
legal and total mean abundance inside sanctuary zones. Using acoustic telemetry, 

MacArthur et al. (2008) reported nocturnally active Panulirus cygnus moving from reef 

crevices out to approximately 60m to forage in seagrass meadows. Other studies have 

recorded similar movements into surrounding habitats in P. argus (Bertelsen and Hornbeck, 

2009), P. elephas (Follesa et al., 2009), and Jasus edwardsii, with a small density of 

lobsters moving outside the reserve dependent on sex and size of the individual (Freeman et 

al., 2009). Similar results have been documented for fish. While some temperate fish 

species display high site fidelity, such as the senator wrasse Pictilabrus lacticlavius (Edgar 
f' 

et al., 2004) and pink snapper Pagrus auratus (Willis et al., 2001), many mobile fish 

demonstrate extensive and overlapping home ranges that venture beyond the sanctuary 

boundaries (Wetherbee et al., 2004; Topping et al., 2005; Kingsford & Carlson, 2010). This 

may help explain the low abundances and biomass of fish and lobsters observed at 

Boyinaboat Reef. Compared to both Green Island and Kingston Reefs sanctuary zones, 

which protect 92 and 164 hectares, respectively, Boyinaboat Reef located within the 

Marmion Marine Park (MMP) is a relatively small sanctuary zone protecting an area of 7.4 

hectares. It would thereby offer a limited refuge to highly mobile species, crossing the 

reserve boundaries and potentially making them vulnerable to fishing pressures (Solandt et 

al., 2003). Schooling fish species such as the skipjack trevally Pseudocaranx wrightii 

(Carangidae) were observed at Boyinaboat Reef and are particularly vulnerable to fishing 

mortality, as they are a highly mobile pelagic species displaying diel and seasonal 

movement between habitats (Afonso et al., 2009). On the contrary, Kingston Reefs 

sanctuary zone offers a larger spatial protection that is closely associated with the relatively 

higher abundance of higher-order consumers. Adult male western blue gropers Achoerodus 

gouldii (Labridae) reaching lengths over one meter, and tarwhine Rhabdosargus sarba 

(Sparidae) were observed at this protected site, as they use protected inshore reefs and 

neighbouring islands as nursery habitats (Hesp & Potter, 2003; Shepherd & Brook, 2007; 

Coulson, 2008, p. 3). This suggests that small protected areas will only benefit individuals 

that restrict their movements to a localised home range during a part of their life cycle. 

Effective protection of mobile species such as lutjanids and carangids may be compromised 

in a small sanctuary zone due to their relatively large home ranges (Kramer & Chapman, 
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1999). It is difficult, however, to quantify their diel or seasonal movement patterns without 

acknowledging their individual characteristics and life histories. 

The age of a sanctuary zone may also have an overriding influence on the current effect of 

those zones on consumer abundance and biomass, based on the recovery rate of consumers 

from previous fishing pressures. In my study, the sanctuary zones varied in age, as Green 

Island was established in 2007, Boyinaboat Reef in 1999, and Kingston Reefs was gazetted 

in 1988, making it the oldest of the three sanctuary zones. Some studies have documented a 

rapid irrcrease in species biomass within one to three years after MP A establishment 

(Roberts & Hawkins, 1997; Halpern & Warner, 2002; Halpern, 2003; Denny et al., 2004), 

while other studies have shown consumers to respond after longer time frames (Russ & 

Alcala, 2003; Barrett et al., 2007; Pande et al., 2008). 

Slow-growing species with prolonged lifespan, and species with infrequent or highly 

variable recruitment levels, will more likely take longer to respond to reserve protection 

than shmt-lived, fast-growing species (Russ & Alcala, 1998; Jennings et al., 1999; 

McClanahan et al., 2006). For example, the results from this study showed that Kingston 

Reefs was the only sanctuary zone to have recorded the slow-growing and commercially 

important (McAuley & Simpfendorfer, 2003) western blue groper Achoerodus gouldii. 

With its no-take policy strongly enforced by the Rottnest Island Authority (RIA) since its 

establishment in 1988, a wide range of targeted species (both commercial and recreational) 

were observed at Kingston Reefs, including foxfish Bodanius frenchii, baldchin groper 

Choerodon rubescens, and Australian herring Arripis georgianus. These species have only 

been observed at Kingston Reefs compared to the other sanctuary zones that have been 

protected for shorter periods. These results however, are confounded by a combination of 

variables, such as the size of the sanctuary zone, and must therefore not be studied in 

isolation. This also highlights the importance of considering life-history traits when setting 

objectives for a MPAs performance, as protection may be suitable for some species and 

inadequate for others. 
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Fisheries generally exploit species high in the trophic food web, and a majority of these 

higher-order consumers are slow-growing carnivores. These species are therefore expected 

to respond slower to reserve protection compared to less targeted herbivores that respond 

faster to protection (Friedlander & DeMartini, 2002). Focusing solely on the response of 

targeted species to protection may not reflect a sanctuary zone's impact at a broader 

community scale, leading to possible bias and misinterpretation of data. It is, therefore, 

essential to observe the community as a whole as the intention of most MP As is to protect 

biota at the community level rather than individuals species (Micheli et al., 2004; 
r 

Rodrigues et al., 2004). Additional analyses were done separately on trophic groups' 

herbivores, omnivores, and carnivores, however, all trophic groups did not appear to 

respond clearly to protection in MP As, and were therefore excluding from the Results. 

The geographical location of a sanctuary zone may also influence patterns observed for 

higher-order consumers. Since this study was conducted over broad spatial scales, and 

results showed a high level of spatial variability in all parameters, population dynamics 

may respond to the different hydrodynamics along the west coast of W A. The study region 

is in a tropical-temperate transition zoning caused by the southward flowing Leeuwin 

Current. This may attribute to the transportation of larvae originating in warmer northern 

waters and dispersed to the southern region through the Leeuwin Current (Hutchin & 

Pearce, 1994).This may help explain the overall high fish diversity recorded at Kingston 

Reefs sanctuary zone and Rocky Bay fished zone. Of the 68 fish species recorded, only 

four were tropical, reef-associated species Thalossoma lutescens (Labridae), T. lunare 

(Labridae), Scarus ghobban (Scaridae), and Anampses geographicus (Labridae). These 

species were only recorded at Rottnest Island and in low abundances. 

Much of the variability in higher-order consumers could also be explained by site-specific 

characteristics. Kingston Reefs is relatively exposed to southerly and easterly winds and 

swell, influencing the distribution of vegetation cover (Wernberg et al., 2003, 2005). Low 

quantities of Ecklonia radiata (Laminariales) and other brown algae were recorded on the 

reef, which form an important food source for herbivorous species, including kyphosids 

(Clements & Choat, 1997; Morgan & Clements, 2002). The high structural complexity of 
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the reefs that incorporates many crevices and cracks (Garda-Charton & Perez-Ruzafa, 

1998, 2001), offers more ecological niches for fish species, particularly labrids (Tuya et al., 

2009). Twin Rocks is another exposed fished site with relatively simple-structured reefs 

dominated by E. radiata canopies. Vast quantities of detached E. radiata were located at 

the base of the reefs, potentially attracting higher-order consumers through the increase of 

macroinvertebrates, as seen in wrack accumulation on the beach (Ince et al., 2007). Both 

Green Island and Rocky Bay are relatively protected sites, but the reefs at Green Island are 

structurally complex, increasing the variety of microhabitats for inhabitants, as seen in coral 
I" 

reefs (Chabanet et al., 1997). Greater habitat complexity is often associated with greater 

species richness and abundance, potentially reducing predation and competition (Cote et 

al., 2001; Almany, 2004). Rocky Bay had Caulerpa spp. dominated, simple-structured 

reefs, and unlike all other sites examined, the water depth abruptly declined to 10-15m at 

the reef. This increase in depth may correlate with the higher fish abundance, diversity and 

biomass found at the reef, reflecting possible feeding and habitat preference (Buxton & 

Smale, 1989). Boyinaboat Reef is situated in close proximity to Hillarys Boat Harbour, a 

popular recreational destination. It is subjected to numerous and uncontrollable external 

stressors such as boat trafficking and fishing, as craypots were placed immediately adjacent 

to the sanctuary-zone boundary (K. Inostroza personal observation). Hence, the 

geographical location could be responsible for the overall lower high-order consumer 

biomass recorded at this site. Wreck Rock has a structurally complex reef offering 

numerous microhabitats, however it is subjected to recreational fishing pressures, having 

strong effects on the higher-order consumer population. This may reflect the variable 

abundances of rock lobsters and fish recorded at Wreck Rock. Habitat variables were not 

measured in this study, however, such differences in site characteristics (spatial patterns 

and habitat structure) may confound the effect of fishing protection. 
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4.2. Impact of higher-order consumers on benthic assemblage 

Natural predation by consumers was expected to be substantially higher in sanctuary zones 

than fished zones following the cessation of fishing and would decrease with increasing 

distances away from the reef. This should then be reflected in the epibenthic assemblage 

and tethering experiment. However, as stated above, clear difference in consumer 

assemblages between sanctuary and fished zones were not clear, and there were also no 

clear differences in the epibenthic fauna and flora assemblages between zone types. 

Furthermore, although greater densities of fish and lobsters were found in close proximity 

to macroalgal-dominated reefs across all sites (Howard, 1989; Harman et al., 2003; 

Kingsford & Carlson, 2010), no trends of decreasing epibenthic abundance and diversity 

were detected. The ability to detect a consumer's direct influence on prey abundance, 

richness, and distribution is difficult, due in part to their feeding habits. For instance, reef­

associated herbivorous kyphosids feed on a wide range of macroalgae, predominantly 

phaeophtyes (Ecklonia radiata) (Clements & Choat, 1997; Morgan & Clements, 2002). 

Both Kyphosus sydneyanus and K. cornelli contributed the greatest biomass at the 

structurally complex reefs across all sites, potentially placing a vast amount of grazing 

pressure on macroalgae on the reef and epiphytic algae on adjacent Amphibolis spp. 

meadows. The negative influence carnivores or omnivores have on their prey will vary with 

species and their level of mobility (MacArthur & Hyndes, :2007). For example, lobsters are 

generalist consumers with small-scale foraging mobility (MacArthur et al., 2008). A wide 

range of food sources have been detected through the analyses of lobster stomach content, 

ingesting large quantities of coralline algae, molluscs, and crustaceans (Edgar, 1990a,b; 

Jernakoff et al., 1993). Equivalent studies on temperate fish species have shown that most 

mullids are carnivorous consuming decapods and amphipods (Platell et al., 1998), while 

labrids are omnivorous, feeding on small epiphytic invertebrates including molluscans, 

crustaceans, and plant material (MacArthur & Hyndes, 2007). Labrids contributed 

substantially to the total abundance offish in this study (45.5%), feeding on a range of prey 

species across different trophic levels, making their impact on the benthic assemblage 

difficult to detect. However, no distinct pattern could be detected in the epibenthic 
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assemblage with increasing distances away from the reef. The lack of detection reflects the 

small-scale patchiness in benthic assemblages of temperate reef systems. This could have 

been overcome by increasing the number of replicate transects to incorporate this 

variability in the benthic assemblage. Furthermore, theory indicates that omnivores stabilise 

food webs (Krivan, 2000; Emmerson & Yearsley, 2004) through top-down and bottom-up 

processes, reducing the probability of trophic cascades (Bascompte et al., 2005; Thompson 

et al., 2007). This may help explain the lack of a significant zone effect on epibenthic 

faunal assemblages. 
f' 

It was hypothesised that epibenthic abundances would increase with distance away from the 

reef since a greater concentration of consumers near the reef have limited mobility out into 

seagrass meadows to forage. This pattern in epibenthic assemblages did not match the 

results of this study, nor was it reflected in the tethering experiments with gastropods. 

Instead, the epibenthic abundances fluctuated over distances. These results are contrary to 

studies conducted by Langlois et al (2005) and Tuya et al (2010), which demonstrated 

higher predation of tethered prey in seagrass meadows adjacent to reef. Both studies 

concluded that this was likely to be due to greater abundances of predators near the reef. 

Predation intensity also varied considerably between molluscan prey species, Cantharidus 

lepidus and Pyrene bidentata, which can be strongly correlated with shell morphology 

(Edgar, 1990b). No differences in predation rates between gastropods C. lehmanni and P. 

bidentata were reported in this study, due to the experimental limitations including the lack 

of labelling. Green Island and Kingston Reefs in RIMR were the only sanctuary zones to 

demonstrate an overall lower abundance and family-level richness of epibenthic fauna. 

Since 60.09% of total fish species observed at Green Island, and 72.20% of fish species at 

Kingston Reefs were carnivores, these species may be driving the low epibenthic 

assemblage through foraging activities in Amphibolis spp. meadows. Contrary to my 

results, Langlois et al. (2006) confirmed this predatory pattern on bivalves through caging 

experiments, and tethering urchins (2005). A possible explanation for the lack of predatory 

interactions is the overlapping diets of many fish species (Edgar & Shaw, 1995). 
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Despite the numerous empirical studies demonstrating trophic cascades as a result of MP A 

protection (Estes et al., 1998; Babcock et al., 1999; Shears & Babcock, 2002; Clemente et 

al., 2008; Gloeckner & Luczkovich, 2008; Moksnes et al., 2008; Barrett et al., 2009; 

Sonnenholzner et al., 2009), this pattern was not obvious from my studies. An increase in 

higher-order consumer abundances was not reflected at lower trophic levels across seagrass 

meadows, demonstrating the complexity of food web structures (Polis & Strong, 1996). 

This may also be a result of examining the entire epibenthic assemblages rather than other 

studies that focus on a small subset of a community. For instance, Barrett et al (2009) 
r 

examined the changes in macroalgal density in Tasmanian MRs in response to rock 

lobsters, urchins, and abalone abundances, while Tuya et al (2010) also demonstrated the 

predatory effects of fish species on a small selection of gastropod species. While these 

studies have shown possible trophic cascades in individuals groups, my study displayed no 

evidence of a trophic cascade over the entire epibenthic assemblage. Trophic cascades are 

assumed to be masked when entire communities are measured (Tessier & Woodruff, 2002). 

Therefore, to examine how the epibenthic assemblage responds to predation by higher­

order consumers must take into account other environmental and biological factors. 

4.3. Management implications 

This study provides the type of baseline biological data on marine ecosystems that are 

necessary to assess whether the sanctuary zones in southwest temperate waters of W A are 

successfully meeting their objectives of biodiversity conservation. It also provides some 

insight into how ecosystems function in response to harvesting of higher-order consumers 

by humans in fished areas and to protection through sanctuary zones. Abundance and 

family-level richness for epibenthic fauna and algal epiphytes did not differ between fished 

and unfished zones, however, significant heterogeneity was observed across sites in this 

study, suggesting that each sanctuary zone functions in different ways. Therefore, in order 

to successfully meet the management objectives set for a sanctuary zone, fmther research is 
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required on community demography and their physical and ecological processes that 

influence biodiversity across varying spatial scales. 

To meet a MPAs objective of biodiversity conservation, managers must acknowledge the 

natural variations in marine ecosystems, including life history traits of individual species, 

daily or nocturnal or seasonal movements, recruitment patterns, and their trophic level in 

the food web. Taking these factors into consideration would provide realistic expectations 

concerning the conservation benefits of MPAs. A key determinant of differences in higher­

order consumers in response to protection may be caused by the sanctuary zone design. The 

size and boundaries of a sanctuary zone needs to incorporate multiple habitats, whether 

used for shelter, nursery, and foraging that may form some part of an organism's life cycle. 

The size of the sanctuary zone, along with its time of protection and location, may 

influence the abundance and diversity of higher-order consumers, enhancing its usefulness 

in conservation and potentially for fisheries management. The objectives of some MPAs 

offer minimal benefits to fisheries management through a spillover of propagules and adults 

across the sanctuary boundaries following the cessation of fishing, however ,this still 

remains relatively unquantified and requires further research (Russet al., 2004; Gofii et al., 

2006; West et al., 2009; Amarg6s et al., 2010; Gofii et al., 2010). With a lack of a long­

term historical context of an ecosystem, further efforts should be employed in long-term 

and continuous monitoring over large-spatial scales. This will provide crucial temporal and 

spatial data to appreciate the impacts of fishing and how fishing may affect other trophic 

levels in a food web. This also emphasises the need for improved and enforcement of 

sanctuary zone status to ensure the judicious use and preservation of marine ecosystems. 
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Appendix 

Table 3.6. List of all fish species (in alphabetical order) recorded at all six sites within sanctuary and fished 
zones at the reef and at different distances in Amphibolis spp. meadows across three seasons. 

Family Species Fishing Trophic 

Importance Level 

Aplodactylus Aplodactylus westralis R H 

Apogonidae Apogon rueppelli R z 

Apogon victoriae B c 

Aracanidae Anoplocapros amygdaloides N c 

Arripidae Arripis georgianus C/R c 

Blennidae Omobranchus germaini N 0 

Paradennius intermedius N 0 

Belonidae Hyporhamphus melanochir c 0 

Carangidae Pseudocaranx dentex CIR ZJC 

Pseudocaranx wrightii CIR z 

Pseudocaranx wrightii juveniles CIR z 

Chaetodontida Chelmonops truncatus N c 

Cheliodactylidae Cheilodactylus gibbosus N 0 

Cheilodactylusrubrolabiatus R c 

Dactylophora nigricans R 0 

Gerreidae Parequula melboumensis R ZJD 

Gerres subfasciatus R c 

Heterdontidae Heterodontus portusjacksoni R c 

Kyphosidae Girella zebra R H 

Girella tephraeops R H 

Kyphosussydneyanus B H 

Kyphosus comelli B H 
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Scorpis georgiana R z 

Tilodon sexfasciatum R c 

Labridae Achoerodus gouldii c c 

Anampses geographicus N ZJC 

Austrolabrus maculatus R c 

Bodianus frenchii C/R c 

Choerodon spp. R c 

Choerodon rubescens R c 

Coris auricularis R c 

Coris auricularis juveniles N c 

Dotolabrus alieni N H 

Eupetrichthys angustipes N z 

Halichoeres brownfieldi N c 

Thalassoma lutescens R c 

Opthalmolepis lineolata R c 

Pictilabrus laticlavius R c 

Pseudolabrus biserialis R c 

Notolabrus parilus R c 

Thalassoma lunare R c 

Monacanthidae Meuschenia hippocrepis R 0 

Penicipelta vittiger R H 

Scobinichthys granulatus R 0 

Mullidae Parupeneus signatus R z 

Upeneichthys lineatus R c 

Upeneichthys vlagmingii R c 

Odacidae Odax acroptilus R 0 

Odax cyanomelas R H 

Parodax caninis N H 
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Ostraciontidae Aracana aurita R 0 

Pataecidae Aetapcus maculatus R c 

Pinguipedidae Parapercis haackei N H 

Pempheridae Pempheris klunzingeri R c 

Pempheris multiradiata B c 

Platycephalidae Leviprora inops R c 

Plesiopidae Trachinops brauni N z 

Trachinops noarlungae N z 

Pomacentridae Chromis klunzingeri B z 

Parma mccullochi R H 

Parma occidentalis R H 

Scaridae Scarus ghobban R H 

Serranidae Epinephelus armatus C/R z 

Sparidae Chrysophrys auratus c c 

Rhabdosargus sarba R 0 

Terapontidae Pelsartia humeralis R 0 

Tetraodontidae Torquigener pleurogramma N HID 

Urolophidae Urolophus testaceus N c 
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