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Abstract

Evolving from neuro-biological insights, neural network technology gives a computer
system an amazing capacity to actually generate decisions dynamically. However, as
the amount of data to be processed increases, there is a demand for developing new
types of networks such as Cellular Neural Networks (CNN), to ease the computational

burden without compromising the outcomes.

The objective of this thesis is to research the capability of Shunting Inhibitory Cellular
Neural Networks (SICNN) to solve the clarity problems in ultrasound imaging. In this
thesis, we begin by reviewing a number of traditional enhancement techniques and
measures. Since the entire work of this thesis is based upon a particular model of the

CNN, we present a brief review of CNN theory and its applications.

The SICNN biological inspiration, derivation and stability issues are reviewed with a
view to understand its working principle. We then probe a general study of the feed-
forward and recurrent SICNN systems. Here, the essential response properties of both
SICNN systems are investigated in depth. The enhancing properties of the recurrent
SICNN and its advantages compared to more traditional techniques are also studied.
After a thorough investigation into the SICNN response properties, we introduce its

application for enhancement in Ultrasound Imaging (UI) modality.

There are many techniques already available to us which perform high level
enhancement. Unlike the regular problems encountered in images, the ultrasound
images have some extra and unique obstacles to cross before they reach the same
level of clarity as other diagnostic imaging systems. If not all, some of the problems
associated with ultrasound imaging will be addressed in this thesis. Mainly, the

reasons for the ambiguities in ultrasound detection are analysed and reasoned.

The next phase of this project mainly involves determining optimum SICNN
parameters for the ultrasound image enhancement. Targeting the causes of the

ultrasound ambiguities, an adaptive decay factor (a SICNN parameter), based on cell
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intensity, is designed for selective enhancement. This decay factor controls the final
impact of enhancement by allowing maximum enhancement rate for cells causing

blurring and limiting the enhancement rate for high contrast cells.

An adaptively varying weight function to determine the appropriate neighbourhood
effects is then investigated. In a given neighbourhood, this function is designed to
generate the direction and magnitude of background effects based on the properties of
the neighbouring cell intensities in comparison with the intensity of the cell under

consideration.

Finally, the SICNN enhancement performance is evaluated on clinical ultrasound
images and compared with those of conventional image enhancement techniques. The
UI databases are collected from a wide variety of hospital equipments and contain
both high and low quality images. The results of these experiments are quantified
using a contrast measure, a contrast index, and dynamic range. Based on these results,
we suggest a simple and effective method to improve the SICNN performance by
exploiting the dynamic range of the ultrasound images. A net enhancement of

approximately 25% has been achieved using this SICNN system.
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Chapter 1

Introduction

In this introduction chapter, we start by presenting the motivation of this thesis and
familiarizing the application that is being dealt with. In the next section, we highlight
some of the targets set for this thesis. The research statement is stated in this section. As
the application of Shunting Inhibitory Cellular Neural Networks (SICNN) for enhancing
ultrasound images forms the main goal of this thesis, this application is given a brief
introduction for understanding in the future chapters. Finally, we present the complete

overview of this thesis.

1.1 Research Problem and Motivation

“Sound is for hearing and light for seeing things.” This is the general convention used in
life. The striking advance in science is the capability to adapt sound for visual reception.
This unusual method is achieved by diverting ultra frequency sound waves into the
required areas and recording the corresponding reflected wave patterns. This indirect
method of visualizing images does not produce the same clarity as reflected light waves.
This motivates the exploration of the enormous scope of development and enhancement

in ultrasound imaging.
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There are many techniques already available to us which perform high level
enhancement. Unlike the regular problems encountered in images, the ultrasound images
have some extra and unique obstacles to cross before they reach the same level of clarity
as light images. If not all, some of the problems associated with ultrasound imaging will
be addressed in this thesis. The required conditions to solve these problems and their

reasoning are researched.

1.2 Research Statement and Goals

Before addressing the above cases, many traditional techniques would be explored and
their strengths and weaknesses understood. Some of the measurement schemes are also
listed for comparing different systems. Complex techniques using neural networks such
as the Shunting Inhibitory Cellular Neural Networks (SICNN) are studied in depth.
“Adapting a SICNN to solve clarity problems in Ultrasound Imaging” is the main goal
of this thesis. The performance of such a SICNN and means to improvise its results will

be discussed.

1.3 SICNN for Ultrasound Imaging

Lateral inhibition describes the complex mechanism by which sensory cells interact with
each other, and was first proposed by Emnst Mach (1886) to describe the edge effects
observed at the discontinuity between two different intensity bands. This phenomenon is
now referred to as Mach bands. Since the pioneering work of Mach, inhibition has been

shown to play an important part in the early visual processing system.

Multiplicative or shunting inhibition describes the case where the interaction between
neighbouring cells is of a multiplicative nature; thus, it is inherently nonlinear. Pinter
(1983a, 1983b) used lateral inhibition to explain the selectivity of visual units in the
ventral nerve of insects for small objects, and also to explain the adaptation of the
receptive spatial organization and the spatial modulation transfer function (Pinter 1984,

1985). Shunting inhibition has also found applications in image enhancement (Jernigan and
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McLean, 1992; Bouzerdoum, 1994; Paradis and Jernigan, 1994), as well as in motion detection

(Bouzerdoum, 1991).

Cellular neural networks (CNNs) were presented by Chua and Yang (1988) as a
framework for analogue, nonlinear processing arrays. A CNN consists of a nonlinear
processing node in a grid layout, with each cell being locally connected to its
neighbouring cells. Many possible CNNs have been described, and they have found many
applications in image processing, as CNNs have an excellent ability to process

information locally, in both time and space.

The mammalian system consists of neurons in a grid-like structure, with many local
interconnections which are used to interact with each other. The architecture and
nonlinear processing ability of the CNN makes it ideal to duplicate the shunting
inhibition in a mammalian system. Bouzerdoum and Pinter (1993) and Bouzerdoum

(1994) were able to adapt and design a CNN to model such shunting inhibition.

Bouzerdoum (1994) successfully used these SICNNs to model aspects of primitive visual
system. lannella and Bouzerdoum (1996) synthesized the spatiotemporal receptive fields
of the early mammalian visual system using a hierarchical model of the SICNNS.
Pontecorvo and Bouzerdoum (1995, 1997) have also designed and applied SICNNs for
edge detection. Cheung, Bouzerdoum and Newland (1999) have used these networks to

investigate and enhance the dynamic range compression and contrast of colour images.

In this thesis, we take the SICNN developed by Bouzerdoum and Pinter (1993) and adapt
it for enhancing medical images, ultrasound images in particular. The working principle
and problems associated with ultrasound images will be discussed. The SICNN has
various parameters which are tuned to dynamically vary its responses and solve the
intricacies in ultrasound imaging. Furthermore, we experiment on some basic methods of
enhancement and compare their performances to that of the SICNN. The networks are
implemented on both high and low quality clinical ultrasound images. Using the test
analysis, we suggest measures to improvise the SICNN performance and obtain

consistent results for any given input image.
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1.4 Thesis Overview

In Chapter 2 we present an overview of contrast enhancement theory and their
applicability. We describe a number of intensity transformation and histogram processing
techniques as found in literature. Contrast transformation methods are explained. Though
filtering techniques are not the focus of this thesis, some of the major principles in this
field are presented to give a comparative overlook of the systems and methods used in
enhancement. Towards the end of this chapter, a few quantitative enhancement measures

are explained for future use.

Chapter 3 begins by introducing the cellular neural network (CNN) theory and
architecture. The dynamics of the CNN are summarised and analysed. The various types
of CNNs available in literature, including the Shunting Inhibitory Cellular Neural
Networks (SICNN) are introduced. Some of the popular applications of these CNNs are
listed and briefed.

Chapter 4 covers the SICNN and its response properties. In this chapter, we first explain
the basic concepts of linear and non-linear inhibition, followed by its biological design.
We then use this biological design to electrically interpret the principle of shunting
inhibition. Here we derive the general SICNN and discuss its stability issues. A general
investigation into the classifications of SICNN systems, both feed-forward and recurrent
type, is presented. We describe how the recurrent SICNN can be solved for the steady-
state. The response properties of this recurrent SICNN are described for both uniform and
step-edge inputs. We conclude this chapter by discussing the advantages of the SICNN

and its performance comparisons to another technique, logarithmic enhancer.

Chapter S focuses on Ultrasound Imaging (UI) and the applicability of the SICNN to
enhance Ul images. We start by studying the principle of ultrasound and its application in
the medical field. We also learn how the ultrasound scanners detect the tissues in a
human body and how ambiguities in detection arise. The digital SICNN is then presented
and its parameters described. We design these parameters to minimize the ambiguities in

Ul images while retaining the important contents of the images.
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Chapter 6 deals with the performance analysis of the different networks that are tested.
This chapter begins with an overview of the different types of Ul images that are used for
experimentation. We briefly present all the measures that will be used to quantify the
experimental results. Performance analyses of some traditional techniques are also
presented to compare the SICNN results. Based on these results, we then suggest a means

to further refine the SICNN performance.

In Chapter 7, we present the conclusions of this thesis and a summary of its major

contributions. Recommendations for future work are also provided.
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Chapter 2

Enhancement and Measurement:
A Review

2.1 Introduction

When capturing an image of any real-world scene, we can expect a number of
degradations in the resulting image. These degradations may be due to the environment,
such as poor lighting, or they may arise from inadequacies and limitations of the actual
imaging device or the imaging technique. These degradations result in a direct reduction

of the image quality.

Image enhancement is used to generate more visually pleasing and informative image.
The enhancement techniques are generally problem oriented, as different applications
have different needs. In this study, we are only interested in techniques for enhancing the

contrast of an image.

In this chapter, we begin by presenting an overview of contrast enhancement theory in
Section 2.2. Here intensity transformation techniques, histogram techniques,

enhancement through filtering and contrast transformation methods are described.

Section 2.3 details contrast measurement methods used to quantify the enhancement in

images. Of the many techniques, the contrast improvement index, gradient enhancement
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measure and relative edge enhancement are explained as they have a significant role in

Chapter 6 in reasoning a suitable measure for the outputs in this thesis.

2.2 Image Enhancement

Poor imaging environment and limited physical properties in analog scanners cause a
definite loss in image information. However, such information drawbacks can be
overcome by the use of digital enhancement techniques. We should understand that
enhancement does not restore a degraded image to its original state; that is image

restoration.

The principal objective of enhancement techniques is to process an image so that the
originally acquired image is made more suitable for a specific application. This means
that the adaptability of the techniques discussed is very much problem oriented. Thus, for
example, a method that is used for enhancing medical images may not necessarily be the

best approach for enhancing satellite images.

Enhancement techniques usually fall into two main categories: spatial domain methods
and frequency domain methods. Spatial domain refers to the image plane itself, and the
approaches in this category are based on direct manipulations of pixels in the image. In
principle, processing in the frequency domain is totally based on making suitable
modifications to the Fourier transform of the image under consideration. Under these two
domains, there are many techniques and filters that can be used for enhancement. Out of
all these, we are only interested in techniques that can be used to improve the contrast of

an image.

Section 2.2.1 presents a general review of intensity transformation methods like contrast
stretching, linear stretching and image negatives. Histogram processing techniques such
as histogram equalisation and adaptive histogram equalisation are explained in Section
2.2.2. Though filtering techniques are not the focus of this thesis, the major principles in
this field are presented in Section 2.2.3, to help us understand the various systems used in

image enhancement. Contrast transformation methods are briefed in Section 2.2.4.
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2.2.1 Intensity Transformations

The image processing functions in the spatial domain may be expressed as (Gonzalez and
Woods, 2001):

g, )=TLfG, /)] @2.1)
where f{i,) is the input image, g(i,/) is the output image, and T is an operator defined over
some neighbourhood of (i,j). Also, T can operate on a set of input images, such as
performing the pixel-by-pixel sum of M images for noise reduction. The main approach
of defining a neighbourhood about (i,j) is to use a square or rectangular sub-image area

centred at (i,j) as shown in Figure 2.1.

()

v
1
Figure 2.1 A 3 x 3 neighbourhood about a point (i,j) in an image.
The centre of the sub-image (mask) shifts from pixel to pixel starting, say, at the top left
corner and applying the operator at each location (i,j) to yield g at that location. Although
other neighbourhood shapes, such as approximations to a circle, are sometimes used,
square and rectangular shapes are by far the most predominant because of their ease of
implementation. The simplest form of T is when the neighbourhood is 1 x 1. In this case,
g depends only on the value of fat (i,/) and T becomes a gray level transformation (also
called mapping) of the form:
s=T(r) (2.2)
where r and s denote the gray level of f{7,/) and g(i,j) at any point (i,j).

For example, if T (r) has the form shown in Figure 2.2(a), the effect of this

transformation is to produce an image of higher contrast than the original by darkening

Contrast Enhancement of Ultrasound Images using SICANN 8



the levels below m and brightening the levels above m in the original image. In this
technique, known as contrast stretching, the values of r below m are compressed by the
transformation function into a narrow range of s towards black; the opposite effect takes
place for values of  above m. In the limiting case shown in Figure 2.2(b), T (r) produces
a two level (binary) image. Simple, yet powerful, enhancement operations can be realized
with gray-level transformation. Because enhancement at any point in an image depends
only on the gray level at that point, techniques in this category are often referred to as

point-processing.

dark q——p HERt
o
=

- — >
dark «—p lght davk ¢q——p light
@ ®)
Figure 2.2  Gray-level transformation functions for contrast enhancement (Gonzalez
and Woods, 2001).

2.2.1. A Contrast Stretching

An application of intensity transformation methods is the contrast stretching. Low-
contrast images can result from poor illumination, lack of dynamic range in the imaging
sensor, or even setting of a lens aperture image acquisition. The idea of contrast
stretching is to increase the dynamic range of the gray levels in the image. Significant
contrast enhancement with considerable clarity in the image information can be achieved

by applying this simple yet efficient technique to two dimensional images.

Figure 2.3(a) shows a typical transformation used for contrast stretching. The locations
of points (r, s;) and (72, s2) control the shape of the transformation function. For instance,
if r,=s; and 7, = s,, the transformation is a linear function that produces no changes in
gray levels. If r; = r;, 5, = 0 and s; =L-1, the transformatioh becomes a thresholding

function that creates a binary image. Intermediate values of (r;, s;) and (r;, s2) produce
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middle of the gray scale, the image would appear a murky gray. Finally, Figure 2.5(d)
shows a histogram with a significant spread, corresponding to an image with high

contrast.

Although histograms are global descriptions that say nothing specific about image
content, the shape of the histogram of an image does give useful information about the
possibility for contrast enhancement. By modifying the histogram of the image, the
properties of the image can be varied. There could be various techniques to vary the

contrast, but histogram equalisation is by far the most common one.

2.2.2. A Histogram Equalisation

Histogram equalization transforms the input image in such a way that the output image
histogram is roughly uniform. Histogram equalisation tends to increase small contrasts,
and reduce large contrasts. Let I’ be the output after histogram processing, and the output
histogram to be uniform over the range of desired intensities [/yin, I'max], then the desired
transformation for an input pixel of intensity / is (Sonka et al,, 1993):

I' =-I'' & n
[/ = max —min . 2.4
v ZN (2.4)

i=In
where n. is the number of cells with intensity gray level ¢, N is the total number of
pixels, and 7, is the minimum gray level in the input image. An adaptive version of this
technique would apply equalization over small local regions rather than over the entire

image.

2.2.2.B Adaptive Histogram Equalisation

Intensity windowing was a common practice to enhance images till the introduction of
the adaptive histogram equalisation (AHE) technique in the 1980°s (Pizer et al.,, 1984; Pizer
et al,, 1986; Pizer et al,, 1987; Zimmerman et. al, 1988). AHE was proposed to address the
problems of display devices in depicting the full dynamic range in some medical images.
Unlike intensity windowing, the AHE is automatic, reproducible, and sensitive to the

local spatial information in an image. In this version of histogram equalisation, the
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contrast enhancement mapping for a pixel is a function of an intensity region immediately
surrounding the pixel. The intensity values in the region are used to calculate a histogram
equalisation mapping, which is then applied to the pixel. More complex AHE schemes

can be found in Paranjape et al. (1992).

2.23 Filtering

Though filtering techniques are not the focus of this thesis, it is important to understand
filters as they would help us gain a comparative overlook of the systems and methods

used in enhancement.

Filtering can be performed in both spatial domain and frequency domain. The spatial
filtering schemes involve direct alteration of the gray levels of the pixels. For
enhancement in the frequency domain, the Fourier transform of the original image is
computed, and is multiplied by the filter’s Fourier transform. The inverse Fourier

transform of this product is calculated to obtain the enhanced image in the spatial domain.

In this section, common frequency domain filters such as high-pass filters and
homomorphic filters are described. In the spatial domain, non-linear unsharp masking

used for edge-enhancement is explained. The classical unsharp masking is also described.

2.2.3. A High-pass Filtering

In high pass filtering; only the high frequency components of the input signal, such as
edges and noise are enhanced. To sharpen an image, the image’s Fourier transform can be
multiplied by the transform of a high-pass frequency filter such as the Butterworth high-
pass filter (Gonzalez and Woods, 2001).

H@u,v)= (2.5)

2n
w
[
Vu? +v?
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where u, v are the frequency variables, w is the cutoff frequency, and 7 is the filter order.
Again this approach emphasises the high frequency components (edges) of the image,

which includes noise too.

2.2.3.B Homomorphic Filtering

Homographic filtering is a special case of a class of systems known as homomorphic
systems. The motivation to this field of filters is to apply concepts and structures of
abstract linear algebra to image processing. Among many others, homomorphic filtering
has found applications in image restoration, speech processing and seismic signal
processing. A typical homomorphic approach to image enhancement is illustrated in

Figure 2.6 (Oppenheim et al.,, 1968; Jernigan and McLean, 1992; Gonzalez and Woods, 2001).

In homomorphic filtering, the input image f{x,y) is considered to consist of two

components - illumination i(x,y), and reflectance r(x,y); where
f(x,p)=i(x,y)r(x,) (2.6)

It is also assumed that the reflectance component changes drastically at intensity
discontinuities, whereas the illumination component does not. Hence, the illumination
component is associated with the slow changing background and the reflectance
component is associated with high frequency edges. These components of the input
image can be separated using the homomorphic filtering technique. The filter A(u,v) is
designed to affect the low and high frequency components differently. Typically the high-
pass filter is used in order to strengthen edges. The natural logarithm allows us to apply

classical linear image processing techniques to each component of the input.

fene= i

<y

Huv) w (FFTY! M exp

Figure 2.6 = Homomorphic filtering for image enhancement (Gonzalez and Woods,
2001).
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2.2.3.C Unsharp Masking

There exist many spatial filtering enhancement schemes such as mean and median
filtering, but we shall not consider them here as they primarily remove noise and do not
enhance edges. A simple but effective algorithm to enhance edges is known as high-
frequency boosting or unsharp masking (UM) (Gonzalez and Woods, 2001), where the high-
frequency contents of the input are partially added to the input. The enhanced output is:

Iboosl = aI - ILP

=(a-D)I+I-1, 2.7
=(a-1).I+1,
where I, I voost, I Lp @and Iyp are the original input, the boosted output, the low-pass and the
high-pass versions of the input image, respectively. The parameter 0 controls the amount
of the original image added to its high-passed version. A typical mask used to obtain the

high pass image is:

where, w = 90 - 1, o > 1. This technique relies on the fact that edges are usually of high
frequency, hence this approach increases their strength compared to the background. Of

course noise is also emphasised since it is of a high-frequency nature.

2.2.3.D Non-linear Unsharp Masking

As discussed above, the classical contrast enhancement filter, so-called Unsharp Mask
(UM), increases the contrast by adding a high-pass version of the input signal to itself.

Naturally, the edges are enhanced, but so is any noise present in the signal.

Guillon et al. (1996) developed a new class of adaptive non-linear contrast enhancing
filters. These filters are called non-stationary filters because the filter mask depends on
the local pixel values. The filter mask processes the pixel by a combination of high-pass

and low-pass filter versions of the input.
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Consider a filter mask M of size J x L centered on the pixel (i,k). Each coefficient m,-kﬂ of
this mask is viewed as a level of confidence of the current pixel belonging to the mask.
Thus, m,-kﬂ —1 for pixels to the center pixel and m,—kﬂ —0 for others, and M = {m,-kﬂ €[0,1]

and (j,)) e Jx L}.

Let I;; be the intensity of the centre pixel of mask M, and J; be the intensity of pixel (7,/)
in the mask. The algorithm needs a discriminating function that tends to one when the

pixel values are similar, and tends to zero otherwise. A suitable function is

| -, -1,)
m, =exp[—————( £ z‘k) } (2.8)

20

where o controls the width of the Gaussian curve. The mask M is computed for every

pixel in the image. The proposed filter structure is shown in Figure 2.7.

The multiplier O is a weighted factor driving the contrast enhancement effect. The low

and high pass versions of the input are computed as, respectively,

Jl
Z m 1,

P _ (JDeM
RS -
ik
(J.l)eM
Iifp = Z (mxjkl —my )l (2.10)
(J.h)eM

1
with m, =— m’!
ik JL (jéM ik

This particular technique is called the Gradient-Like Enhancement (GLE) technique.

A 1 '
Low-Pass + Iix

v

2 HP

) 4

High-Pass

a
Figure 2.7  Block diagram for Gradient-Like Enhancement (Guillon et al., 1996).
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The low-pass component [;*” is a weighted mean over the mask M. The high-pass
component I"* can be interpreted as local estimate of the gradient at that pixel.
The overall output of the system is:

L =L (+al") (2.11)
This technique attempts to improve the performance over the usual Unsharp Masking
algorithm by multiplying the low-pass version and the high-pass version of the input,
rather than multiplying the input and its high-pass version. Thus, edge enhancement can

be achieved with this method, but with a reduced noise effect.

2.2.4 Contrast Transformation Methods

A number of schemes (Gordon and Rangayyan, 1984; Dhawan et al, 1986: Beghdadi and
LeNegrate, 1989: Dash and Chatterji, 1991) aim to explicitly vary the local contrast of an
edge in an image. All of the proposed methods begin by computing the local contrast in a
small window, and then changing that contrast according to some function or
transformation. The intensity of the central element of the local window is then
recomputed according to the new contrast value for that pixel. Thus, the function or

transformation determines the relationship between the output and input contrasts.

Based on Michelson’s formula, the contrast of pixel (7,k) in a given local neighbourhood
is defined as (Pefi, 1990):
'Iik -1 ol

T (2.12)

c

where I is the intensity of the pixel and [ is the local mean intensity.

Numerous transformations for this contrast have been proposed. Dhawan et al. (1986)
investigated a number of transformation functions, including the tangent tan(ncy),
hyperbolic tangent tanh(ncy), exponential 1—exp(-ncy), natural logarithm In(1+ncy), and
the square root \/c,-k (n is a real scalar). These transformations map the contrast to the
range of [0 1]. They not only increase the contrast but also increase the noise intensity, so

the choice of the transformation function is usually a trade-off between the amount of
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contrast enhancement and the allowable increase in noise intensity. For a contrast
transformation F (cy), where F (ci) 2 ci and F (ci) € [0, 1] for ci € [0, 1], the pixel’s

intensity is modified as

[ 1+
Io(__%—) if I, < I
(I_Ci’k)
I =1 (2.13)
1-¢/
o ( c‘,") otherwise
| (I+¢)
where ¢, =F(c,)
2.3 Enhancement Measures

There exist a large number of image enhancement techniques, but only few methods that
can quantify the amount of enhancement. To enumerate the effects in an enhanced image,

defined measurements must be used.

Many researchers use visual inspection to compare different enhancement schemes.
Visual inspection is a simple means of rating the change in the image quality, but is not
entirely adequate for determining the enhancement performance. For example, humans

are subjective-people, and may estimate the quality of an image in different ways.

We desire a means of rapidly and automatically measuring the improvement in an image
with good consistency. For this reason, we shall consider quantitative measures of
enhancement. Furthermore, the quantitative measures solely rely on the statistics of the
image. The enhancement schemes considered here primarily enhance the contrast or

edges, of the input image.

2.3.1 Contrast Improvement Index

Assuming that there is a step edge in a local neighbourhood, the contrast in a small

window centered on pixel (i) is defined as (Pefi, 1990):
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I -
c=-— 0 2.14

I max + I min ( )
where 1,4, is the maximum background intensity, and I, is the minimum background

intensity of the edge. This is also called Michelson’s contrast.

It should be noted that EQ (2.14) measures the contrast in a small window centered on

pixel (i), whereas EQ (2.12) gives the contrast of the actual pixel (iy).

A method of evaluating contrast enhancement is to compare the contrast of the input
image and the enhanced image (Dash and Chatterji, 1991; Dhawan et al., 1986: Gordon and
Rangayyan, 1984; Beghdadi and Le Negrate, 1989). In 1994, Laine et al. defined the Contrast

Improvement Index (CII) in a region of interest as:

C
CIl ===~ 2.15
C. (2.15)

where C,,, and C;, are the contrast at an edge in the output (enhanced) image and the

original input image, respectively.

2.3.2 Gradient Enhancement Measure

Another possible image enhancement measure is the Gradient Enhancement Measure
(GEM) as proposed by Harris (1997). This is simply a measure of the increase in the

gradient of the edge after image enhancement.

2.3.3 Relative Edge Enhancement

Paradis and Jernigan (1994) used a measure called the Relative Edge Enhancement
(REE) for 1-D step edges. This measure is primarily used when the intensity of the edge
points increases relative to the background intensity. For enhancement of a step edge, as
shown in Figure 2.8, the contrast of a pixel is defined as:

c -

2.16
= 2.16)
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where Ay, is the distance between the edge peaks, Ay is the difference between the

background intensities, and c is the contrast of the edge.

______ o

Figure 2.8 A step edge whose edge pixels are enhanced relative to the background.

The enhancement in an image compared to the original image (REE) can be written as:

N,/

REE =
Ax, [ Ax

2.17)

where Ay, is the peak-to-peak edge variation, Ay is the background difference in the
vicinity of the enhanced edge in the enhanced image, Ax, and Ax are the corresponding

measures for the original image.

2.4 Conclusion

In this chapter, we summarized and reviewed many important concepts that are to be used
throughout this thesis. We examined in detail the contrast enhancing techniques using
intensity transformations, histogram processing and contrast transformations. Filtering

techniques in spatial and frequency domains were also explained.

Since the experimental comparisons in this thesis are mainly dependent on quantitative
contrast measures, traditionally used schemes such as gradient enhancement measure,
contrast improvement index and relative edge enhancement measure have been
explained. The usefulness of these methods to quantify the enhancement in ultrasound

images is later demonstrated in Chapter 6.
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Chapter 3

Introducing Cellular Neural Networks

3.1 Introduction

Since its introduction by Chua and Yang in 1988, the Cellular Neural Network (CNN)
architecture has proved to be one of the most widely applied neural network models. The
CNN paradigm is a powerful framework for analogue nonlinear parallel processing arrays
defined on a grid, featuring the local processing of cellular automata and the continuous

dynamics of neural networks.

CNNs are suited to problems which are defined in space-time e.g., image processing
tasks, and partial differential equations (PDEs).These problems are all characterized by
fact that the information and interactions are generally constrained to small local areas,
rather than large global ones. Thus, the main difference between CNNs and other Neural
Network (NN) architecture is that in a CNN, all information is processed locally.

However, global processing is still possible through dynamic diffusion of information.

The continuous dynamics and intense calculation capability of the CNNs with its local
processing property makes them amenable to either electronic or optical implementations,

which are usually difficult to achieve with the other forms of neural networks. If the
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signals are continuous and or real-time operations are necessary, then the CNN is a good
solution in terms of speed and time. The CNN model has also proven to be suited for
VLSI implementations. CNNs have been implemented in VLSI chips capable of tera-
flops operating frequencies (Ecimovic and W, 2002).

In this chapter, we first present an overview of the architecture and system dynamics of
the general CNN in Section 3.2. We then look at a number of particular variants of this
general model in Section 3.3. Here we also introduce the Shunting Inhibitory Cellular
Neural Networks (SICNN), which will be used in this thesis. Finally, some of CNN’s

major applications are described in Section 3.4.

3.2 Cellular Neural Networks

The CNN architecture was proposed by Chua and Yang in 1988. CNNs are analog
dynamic processors suitable for solving computational problems that can be formulated
in terms of local interactions among signals placed on a regular structure (Chua and Yang,
1988; Chua and Roska, 1993). CNNs have already been applied to image processing
problems such as filtering, edge detection, character recognition and object recognition.
Due to the parallelism of the architecture, it can be applied to problems (such as video
signal processing) where traditional methods cannot deliver fast throughput. There is
much active research in the theory and implementation of CNNs and many applications

of CNN:ss to real world problems have been reported.

CNN is a massive parallel computing paradigm defined in discrete N-dimensional spaces.
Following the Chua-Yang definition, a CNN has the following properties
(ﬁttp://www.ce.unipr.it/parzfis/'Cﬂ\[N/cnn.ﬁtm{# InterPoint):

e A CNN consists of an N-dimensional regular array of elements (cells);

o The cell grid can be a planar array with rectangular, triangular or hexagonal
geometry, a 2-D or 3-D torus, a 3-D finite array, or a 3-D sequence of 2-D arrays
(layers);

o  Cells are multiple-input single-output processors;

Contrast Enfancement of Ultrasound Images using SICANN 23



A cell is characterized by an internal state variable, which may not be observable

from outside the cell;

e More than one connection network can be present, with different neighbourhood
sizes;

e A CNN dynamical system can operate in continuous (CT-CNN) or discrete time
(DT-CNN);

e (NN data and parameters are typically continuous values;

e CNNs are recurrent networks; the final outputs typically require more than one

iteration.

One of the main characteristics of the CNN is the localised connections between the cells.
In fact, CNN differs from other NN mainly because, in a CNN, information is directly
exchanged only between neighbouring cells. Of course this characteristic also allows
global processing. Communications between non-directly connected units are possible
through intermediate units. The CNN is considered as an evolution of Cellular Automata
paradigm. Moreover, it was demonstrated that CNN paradigm is universal, being

equivalent to the Turing Machine (Attp://www.ce.unipr.it/pardis/CNN/cnn.html# InterPoint).

In this section, we present an overview of the CNN architecture and operation, including
some fundamental definitions and the most general equations defining its operation. This
section also includes a discussion on the numerous types of cell grids possible, and how
local interactions can cause a global flow of information throughout the network. We also

briefly mention the stability issue of CNNs.

3.2.1 CNN Architecture

The basic unit of the CNN is referred to as a cell. In its electrical implementation, the cell
generally contains linear and non-linear circuit elements, e.g. resistors and capacitors.
Each cell is only connected to the cells in its local neighbourhood; hence only local

interaction occurs.
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CNNs can be defined over any dimension, though it is much easier to visualise them in
1-D or 2-D. In Figure 3.1 we show a 2-D CNN defined on a square grid, with each cell

connected with only its immediate neighbours.

In a 2-D CNN with a total of M x N cells in M rows and N columns, let C (i) denote the
cell in the i" row and " column. The r-neighbourhood of a cell C (i) is the set of all cells

within a distance of r from the cell (i/) and is given by:
N,(, j) = {Clk,D|max {[k i} - jl} < r, 1<k < M,1<1< N} (3.1)

It is easy to show that this neighbourhood definition exhibits a symmetry property; that is,
if C (4, /) is a member of N, (k, I), then C (k, /) is also a member of N, (i, j).

(L) ¢(12) ¢(L35)

e(2,1) ¢(2.2) e(2,3)

e(31) e(3.2) ¢(3.3)

Figure 3.1  2-D CNN defined over a 3 x 3 square lattice.

The cell grid can be a 2-D array with rectangular, triangular or hexagonal geometry, a
torus, or a 3-D array. Cells may be of the same type or belong to a different type. More
than one connection network may also be present, each with different neighbourhood
sizes — such as short range interaction and subsystem connections. The neighbourhood
size may be as large as the network, in which case we have a fully connected network.

Cellular networks, however, are usually implemented with only small neighbourhoods.

3.2.2 System Operation

The CNN is a dynamical system operating either in continuous or discrete time. A

general form of the cell dynamical equations is defined as:
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dx..
C—L=-ax,+ Y AGjkDy,+ Y BGjikDu,+I  (32)

dt Ck DN, (i) ATA)

Yy =g(‘xij)

where x and y denote the cell state and its output, respectively. 4 is the output feedback
functional, B is the input functional controlling the effect of the neighbouring cells, u is
the controlling input of the neighbourhood, g is the output functional of the cell and [ is

an independent bias.

Equation (3.2) represents the general form of state equations of CNNs. A number of
implementations of these equations are discussed in the next section. In most of the cases,
the system is non-markovian, i.e. the future network state depends also on its past states.

Figure 3.2 depicts a block-scheme of a generic CNN iteration.

Control
Template
Local Internal
JE— 1 oo ond . 0 "-t
Input | f() [—o— Oup
Feedbuck
Template
Input from
Neighbourhood
Feedbuck from
Neighbourhood

Figure 3.2  Block-scheme of a generic CNN iteration, adapted from
http://www.ce.unipr.it/pardis/CNN/cnn.html# InterPoint
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323  Stability

As with all dynamical systems, stability is an important issue with CNNs. For stability,
the network must converge to a finite number of states. This can also be termed as
complete stability. The stability of the Chua-Yang CNN (CYCNN) was widely
investigated and a summary of the main results can be found in Civalleri and Gilli (1999).
The general form of the CNN is not always stable, but stability can be proven for some
subsets of the general model. The complete stability of the general CNN was studied in
several papers (Chua and Wu, 1992; Gilli, 1994; Arik and Tavsanoglu, 1996; Takahashi and Chua,
1998), including the paper where the CNN paradigm was originally introduced (Chua and
Yang, 1988).

3.3 Types of CNN

From such a broad and general definition of the CNN many variants are possible. As-far
as the dynamics is concerned, the CNN can be classified into two categories: stable
CNNs and unstable CNNs. Generally, each variant is developed to suit a particular
application. We shall review the variations of the general model such as the specific
forms of the activation function, cell grid structure, template model, and discrete-time
implementation. The variants discussed include polynomial or linear activation
functions, uniform and non-uniform grid structures, and space-invariant and time-variant

templates.

3.3.1 Polynomial CNN (P-CNN)

A variant of the general CNN is the Polynomial CNN (P-CNN) described by Barone et
al. (1993), whose local feedback function is an odd-order polynomial. A third order
polynomial function is shown in Figure 3.3. In the case of pattern recognition such

functions act as shape attractors.
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Figure 3.3 A third order polynomial local feedback function.

Recently new CNN models with polynomial interactions among the cells were introduced
(Tetzlaff et al, 1999; Laifo et al, 2000). The use of higher order interactions has the
advantage of solving computationally more complex problems, through an effective

analog implementation ( Laifo et al., 2000).

The polynomial interactions among cells alter the dynamics of the network, as they
increase the number of distinct equilibria of the cell. Though the dynamics of such P-
CNN’s have not been deeply investigated, Corinto et al. (2002) present a comparative
analysis of the P-CNN’s stability with two other classifications of the CNN; the Chua-
Yang CNN and the Full Range CNN. Corinto et al. (2002) showed that unlike the Chua-
Yang and full range CNNs, the P-CNNs are stable under rather different conditions; in
particular the symmetry of the template does not assure the stability of the network.

3.3.2 Non-linear, Delay Type and Non-Uniform Grid CNN

Rather than having two linear controlled sources A(ij ; k) yw and B (ij ; kI) uy
associated with cell C(ij) and neighbours C(k,/), non-linear and delayed controlled
sources can be employed (Roska and Chua, 1992), such as:

Ly

Al_'/',ld Yu + yij) + Arij,ldykl (t-7) and éij,kl (4 +uy)+ Brij,kluk] (t-7)

We can possibly have 7 = 7 The structure of the non-linearity is that it is at most a

function of two variables: the output voltages of cell C(i,j) and its neighbour C(k,)).
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