward et al., 2002). 85 

This study sought to determine what regional wetland ecosystems might constitute reference systems 86 

and restoration targets for a sand mining operation that was causing direct loss to natural wetland 87 

habitat, but that had potential to restore some type of wetland habitat through targeted restoration 88 

efforts. It addresses the important question of what are appropriate and realistic targets where there have 89 

been major biological and physical perturbations, an inherent part of mining. Post-mining environments 90 

are unlikely to ever completely resemble pre-mining conditions, even over the long-term, and therefore 91 

are classic novel ecosystems, sensu Hobbs et al. (2009). So what, under these circumstances, should we 92 

aim for and what is realistically achievable? White and Walker (1997) argue that we need to understand 93 

ecological patterns and processes in natural ecosystems across both time and space to select appropriate 94 

reference systems and that such understanding can improve restoration decision-making and practice. 95 

This study also sought to understand what environmental drivers were most important for developing 96 

representative wetland vegetation community structure and dynamics, and to assess the value of such 97 

information to help guide restoration. 98 

 99 

Methods 100 



Study Area 101 

The study was conducted at the Kemerton Silica Sand (KSS) mine located within the Kemerton 102 

wetlands (33°08'S, 115°47'E), 30 km north of Bunbury and 150 km south of Perth (Van Etten et al. 103 

2012) on the Swan Coastal Plain, Western Australia. The project area consists of an extensive aeolian 104 

sand-dune system forming a distinct Australian bioregion. Approximately 500,000 t of feldspathic silica 105 

sands are extracted annually at this mine from below the water table using dredging, both from wetland 106 

and woodland ecosystems. Once ore extraction is complete, pit lakes are formed and progressively 107 

rehabilitated. As the pit lake is essentially an expression of the groundwater, the final post-mining 108 

landforms are permanently inundated lakes Overburden and topsoil are available for sculpting and 109 

landscaping of the pit lakes and surrounding slopes. Around 10 lakes are expected at eventual mine 110 

closure of between 10–15 ha surface area and approximately 10 m deep (MBS Environmental, 2009). 111 

Study area climate is distinctly Mediterranean with most of the average c.890 mm of annual rainfall 112 

falling in winter and spring. Summers are warm to hot and typically very dry (average February 113 

maximum temperature is 28
o
C and rainfall is 13 mm), whilst winters are cool and wet (average July 114 

maximum is 17
o
C and rainfall is 186 mm). The project operates on privately-owned land comprising 115 

and mostly surrounded by intact and relatively healthy examples of the natural ecosystems of the Swan 116 

Coastal Plain (Eucalyptus-Banksia woodland on uplands and various wetland systems of high 117 

conservation value). Shallow depth to groundwater in the inter-dunal depressions results in numerous 118 

wetland areas of palusplain, damplands, sumplands and lakes (as per the definitions of Semeniuk (1987) 119 

within the project area. The climate and shallow nature of wetlands in the Kemerton area ensure that all 120 

natural wetlands are seasonal and these wetlands become inundated from rainfall or the rising 121 

groundwater table, typically from July to November (Galeotti et al., 2010). The south west of Western 122 

Australia is regarded as a biodiversity hotspot for fauna and flora, with high levels of endemism and 123 

high numbers of threatened species (Myers et al., 2000). For example, at least eight of the ten native 124 

freshwater fish found in the south-west are endemic (Morgan et al., 1998).  125 

Currently dredge ponds ecologically differ significantly from regional aquatic habitat analogues such as 126 

nearby Environmental Protection Policies (EPP)  wetlands (Lund and McCullough, 2011a; van Etten et 127 

al., 2012). Specific closure restoration requirements of the KSS project therefore include the need to 128 

develop a closure plan with criteria to measure rehabilitation outcomes relevant to the post-mining 129 

landscape where approximately 50% of cleared land will be dredge ponds (EPA, 2012).  130 

Riparian Vegetation Assessment 131 

Riparian transects were used to characterise the biotic patterns of natural wetlands and to identify likely 132 

processes driving community structure. This was achieved through comparing: 1) structural attributes; 133 

2) plant composition (using multivariate techniques such as ordination); 3) dominance and diversity 134 

patterns (Grant and Loneragan, 2003); and 4) soil and topographic features across and  between 135 

transects. 136 



Transects were placed across several natural wetlands in the Kemerton mining area (KMA) and nearby 137 

Kemerton Nature Reserve (KNR) during winter 2007. At time of survey all wetlands in the study Area 138 

were dry and three (EP4, EP5 and EP7) were surveyed in detail. Two other small wetlands (PD, PS) 139 

adjacent to EP7 were also surveyed. In addition, observations were also made at three other wetlands: 140 

EP1, EP3 and EP9. (Note: the prefix ‘EP’ was used because these wetlands were mapped as part of 141 

Environmental Protection (Swan Coastal Plain Lakes) Policy 1992). Each transect commenced at 142 

wetland base (lowest point in profile), traversed the fringing wetland and then finishing at the upland 143 

vegetation (if present). Each transect therefore captured the typical zonation and variation in vegetation, 144 

soil and landform of the wetland system and its fringing vegetation. To capture the variation in 145 

vegetation along transects in the most efficient manner, the relevé sampling approach was used, where a 146 

study site (or relevé) was established within each distinct vegetation type along the transect. Each relevé 147 

was positioned in vegetation representative of the wetland riparian and the cover of each plant species 148 

was then estimated within a circular area of 20 m radius. Height and cover of each vegetation strata was 149 

also recorded. 150 

Soil and Topographic Profiling 151 

A theodolite, GPS and tape measure were used to determine the changes in elevation and slope along 152 

the riparian transect. A sampling trench was dug in each of the different vegetation zones identified 153 

along transects and different soil horizons were identified to a maximum depth of 0.5 m. A soil sample 154 

was then collected each horizon from three different sites in each vegetation zone and then pooled for 155 

each horizon and zone. The pooled soil sample was then dried, ground and analysed for: texture, colour, 156 

nitrate-N, ammonium, phosphate, potassium, sulfur, iron, carbon, conductivity, (dS/cm) and pH (pH 157 

1:5, CaCl2 and H2O). 158 

Data analysis 159 

The mean and standard error of relevé cover, density (number of plants per relevé) and richness 160 

(number of species per relevé) was calculated for each transect. Differences between transects, depth 161 

and position along transect were tested using univariate analyses of soil variables such as one- and two-162 

way ANOVA in SPSS (2007) with a Type I error of 0.05. Prior to analysis data were log10(x+1) 163 

transformed to improve normality where required and were also checked for parametric assumptions 164 

(McGuiness, 2002). 165 

Multivariate data analyses were performed using PRIMER v6 software (Clarke, 1993; Clarke and 166 

Gorley, 2006) following a process of data transformation, graphical exploration and then statistical 167 

hypothesis testing. Two-dimensional nMDS ordinations of multivariate data were constructed for taxa 168 

frequency data using 100 iterations and based on the Bray-Curtis dissimilarity matrix. Principal 169 

Components Analysis (PCA) was used to produce ordinations of soil (environmental) data. Differences 170 

between a priori treatment groups were tested using the ANOSIM permutation routine with 9999 171 

iterations (all other variables default) (Clarke and Gorley, 2006). Environmental variables and taxa 172 



most contributing to differences between wetlands were determined using the SIMilarity-PERcentages 173 

(SIMPER) routine (cut-off at 95% cumulative similarity) (Clarke, 1999). The BIO-ENV procedure was 174 

then used to determine the combination of environmental variables best rank correlating with riparian 175 

vegetation communities (Clarke and Ainsworth, 1993). Bubble Plots showing values of the 176 

environmental variables (selected using BIO-ENV) were then projected onto site positions within the 177 

ordination. Environmental – vegetation relationships were also explored using Redundancy Analysis 178 

(RDA) within CANOCO for WINDOWS version 4 (ter Braak, 1998). 179 

Results 180 

Topographic Profiles 181 

Topographic profiles of the wetlands (Fig. 1) showed that wetland basins were generally flat with 182 

slopes of <0.1%  and  ended in relatively abrupt change of slope where dense fringing vegetation 183 

developed on slightly higher ground some 0.2 to 1 m above than the wetland basin. EP4 was slightly 184 

different as the lake basin was generally smaller in area and had a more concave profile with slopes 185 

between 0.2 to 0.4% (Fig. 1). 186 

Soil Characteristics 187 

The first or A-horizon of wetland riparian soil was generally sand with the highest content of organic 188 

matter (6.2±0.9% organic C) and was consequently grey to black in colour. At some sites, the A-189 

horizon was further visually split into two layers (A1 and A2) and the A2 horizon generally had 190 

intermediate chemical characteristics compared to A1 and B horizons. The second or B-horizon was 191 

generally deep sand with low organic matter content (3.0±0.7% organic C) and generally white or 192 

yellow in colour. The A-horizon was generally thicker in the wetland basin (0.06–0.30 m) compared to 193 

fringing vegetation and uplands (Table 1; Fig. 1). 194 

EP7 and the adjoining two small wetlands (PD and PS) had thick, dense organic matter accumulation at 195 

the surface (i.e. peat) to 0.3 m depth. Organic carbon and soil nutrients, including nitrogen and 196 

phosphorus, were substantially higher in these wetland soils compared to others (Table 1). An exception 197 

to this trend is zone 3 of EP5 which had high levels of organic matter content, organic carbon, 198 

ammonium nitrogen, potassium and phosphorus in surface- and sub-soils. This site was in a slight 199 

depression adjacent to fringing vegetation where it would be expected to inundate for greater periods 200 

than the surrounding wetland basin. 201 

Soil nutrient concentrations (phosphorus, ammonia & nitrate) were normally higher in the A1 horizon 202 

than in the other soil horizons. Soil phosphorus levels were generally higher in soils of wetland basins 203 

compared to fringing vegetation, whereas ammonia was generally highest in fringing paperbark 204 

vegetation. Nitrogen, especially as nitrates, was particularly low in wetland basin soils, often at or 205 

below levels of detection (≤1 mg kg
-1

). Soil phosphorus levels were very low (A1 horizon: 20.3±8.0; 206 

range 2–114 mg kg
-1

) compared to those recorded for Perth wetlands by Davis et al. (1993) at a mean of 207 



1,100±580 mg kg
-1

 (range 20–40,000 mg kg
-1

). Phosphorus concentrations were highest in EP7 and 208 

lowest in EP4 (Table 1).  209 

 210 



Table 1.  Chemical parameters of soils collected at multiple horizons and zones across wetlands of the Kemerton Silica Sands Project area and 

Kemerton Nature Reserve. All units mg/kg unless otherwise stated. 

Wetland EP4 EP5 EP7 PD PD-PS PS 
Zone 1 2 1 2 3 4 1 2 3 4 1 2 1 1 

Soil Horizons (cm) A1 0-6 0-5 0-8 0-8 0-8 0-5 0-20 0-5 0-5 0-5 0-30 0-3 0-3 0-10 
A2 6-19 - 8-25 8-15 - 5-27 - - - - - - - - 
B 19-50 5-50 25-50 15-50 8-50 27-50 20-50 5-50 5-50 5-50 30-50 3-50 3-50 10-50 

Nitrate-N A1 1 1 1 1 3 3 4 2 1 1 1 7 1 5 
A2 1 - 1 1 - 3 - - - - - - - - 
B 1 1 1 1 1 2 4 1 1 1 1 1 1 2 

Ammonium-N A1 1 2 1 3 19 5 1 15 7 6 2 33 5 18 
A2 1 - 1 3 - 2 - - - - - - - - 
B 1 1 1 1 2 1 3 3 2 1 2 1 1 9 

Phosphorus A1 10 2 2 2 24 6 114 41 39 6 3 18 6 11 
A2 2 - 2 2 - 4 - - - - - - - - 
B 2 2 2 5 5 21 17 5 2 2 5 4 4 4 

Potassium A1 364 325 121 295 790 402 436 495 374 113 57 303 110 439 
A2 73 - 66 25 - 134 - - - - - - - - 
B 109 58 91 160 417 136 382 33 25 28 138 40 107 151 

Sulfur A1 240 185 22 5 32 15 202 24 17 3 52 65 7 115 
A2 112 - 66 2 - 12 - - - - - - - - 
B 151 84 74 9 12 21 92 40 9 4 108 4 3 269 

Organic Carbon (%) A1 2.1 6.6 1.2 3.0 10.0 6.1 10.0 4.7 10.0 4.2 3.9 10.0 6.0 9.3 
A2 0.2 - 0.4 0.2 - 3.4 - - - - - - - - 
B 0.2 0.4 0.5 0.6 3.4 1.4 4.2 3.5 2.3 2.6 6.8 3.5 2.9 9.8 

Iron (g/kg) A1 0.98 0.80 0.13 0.66 0.30 0.48 1.49 1.88 0.39 0.17 0.36 1.06 0.33 1.06 
A2 0.19 - 0.16 0.11 - 0.36 - - - - - - - - 
B 0.12 0.14 0.32 0.20 0.62 0.29 0.93 0.44 0.23 0.15 0.93 0.39 0.34 0.34 

Conductivity (mS/cm) A1 1.42 2.46 0.49 0.07 0.28 0.33 2.24 3.24 0.18 0.09 0.61 0.65 0.10 2.54 
A2 1.35 - 0.88 0.05 - 0.30 - - - - - - - - 
B 2.62 1.25 1.02 0.19 0.36 0.33 2.14 0.84 0.21 0.07 1.24 0.12 0.06 4.63 

pH (CaCl2) (no units) A1 5.2 4.7 5.9 5.3 5.1 7.3 5.5 4.9 4.4 3.8 4.9 3.9 4.0 4.8 
A2 6.6 - 6.5 6.7 - 7.5 - - - - - - - - 
B 6.6 6.4 6.8 7.7 7 7.3 5.1 5.1 4.1 3.1 5.3 4.1 3.9 5.0 
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Other soil parameters, such as electrical conductivity, total sulphur and iron concentrations, 1 

were generally higher in the wetland basins than in fringing zones (Table 1). Topsoil pH 2 

(CaCl2) at EP7 was 5.5 in the wetland basin but declined to 3.8 in zone 4 of EP4. EP5 had the 3 

highest pH from 5.9–7.3 in zones 1 and 4 respectively. EP5 had significantly more alkaline 4 

topsoils and subsoils than other wetlands (F=4.1, p=0.038 for A1; F=23.9, p<0.001 for B). pH 5 

was generally higher in horizon B than A (Table 1).  6 

Riparian and Wetland Vegetation Structure & Floristics 7 

Within the KSS project area, the basins of larger wetland systems which experience regular 8 

winter-spring inundation, and which are relatively deeper, such as EP7, were largely devoid 9 

of perennial vegetation. Instead these basins mostly comprised annual herbland which grew 10 

following subsidence of the water in late spring/early summer. Smaller wetlands which do not 11 

flood to the same depth or extent, had some tree cover in wetland basin (e.g., EP4 & 5), but 12 

this vegetation was patchy. EP4 was recently colonised by Melaleuca trees following flooding 13 

some 5 years earlier, with counts of growth rings of cut stems confirming the age of these 14 

trees. Other observed wetlands (eg EP8, EP9) were completely in-filled with larger and 15 

presumably older Melaleuca trees. 16 

Fringing the wetlands was very dense vegetation with total cover sometimes exceeding 100% 17 

(Table 2). Vegetation was most dense at the edge with little to no understorey. Further out 18 

from the wetland basin and at slightly higher elevations, the Melaleuca woodland was more 19 

open with an understorey of sedges and/or rushes. At slightly higher elevations, woodland 20 

dominated by eucalypts with relatively diverse understorey of shrubs, bracken, sedges and/or 21 

rushes occurs. Clear zonation of vegetation types was evident in most areas of wetlands, 22 

particular within the fringing vegetation (Table 2). Areas which are seasonally waterlogged 23 

typically had more open woodland structure with dense, diverse understorey dominated by 24 

shrubs and sedges (e.g., site EP4-3). 25 

  26 
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Table 2.  Summary of vegetation at sample sites in natural wetlands areas showing cover of 27 

natives, weeds and trees, and the number of native species per site. 28 

Wetland Site Description 
Cover 
Native 

(%) 

Cover 
Weeds 

(%) 

Tree 
Cover 
(%) 

Native 
Species 

Richness 

EP7 1 Wetland basin with 
annuals 

40 0 1 2 

 2 Fringing M. rhaphiophylla 60 2 60 3 
 3 Fringing M. rhaphiophylla 

with sedge 
100 10 45 5 

 4 Fringing Eucalypt 
woodland 

100 1 45 13 

PD 1 Wetland basin 60 0 30 4 
 2 Fringing M. rhaphiophylla 

with sedge 
60 0 40 4 

PD-PS 1 Fringing Eucalypt 
woodland 

40 0 25 6 

PS 1 Fringing M. rhaphiophylla 80 0 80 2 
EP5 1 Wetland basin 40 0 10 5 
 2 Melaleuca thicket with 

sedge and rush 
70 0 40 8 

 3 Fringing M. rhaphiophylla 
with sedge 

100+ 0 60 10 

 4 Fringing Melaleuca – 
Eucalypt Transition 

100+ 0 60 8 

 5 Fringing mixed Melaleuca 80 0 60 10 
 6 Fringing Eucalypt 

woodland 
100+ 0 30 13 

EP4 1 Wetland basin with young 
M. viminea 

45 0 45 3 

 2 Fringing mixed Melaleuca 55 0 55 4 
 3 Dampland Community – 

Melaleuca over heath 
65 0 13 13 

 29 

Dominant species in fringing vegetation were paperbarks such as Melaleuca rhaphiophylla, 30 

M. priessii and M. viminea. Understorey below Melaleuca thickets and woodland, where 31 

present, consists mainly of sedges and rushes, with Lepidosperma longitudinale the dominant 32 

species, and Juncus pallidus, Baumea articulata and Meeboldina scariosa common in places. 33 

Astartea scoparia and Kunzea glaucescens are also common understorey shrubs, particularly 34 

on outer edges of the fringing Melaleuca communities. 35 

The fringing eucalypt woodland which surrounded fringing Melaleuca was dominated by 36 

Eucalyptus rudis (Flooded Gum), although Corymbia calophylla (Marri) and E. marginata 37 

(Jarrah) occurred on higher ground. Understorey was varied; common species included 38 

Pteridium esculentum, Astartea scoparia, Hypocalymma angustifolium, Lepidosperma 39 

longitudinale, Pericalymma ellipticum and Dasypogon bromeliifolius. 40 

The ordination of wetland vegetation (Fig. 2) showed a general trend in plant species 41 

composition from wetland basin (e.g., 7-1, 4-1) to upland vegetation (e.g., 7-4, 5-6 and PD-42 

PS) from right to left. There was also a separation of different fringing Melaleuca vegetation 43 
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from top to bottom in the ordination, with M. rhaphiophylla dominated sites towards the top 44 

(mostly EP7), and other Melaleuca spp. dominants at the base (e.g., M. viminea, M. 45 

teretifolia, etc.). M. preissiana dominated woodlands are in the middle. Testing significant 46 

differences between wetland riparian community structure with ANOSIM show no significant 47 

difference in species composition between wetlands (Global R = 0.021; p=0.41). Indeed, 48 

changes in species composition along transects of a single wetland far exceeded overall 49 

differences between wetlands. 50 

Environment – Vegetation Relationships 51 

Pair-wise correlations between plant species composition and environmental variables, 52 

analysed using the BIO-ENV module, were mostly modest to weak.. Highest correlations 53 

were with depth of horizon A (A1+A2), elevation above wetland basin, horizon A potassium 54 

concentrations and horizon B pH (Table 3). Slope and iron concentration were modestly 55 

correlated to variation in plant species composition.  56 

Table 3.  Six highest Spearman rank correlations between floristic similarity and 57 

environmental variables as determined using BIO-ENV module of PRIMER. 58 

Variable Correlation 

Depth of horizon A 0.30 

Elevation above wetland base (m) 0.25 

K (horizon A) 0.21 

pH (horizon B) 0.21 

Slope 0.15 

Fe (horizon B) 0.14 

Fe (horizon A) 0.12 

 59 

The first two axes of the Redundancy Analysis (RDA), where the ordination was constrained 60 

by environmental variables, explained 50.6% of the variance in species composition. The 61 

RDA biplot (Fig. 3) showed the relationship between main floristic gradients (the axes), sites 62 

and environmental variables (the arrows). Specifically this biplot revealed two different 63 

complexes of environmental variables linked to differences in plant species composition 64 

across sites. The first of these environmental complexes was generally correlated with the first 65 

(horizontal) axis and revealed changes in species composition along the toposequence from 66 

wetland lowest point (left side) to upland (right side). This complex included soil fertility (N, 67 

P, etc.), conductivity, gravel content and organic carbon which all increased with height 68 

above wetland basin. Only depth of horizon A generally declined with distance along this 69 
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toposequence (Fig. 3). The second complex of environmental variables was related to pH, 70 

iron concentration and texture and separated the wetland EP5 (the most alkaline) from and 71 

EP7 (the most acidic). 72 

Many of the variables in the RDA biplot were poorly correlated to floristic gradients (shown 73 

by short arrows) and were highly correlated to other environmental variables (Fig. 3). The 74 

forward selection procedure showed that only three variables could explain a significant and 75 

unique proportion of the variance in species composition: potassium (horizon A), pH (horizon 76 

B) and gravel content (horizon B) (Table 4). These three variables explain 46% of the 77 

variance in the species-environment relationship. 78 

 79 

Table 4.  Results of forward selection (in order of selection) of environmental variables in 80 

redundancy analysis (RDA) with significance determined following Monte-Carlo 81 

testing against a random model. *Variance explained is proportion of variance in 82 

species-environment relationship. 83 

Order Variable Variance Explained 
(%)* 

P-value 

1 Topsoil potassium-a 18 0.008 
2 Subsoil pH (H2O) 14 0.022 
3 Subsoil gravel 14 0.024 
4 Subsoil phosphorus 9 0.108 
5 Subsoil iron 7 0.238 
6 Slope 6 0.304 

 84 

The species richness of wetlands of the KSS project area and KNR was not high relative to 85 

adjacent uplands. In fact, wetland basin and fringing vegetation were often depauperate in 86 

species with as few as 1–3 species in the dense fringing vegetation (Table 2). Fringing 87 

eucalypt woodland and winter-wet depressions were found to have the highest number of 88 

species (each had 13). As survey work occurred in early winter, these figures do not include 89 

most of the annual plant and geophytic species. 90 

Discussion & Conclusions 91 

Spatial Patterns of Wetland Vegetation 92 

As is characteristic of wetlands in general, substantial differences were found in vegetation 93 

structure, species richness and species composition within wetlands with distinct zonation of 94 

vegetation occurring across the wetland profile (Naiman et al., 2005). Wetland basins were 95 

generally flat and varied from bare in terms of perennial plants through to having a variable 96 

but patchy cover of paperbark trees and shrubs. These areas were seasonally inundated for 97 

some months each year. On raised ground around the edge of the basin, where some minor 98 
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flooding would be expected, dense paperbark thickets were typical on slightly raised ground. 99 

At higher elevations, flooded gum woodland and then, higher still, jarrah-marri-banksia 100 

uplands were found. This substantial change in vegetation characteristics across wetlands 101 

tends to mask any differences in species composition between wetlands. Although the major 102 

paperbark trees (M. rhaphiophylla and M. preissiana) and the understorey sedges and rush 103 

species were common to all fringing vegetation wetlands, other species of tree and shrubs 104 

varied. In addition to seasonally-flooded wetland complexes, the KSS Project Area had large 105 

expanses of seasonally waterlogged vegetation consisting of sparse Melaleuca preissiana and 106 

Banksia littoralis tree canopy over a diverse shrub and sedge/rush understorey. Only one site 107 

was located in such vegetation (site 4–3). Much of the proposed mining expansion area will 108 

occur on this vegetation type. 109 

Wetlands of the Swan Coastal Plain (SCP) are renowned for their complexity with 110 

geomorphic, edaphic and hydrological characteristics influencing vegetation composition and 111 

structure (Balla, 1994). Wetlands of the SCP have been classified in numerous ways, based on 112 

attributes such as geomorphology, hydrology, vegetation, aquatic biota, as well as 113 

combinations of these. Wetland vegetation of the SCP has been commonly categorised at two 114 

levels: the uppermost level or ‘complex’ refers to vegetation units linked by dominant plant 115 

species and structural attributes, and the secondary level for classification, the ‘community’, 116 

based on common or typical species within the overall complex (Cresswell and Bridgewater, 117 

1985; Pen, 1997; Semeniuk et al., 1990). The fringing vegetation around wetlands of the KSS 118 

project area resembles fringing vegetation elsewhere on the SCP in terms of structure and 119 

dominant species. 120 

Whereas the majority of wetlands on the SCP are expressions of underlying aquifers (i.e., 121 

they are discharge areas; Balla, 1994), there is evidence that many wetlands of the Kemerton 122 

area are perched wetlands which are separated from aquifers by thick clay and other 123 

impermeable layers (e.g., ‘coffee rock’). Consequently inundation in these perched wetlands 124 

is a function of rainfall directly onto the wetland basins plus run-off from surrounding slopes. 125 

EP4 appears to be a perched wetland, primarily receiving water inflows from the surrounding 126 

wetlands which effectively act as a catchment to this wetland. It is therefore important that 127 

this catchment area is actively managed to avoid adverse impacts on inflow water quantity 128 

and quality. 129 

Environmental Drivers of Spatial Patterns in Vegetation 130 

Restoration of mined lands frequently uses natural ecosystem as a restoration goal (Bell, 131 

2001). However, the environmental variables driving vegetation patterns remain unclear. This 132 

study found few strong correlates between plant species composition and environmental 133 

variables. In particular, we found that elevation (AHD) was not a good predictor of vegetation 134 



14 

composition, although relative height above the wetland basins and slope was a reasonably 135 

reliable predictor of the main floristic differences found across wetlands. Soil variables such 136 

as thickness of horizon A (humus layer or peat), organic carbon, nutrient levels and potassium 137 

were also linked to this main floristic gradient. This general topographic-soil-vegetation 138 

relationship is also likely to be linked to hydrological regime. The higher an area is elevated 139 

above the wetland basins, the lower the duration and depth of flooding it will experience and, 140 

consequently, the lower the accumulation of organic matter (peat and so on). Both the indirect 141 

effects of inundation and soil changes which flooding promotes are likely to influence 142 

vegetation composition and structure. A clearer picture of environmental causes of vegetation 143 

patterns should emerge through more detailed studies of the hydrology of these wetland 144 

systems, with variables such as distance to groundwater and their fluctuations (for 145 

groundwater-dependent wetlands) and area of catchment (for perched wetlands), suspected to 146 

be strongly correlated to vegetation patterns. 147 

A second floristic gradient was found to be linked to soil pH and appear to separate EP5 from 148 

the others. This is likely to be due to its proximity of EP5 to limestone formations and may 149 

explain floristic differences in vegetation between wetland systems on the south-east side of 150 

Kemerton compared to those of the north and west. 151 

Dynamics of Wetland Vegetation 152 

The measurements of the three wetlands and observations made at other wetlands in the KSS 153 

project area and KNR enabled a clearer picture of wetland dynamics at the KSS Project Area 154 

to emerge. Such vegetation change was most clearly demonstrated at EP4 where basin 155 

vegetation of EP4 had two zones of distinct tree age (or cohorts). The inner basin consists of 156 

ca. 5 years old saplings (as judged by growth rings counted on cut stems) of more-or-less the 157 

same height (1.5 m) and stem diameter (25–40 mm). This was surrounded by a ring of 158 

fringing vegetation which was 7–10 m tall and likely to be much olderError! Reference 159 

source not found.. The hypothesis is that a reduced incidence of flooding (through 160 

combination of groundwater and/or rainfall decline) has allowed colonisation of M. viminea 161 

and some M. rhaphiophylla in the basin of this wetland following the last major flooding 162 

event in 2001-2. Previously the wetland basin was devoid of vegetation. We anticipate that 163 

seedlings may successfully establish during drier times, but may be eliminated if and when 164 

prolonged inundation returns. It is likely that tolerance to inundation will increase with age 165 

and size of tree, so seedlings/saplings are most vulnerable to flooding in first few years. The 166 

role of wetland infill with sediment may also play a role in encouraging seedling 167 

establishment as this would decrease the depth, extent and duration of inundation. Such infill 168 

can be the response of gradual ‘natural’ accumulation, or can be enhanced through some level 169 

of vegetation/soil disturbance in surrounding area.  170 
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These hypothesised flooding and drying events at EP4 concords with rainfall records of the 171 

region. Good rains over 1998–2001 are likely to have resulted in flooding of this wetland and 172 

subsequent abundant seed crops, either in soil seed stores or in fruits retained in the canopy. 173 

This flooding may also have promoted seedling establishment on moist lake basin as the 174 

flooding subsided. Rainfall from 2001 onwards has been well below long and short term 175 

averages. Only 2005 rainfall was above the short-term average, but this year was followed by 176 

very close to the driest year on record in 2006. 177 

This and other studies have demonstrated that wetland basin and flats in the Kemerton area 178 

can experience relatively rapid change in structure and composition. Regular and persistent 179 

flooding of these areas, where inundation occurs for a least several months each year, inhibits 180 

tree colonisation of wetland basins and persistence, and promotes accumulation of peat 181 

deposits. Alternatively, drier periods result in lower and shorter flooding events which, in 182 

turn, enable seedling establishment of Melaleuca and other species on the wetland floor. This 183 

woody vegetation would be expected to become denser and more resistant to flooding the 184 

longer this dry period persisted. It seems such a dry period has encouraged colonisation of 185 

EP4 by Melaleuca spp. between 2001–2003 with a 5 year-old cohort of such trees dominant 186 

in the centre of the wetland basins at the time of study. EP4 may well be a perched wetland, 187 

so that elements of its hydrology such as hydroperiod is more sensitive to rainfall fluctuations 188 

and changes in surface drainage compared to the more common scenario of groundwater-fed 189 

wetlands on the SCP. With a drying climate in SW Australia, drying of wetlands and 190 

colonisation of wetland basins would be expected to become more common (Malcolm et al., 191 

2006). 192 

Although the fringing paperbark vegetation appears to be relatively stable over recent years at 193 

Kemerton, it too is likely vulnerable to changes in flooding regime with changes in species 194 

composition and structure expected with changes in inundation frequency and duration. Fire 195 

can also dramatically affect both fringing and basin vegetation, commonly killing trees and 196 

shrubs outright, especially when burning through peat and other layers rich in organic matter 197 

(Horwitz and Smith, 2005). 198 

Implications for Post-mining Restoration and Choosing Reference Sites 199 

Fringing wetland vegetation of natural wetlands was found to be floristically simple and 200 

structurally complex. Such structurally complex wetlands therefore represent a mixed 201 

challenge for rehabilitation; only relatively few species need to be restored, however they 202 

need to be encouraged to develop into relatively dense vegetation formations, with distinct 203 

bands of zonation. Vegetation of fringing zones are relatively species rich (some 10–30 204 

species per 10 m
2
), but are probably not as diverse as many upland areas of Kemerton 205 

dominated by jarrah, marri and banksia. The focus on these areas should be on quick return of 206 
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topsoil matched to site conditions so that high diversity will be encouraged (Van Etten et al. 207 

2012). 208 

Given high variability between floral communities of wetlands in the KSS project area and 209 

KNR, it is difficult to establish a single reference or analogue wetland to compare with 210 

rehabilitated mine ponds and slopes. The relationships found here between fringing flora, soil 211 

characteristics, topography and hydrology however should help improve revegetation 212 

practices and overall rehabilitation success. Specifically this information informs that 213 

rehabilitation slopes should be subtle, with varying depth to groundwater and that organic 214 

matter levels in new topsoils should be enhanced in rehabilitation attempts. 215 

Flat or gently sloping wetland basins would be difficult to recreate in most post-mining 216 

settings and probably undesirable given their general bareness. Also, post-mining wetlands 217 

created at Kemerton will essentially be expressions of underlying groundwater with previous 218 

impervious layers such as coffee-rock removed. However, there is scope for more subtle 219 

slopes to be created near the wetland and more dramatic slope changes to be located higher in 220 

the profile (opposite to current practice in some areas where the steepest slopes are closest to 221 

the water). Also such gradual slopes would result in a greater area of fringing vegetation 222 

around mine lakes and areas which are heavily waterlogged or partly inundated by 223 

groundwater. Studies of the rehabilitation areas suggest that dense paperbark-sedge fringing 224 

vegetation is only likely to establish in the seasonally flooded zone between high and low lake 225 

water levels (van Etten et al., 2012). Areas up to 2 m above this lake level appear to be 226 

influenced by groundwater (i.e., waterlogged soil) and appear to favour dampland or 227 

seasonally-waterlogged areas in terms of vegetation. Restoration of post-mining areas is more 228 

likely to resemble such damplands (i.e., seasonally-waterlogged wetlands) given topographic 229 

profile and hydrological regime of post-mining landscapes. 230 

The process of wetland dynamics described here for EP4 and elsewhere observed in the 231 

Kemerton area (i.e., younger, even-aged stands of Melaleuca spp. in the wetland basin with 232 

older Melaleuca spp. towards the edge) is conceptual and requires further investigation. 233 

However, the challenge for a mine in an operational phase is to retain a view to how the 234 

environment surrounding the project area changes and how closure objectives and criteria 235 

may require readdressing to meets these changes. 236 

Development of artificial wetlands from mining of either disturbed wetlands or even disturbed 237 

uplands may not only offer opportunities to replace lost aquatic biodiversity but also to 238 

contribute greater environmental values than previous land uses (McCullough and Van Etten, 239 

2011). Any proposed use of such disturbed lands as environmental offsets must be able to 240 

demonstrate that the regional biodiversity and the offset biodiversity are both understood and 241 

accounted for (McKenney and Kiesecker, 2010). Significant monitoring and demonstration of 242 
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ecological values may still be required in order to validate this development as environmental 243 

offsets (McCullough and Van Etten, 2011). 244 

This study has demonstrated that, although pit lakes may be able to be restored to regionally 245 

relevant wetlands, the highly altered nature of these systems prior to mining and the 246 

variability and complexity of reference systems, both spatially and temporally, means that 247 

clear restoration goals developed from robust assessment of regional wetlands are required for 248 

development of pit lakes as regional analogue aquatic ecosystems. 249 

 250 
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 387 

Figure 1.  Wetland topographic profiles with corresponding vegetation structure and soil 388 

chemistry. 389 
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 391 
 392 
Figure 2.  Non-metric multidimensional scaling of wetland sites at Kemerton based on plant 393 

species composition. Figure labels indicate wetland transect number-sampling site (e.g., 4-1 394 

indicates first vegetation sampling site along transect through EP4). 395 
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 399 

 400 

Figure 3.  RDA biplot of sites using all species and all environmental variables for sites 401 

where soil was collected (14 sites). Length of arrow is proportional to strength of correlation 402 

between environmental variables and axes (major floristic gradients). Note: Site A_1 is PD_1, 403 

Site A_2 is PD_2 and Site A_B is PD-PS transition. 404 
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