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Abstract: One of the most recognisable features of ageing is a decline in brain health and cognitive
dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing
is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive
function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-
related cognitive decline, there is a lack of effective methods to improve the health of the ageing
brain. In light of this, exercise has shown promise for positively influencing neurocognitive health
and associated lipid profiles. This review summarises age-related changes in several lipid classes that
are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols,
and explores the consequences of age-associated pathological cognitive decline on these lipid classes.
Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight
the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism
and prevent cognitive decline in later life.

Keywords: lipidomics; exercise; ageing; cognition; metabolism; metabolic phenotyping; liquid
chromatography–mass spectrometry (LC–MS); nuclear magnetic resonance spectroscopy (NMR)

1. Introduction

Ageing is an inevitable natural phenomenon and is associated with alterations in
various biological processes leading to the gradual decline of physiological functions [1].
With a global increase in the ageing population, older adults (60+ years) are expected to
outnumber young children (<9 years) by 2030 [2]. By 2050, the proportion of people over
the age of 60 is expected to double to 2 billion (22% of the projected population) [3]. This
increase in population size and consequent healthcare demands and retirement living costs
imposes substantial socioeconomic pressure on communities and healthcare systems. In
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Australia alone, the projected cost of ageing to the economy is AUD 36 billion by 2028 [4].
Elucidating ageing processes and highlighting new ways of prolonging health will not
only have a substantial economic impact, but will also relieve the pressures on healthcare
systems and have a profound benefit at the individual and societal level.

One of the most recognisable features of ageing is a decline in brain health, commonly
manifesting in brain atrophy and cognitive decline [5]. As such, ageing is the largest risk
factor for neurodegenerative diseases such as dementia [6]. Dementia is an umbrella term
that describes a collection of symptoms including cognitive impairment, memory loss and
behavioural changes observed in various neuropathological disorders [7]. There are many
conditions that can cause dementia; however, it is most commonly a result of Alzheimer’s
disease (AD) [8]. Hence, determining ways of preserving the health of the ageing brain is a
global priority.

A common misconception about ageing is that a decline in brain health is solely
observed in those who have dementia. In fact, a loss in cognitive function and a reduction
in brain volume is commonly observed in most adults over the age of 65 [9,10]. Despite the
prevalence of normal age-related cognitive and brain volume changes, there is a lack of
effective methods for improving the health of the ageing brain. In light of this, exercise has
shown promise for influencing neurocognitive health [11] (Figure 1). There is, however,
inconsistent evidence regarding the effectiveness of exercise in maintaining a healthy
ageing brain. Some studies report clear exercise-related improvements in brain health and
cognition in older adults [12], whereas others report very small effect sizes [5] or no effect at
all [13]. The lack of consensus about the benefits of exercise on neurocognitive health may
be one reason why the prescription of exercise for improving brain health is not widely
adopted. More research is vital to understanding exercise parameters that contribute to the
greatest cognitive response, as well as to gain understanding of individual variability in
exercise-induced brain benefits [14–16]. Whilst previous research has primarily focused
on characterising the relationships between exercise, cognitive function and brain volume,
far less research has been carried out on elucidating the biological mechanisms that are
involved in these associations, particularly on a lipidomic level.
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Traditional “reductionist” approaches, which divide explanations of physiological
behaviour into separate components, have facilitated noteworthy progress in elucidating
the mechanisms underlying exercise and healthy brain ageing. These approaches, however,
have been limited to studying a particular molecule, for example cholesterol, in isolation.
Although they have added to our knowledge of how exercise influences brain health, there
is still a poor understanding of how integrative lipid networks underlie this relationship.
Fortunately, the growing field of the “omics” sciences, in particular lipidomics, has provided
new opportunities to better understand the complex and interconnected nature of lipid
networks in the context of ageing and age-related disease and to evaluate the impact
of exercise on the ageing brain. Lipidomics, a subcategory of metabolomics, involves
the comprehensive analysis of lipids in biological fluids, allowing for the biochemical
interrogation of the physiological state of an individual [20]. The lipidome, which is the
collection of all lipids within a biological system, can vary greatly from one system to
another; e.g., the plasma lipidome will be vastly different to the cerebrospinal fluid (CSF)
lipidome. Currently, it has been estimated that there are over 200,000 unique lipid species
in the human body, making it a rich source of biological information [21]. Perturbations
to the lipidome can be interrogated with the use of spectroscopic platforms consisting of
high resolution nuclear magnetic resonance (NMR) spectroscopy (measuring lipoproteins)
and mass spectrometry (MS) measuring specific lipid classes and species, coupled with
multivariate statistical methods [22]. Interrogation of NMR and MS spectra of biofluids
containing information on thousands of lipid compounds can give unique insights into
in vivo cellular processes [23]. To date, most lipidomic studies in this field have focused
on identifying biomarkers of age-related diseases for diagnostic and prognostic purposes.
Few studies have investigated the lipidomic profiles of “healthy agers” and explored the
association of these lipids with cognitive function. By understanding lipidomic profiles of
“healthy agers”, the mechanisms underlying their successful ageing may be uncovered and
a quantifiable phenotype indicative of good brain health may be established. Furthermore,
the availability of this information opens the opportunity for monitoring of the efficacy of
exercise interventions in preventing or slowing age-related cognitive decline.

By understanding age-related processes and elucidating the underlying biochemical
changes that occur in the brain, new opportunities for early intervention to prevent or
delay physiological decline may be identified. In particular, new knowledge of brain
ageing mechanisms that are reflected in the lipidome may facilitate implementation of
exercise interventions aimed at beneficial lipid modulation. Here, this review paper will
discuss specific lipid classes that are associated with cognitive function and ageing and
highlight evidence that exercise may be used to mitigate these changes to prevent age-
related cognitive decline. Identification of these lipid profiles may be used to assess the
effectiveness of future exercise interventions aimed at improving cognitive function in
older adults.

2. Does Exercise Influence Neurocognitive Health?

The functional capability of the brain progressively declines with increasing age [9].
Cognitive abilities can be categorised into several domains such as attention, language,
memory, visuospatial abilities and executive functions, all of which experience quantifiable
declines after the age of 60 [24]. The slowing of cognitive processing, another age-related
change to cognition, can directly contribute to several other domains such as motor coor-
dination, learning, decision making and attention [25]. Lifestyle factors such as physical
activity and exercise have shown promising neurocognitive health benefits throughout
life [14]. Indeed, physical inactivity has been identified as one of the greatest modifiable
risk factors for unhealthy brain ageing [26] and has been shown to contribute to a third of
all dementia cases [27]. When reviewing the literature, it is important to define the differ-
ence between physical activity and exercise. Physical activity is defined as any movement
of skeletal muscles that results in energy expenditure (e.g., household activities, sports,
occupational activities), whereas exercise is a subset of physical activity that is planned,
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structured and repetitive, and undertaken with the aim of improving or maintaining
fitness [28].

Numerous cross-sectional analyses of cohort studies have provided reports of en-
hanced cognitive functioning and reduced cognitive decline associated with high levels
of physical activity [29]. In particular, domains such as global cognition [30,31], executive
function [32], attention [33] and verbal memory [30] appear to gain the greatest benefit
from higher physical activity levels. However, the relationship between physical activity
and cognition requires investigation beyond cohort studies, as most use data from self-
reported physical activity surveys and questionnaires, which may be prone to biases and
may exclude consideration of confounders such as the social impact of some forms of
exercise. It is worth mentioning that some of the benefits of physical activity may be social
and psychological rather than physical (i.e., increased participation in group activities may
counteract the impact of loneliness); hence, it can be difficult to measure the impact of
increased physical activity in isolation. Furthermore, it can be difficult to determine causal-
ity in observational cohort studies, as there may be additional variables that account for
associations between physical activity and cognition that remain unknown. Nevertheless,
the results from these studies have provided valuable proof-of-concept evidence of the
relationship between exercise and cognition, paving the way for randomised controlled
trials (RCT) to further establish the relationship between exercise and cognition.

Unlike the literature on observational studies, which predominantly concludes that
physical activity or exercise has a positive effect on cognition, results from RCTs have
not been as consistent. Numerous meta-analyses and systematic reviews of RCTs have
concluded that exercise has a significant benefit on cognition [5,34–36], whilst others have
reported insufficient statistical power to detect an effect of exercise on cognition [14,37,38].
In fact, a 2015 Cochrane review [13] concluded that there was not sufficient evidence to
suggest aerobic exercise contributes to cognitive benefit in older adults. However, an um-
brella review of 76 meta-analyses and systematic reviews conducted by Erickson et al. [36]
for the 2018 Physical Activity Guidelines Advisory Committee Scientific Report [39] deter-
mined that there was moderate-to-strong evidence for physical activity benefiting cognitive
function at all stages of the lifespan. Another review also reported that physical activity
improved cognitive function regardless of cognitive status[34].

The inconsistent results emerging from exercise RCTs may be attributed to the vast
interindividual variability in cognitive response to identical exercise programs [15,16,40].
As such, studies have begun to categorise individuals from within the same exercise
groups as “responders” and “non-responders” according to whether they showed benefit
or not [41]. The identification of “responders” to exercise suggests that interventions may
need to be tailored to characteristics of the individual. As with the biological mechanisms
that underpin the association between healthy brain ageing and exercise, the differences
between “responders” and “non-responders” have not been well studied and require
further investigation. A powerful approach to investigating heterogeneity in individual
response to intrinsic factors (i.e., ageing) and extrinsic stimuli (i.e., exercise) is lipidomics,
which can profile a wide range of lipids and characterise specific panels of lipids associated
with physiological or pathological states.

3. Lipidomics
3.1. Why Lipids?

Lipids are a diverse group of organic compounds which comprise non-polar hydrocar-
bon chains that are essential molecules for healthy brain structure and function [42]. With
lipids making up half of its dry weight, the brain has one of the largest concentrations of
lipids in the body, second only to adipose tissue [43,44]. The lipids most abundantly found
in the brain can be classified into five main classes: fatty acyls (FA), glycerolipids (GL),
glycerophospholipids (GP), sphingolipids (SP) and sterols (ST) (Figure 2) [45], each of
which play a role in maintaining brain health by maintaining the structural integrity of
membranes, cellular signalling and energy metabolism [46]. There are many benefits to
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studying lipids in the context of brain ageing. Firstly, lipids are the downstream prod-
ucts of all other facets of biological regulation, making the investigation of the lipidome
an attractive subject area for expanding the knowledge of complex biological systems in
the context of brain ageing [47]. This means that the lipidome reflects all the collective
changes that have occurred during processes stemming from the genome, transcriptome
and proteome [48,49]. The lipidome is also sensitive to external environmental influences,
thereby providing the most proximal representation of an individual phenotype [50,51].
In other words, while the genome, transcriptome and proteome may provide an inference
of what may happen in a biological system, the lipidome can provide a “snapshot” of
what is currently occurring [52,53]. This is due to the rapid nature of lipid turnover, which
occurs in seconds, unlike proteins or mRNA transcripts, which may take minutes or hours
to respond to a stimulus such as exercise [53]. In addition, lipidomic analysis requires
very small sample volumes (ranging from 10–50 µL for MS, and 150–500 µL for NMR) to
detect, identify and quantify compounds, which in turn makes sample collection relatively
easy [53]. Finally, the detection of changes in previously unidentified lipids is possible
with untargeted lipidomics methods, allowing for hypothesis generation to uncover novel
mechanisms related to disease pathogenesis [54,55].
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Figure 2. Different lipid classes most abundantly found in the brain. CE, cholesteryl ester; CER, 
ceramide; DAG, diacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, 

Figure 2. Different lipid classes most abundantly found in the brain. CE, cholesteryl ester; CER, ceramide;
DAG, diacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol;
PS, phosphatidylserine; MAG, monoacylglycerol; PUFA, polyunsaturated fatty acid; SFA, saturated fatty
acid; SM, sphingomyelin; TAG, triacylglycerol.

3.2. Measurement of the Lipidome

There are several combinations of platforms available for use in lipidomic approaches,
of which the most commonly used is MS [56,57]. A highly sensitive and specific analytical
tool, MS is used to measure the mass-to-charge ratio (m/z) of molecules in a sample [56,57].
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The high sensitivity of MS can enable rich coverage of the lipidome, as it can detect lipids
in the nM to pM range [58]. MS is commonly coupled with various chromatographic
techniques, such as liquid chromatography (LC) [59]. Together, the resolution, sensitivity
and selectivity of LC–MS instruments combined can allow for the identification of isobaric
lipids that have the same elemental composition, but different chemical structure [60].
Chromatographic separation can also provide additional information on the physiochemical
properties of analytes by measuring the retention times. This separation prior to MS
detection offers greater analyte resolution, which is particularly useful for mixtures that are
complex in nature, such as biological fluids [59,60]. Despite these advantages to MS, there
are drawbacks, such as the need for extensive sample preparation prior to analysis [56].
Furthermore, lipids must first be ionised in order to be detected by an MS instrument.
Hence, regardless of the sensitivity, if a lipid does not ionise, then it is undetectable.
Furthermore, quantitation is not a standard feature of untargeted MS, although addition
of labelled chemical standards can be used to achieve quantitative results and species-
level identification of lipids. Processing times for sample preparation and data acquisition
with MS can be quite long, in the order of hours [56]. Furthermore, MS platforms do not
provide atom-centred data and give limited information on molecular mobility, which can
be obtained from NMR spectroscopy.

Complementary to MS, NMR spectroscopy is based on the interaction of atomic nuclei
with radio-waves, typically in the presence of a powerful magnet, which allows for the
identification of an atom and can provide information on its relative location within a
lipid [56,61,62]. There are many advantages to using NMR spectroscopy in lipidomics,
including the fact that it is a highly reproducible technique (typically > 98%) [63] and
is inherently quantitative [56]. Absolute quantification of CE, GL, GP, cholesterol and
unsaturated fatty acids can be determined with 1H NMR experiments; however, since
lipids typically contain long hydrocarbon side chains, characterisation of lipid species is
unattainable due to significant signal overlap from the hydrogen atoms. NMR-based mea-
surement of lipoproteins involves minimal sample preparation, allowing for the integrity
of the sample to be preserved [64], and does not require the removal of high abundance
molecules, such as proteins, prior to analysis. As such, NMR can be used to readily quan-
tify lipoproteins, which is a challenging and labour-intensive task with MS and hence is
not commonly performed in MS lipidomics assays [65]. Furthermore, NMR can generate
information on the molecular environment and mobility of lipids and lipoproteins [65].
This can be used to identify unknown lipids, which is especially useful when investigating
novel biomarkers [64]. However, the overall sensitivity of NMR in comparison to other
analytical approaches can be much lower, which can result in important molecules being
overlooked [61,62]. Furthermore, substantial sample volumes (up to 500 µL) are required.
Potential biomarkers that are present in trace amounts may be missed during analysis,
as the presence of compounds in very high concentrations can often obscure compounds
that are present in lower concentrations [66]. As neither MS nor NMR methods alone
can provide a truly comprehensive assessment of the entire lipidome, it is common to see
studies incorporating the use of both techniques in parallel.

3.3. Challenges with Lipidomics

Although there are many advantages to studying lipids, it does not come without
its limitations. Lack of standardisation, due to the rapid advancement of lipidomics, has
resulted in inconsistencies in methods, analytical platforms and how lipids are reported [67].
Lipids are immensely diverse in their structure and complexity (e.g., lipid isomers and
isobars); hence, it is difficult to have a single uniform analytical platform that can detect
all lipids [68,69]. This vast structural diversity of lipids makes it very challenging to
develop and implement chemical standards for the identification and quantitation of all
lipid species. The lack of labelled commercial standards makes lipid annotation and
identification very difficult, resulting in investigators having to resort to reporting the “sum
composition”, rather than a more appropriate “structurally defined molecular lipid” [69,70].
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In glycerophospholipids, for example, there are five key factors that are required for a lipid
to be annotated at the “structurally defined molecular lipid” level [69]. These include:

(1) Characterisation of the lipid head group (e.g., phosphocholine (PC));
(2) The length of the carbon chains (e.g., C12);
(3) The enantiomeric configuration of linkages at the sn-1 and sn-2 positions on the

glycerol backbone (e.g., acyl, alkyl or alkenyl);
(4) The number, location and stereochemistry of any C=C bonds, or “unsaturated” bonds

(e.g., 18:2 (9Z, 12Z) is a chain of 18 carbons with two C=C bonds at the ninth and
twelfth carbon positions);

(5) Any occurrences of modifications within these chains (e.g., 20:1(5Z)-OH(12S) is a
chain of 20 carbons, with a C=C bond at the fifth carbon and a hydroxyl group on the
twelfth carbon).

When all of this information is not available, a lipid such as PC (16:1/18:3) may be
oversimplified and noted as PC 34:4, as is the case for many lipids reported in the literature,
thus losing significant functionally relevant data. This then makes it difficult to compare
findings across studies that report lipids using different notations. For instance, it cannot be
assumed that all PC 34:4 lipids are PC (16:1/18:3), as they may also be a PC (16:2/18:2) or
PC (18:3/16:1). This lack of comparability can result in many biologically relevant findings
being overlooked; e.g., two independent studies may an find an identical lipid that is
associated with cognitive decline, but without the detailed “structurally defined molecular
lipid” level notation, one may report their lipid as PC 34:0 and another as PC 16:0/18:0,
rendering it difficult to compare the findings of both studies.

4. Impact of Ageing, Cognitive Dysfunction and Exercise on the Lipidome

During ageing, substantial changes to lipid metabolism occur that gradually diminish
physiological functions, such as genomic damage, increased oxidative stress and impaired
mitochondrial function leading to perturbed energy metabolism [71]. In fact, it has been
shown that starting at around 50 years of age, up to 14% of the entire brain lipidome is
impacted by ageing [72]. Structural changes are also a common feature of brain ageing,
including changes to membrane lipid composition [73,74] and brain hypotrophy[10]. These
changes in lipid metabolism ultimately result in impairments to cognitive function and can
increase vulnerability to neurodegenerative diseases, specifically those that are age-related
such as Alzheimer’s disease [74]. As most instances of pathological cognitive decline
occur slowly during the prodromal stages of disease development [75,76], it can be hard to
determine which of these are normal age-associated changes and which are early diagnostic
signs of neurodegenerative diseases. The following section summarises changes in different
classes of lipids in association with ageing, cognitive decline and exercise.

4.1. Fatty Acyls
4.1.1. Fatty Acids

Fatty acids are carboxylic acids comprised of long aliphatic chains that are either
saturated, containing no C=C double bonds, or are unsaturated, with one or more C=C
double bonds [77]. Whilst most fatty acids can be synthesised endogenously, essential fatty
acids must be obtained from the diet, as they cannot be synthesised in sufficient quantities
by the human body [78]. These essential fatty acids are classified into omega-6 (n-6) or
omega-3 (n-3) polyunsaturated fatty acids, or PUFAs. Linoleic acid, the parent n-6 fatty
acid, is metabolised to produce arachidonic acid (AA), while the parent omega-3 fatty
acid, alpha-linolenic acid (ALA), is metabolised to form docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) [79]. Phospholipids in the brain have been shown to contain
high quantities of long-chain PUFAs, which is an indication of their importance for healthy
nervous system function. These PUFAs all have crucial roles in maintaining the fluidity
of cell membranes and ion channel activity in neurons, endothelial cells and glia. DHA
and AA can also stimulate the increase of acetylcholine, a major neurotransmitter that
can influence cognitive function by enhancing synaptic plasticity. PUFAs have a major
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role in signalling, as they are the precursors for oxylipins, which are potential chemical
messengers that are critical in immune and inflammatory regulation. The most common of
these are a family of lipid mediators called eicosanoids that are derived from AA. As such,
AA metabolism is often involved in proinflammatory pathways, whereas EPA and DHA
have more anti-inflammatory effects. EPA and AA are especially important, as EPA works
by competing with AA to reduce pro-inflammatory molecules that are induced by AA [80].
Changes in fatty acyls with ageing, cognitive decline and exercise are well characterised in
the literature and summarised below in Table 1.

Table 1. Changes in fatty acyls with ageing, cognitive decline and exercise in humans.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

Acylcarnitine Acetylcarnitine (C2)
↑ plasma [81]
↑ serum [82]
↑ CSF [83]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84]
↓ serum levels associated with worse
cognition and lower MMSE scores in AD [85]

↑ plasma [86–89]

Propionylcarnitine (C3:0) ↑ plasma [81,90]

↓ baseline plasma levels in MCI/AD
converters than CN [91]
↓ plasma levels progressively decreased from
CN > Converterpre > MCI/AD [92]

↓ plasma [86]
↑ plasma [88]
↑ serum [93]

Malonylcarnitine (C3-DC) ↑ serum [82] ↑ baseline serum levels in CN and MCI
associated with slower decline in SM [94]

Butyrylcarnitine (C4) ↑ plasma [81]
↑ serum [82]

↑ plasma [86,88]
↑ serum[93]

Hexanoylcarnitine (C6) ↑ plasma [81]
↑ serum [82]

↓ serum levels associated with worse
cognition and lower MMSE scores in AD [85]

↑ plasma [86,88,89]
↑ serum [93]

Hexenoylcarnitine (C6:1) ↑ serum [82]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84]
↑ baseline serum levels in CN and MCI
associated with reduced AD risk and slower
decline in GC, EM
and SM [94]

↑ plasma [88]

Pimelylcarnitine (C7DC) ↓ plasma [90]

↑ baseline serum levels in CN and MCI
associated with reduced AD risk and slower
decline in GC, EM
and SM [94]

↑ plasma [86]

Octanoylcarnitine (C8:0) ↑ plasma [81,90,95]
↑ serum [82]

↑ serum levels in MCI and then decreased
slightly in AD (CN < AD < MCI) [96]
↓ serum levels associated with worse
cognition and lower MMSE scores in AD [85]

↑ plasma [86,88,97]
↑ serum [93]

Nonanoylcarnitine (C9:0) ↓ plasma [90]
↑ serum [82]

↓ baseline plasma levels in MCI/AD
converters than CN [91] ↑ plasma [88]

Decanoylcarnitine (C10) ↑ plasma [81]
↑ serum [82]

↑ serum levels progressively increased from
CN < MCI < AD [96]
↑ baseline serum levels in CN and MCI
associated with reduced AD risk and slower
decline in GC and SM [94]
↓ serum (CN > SMC > MCI > AD) [84]
↓ serum levels associated with worse
cognition and lower MMSE scores in AD [85]
↑ plasma levels progressively increased from
CN < MCI < AD [98]

↑ plasma [86,88,89,97]
↑ serum [93]

Decenoylcarnitine (C10:1) ↑ plasma [81]
↑ serum [82,99]

↑ baseline plasma levels in MCI/AD
converters than CN [91]
↑ serum levels increased in AD but not MCI
when compared to CN [96]
↓ serum levels associated with worse
cognition and lower MMSE scores in AD [85]
↑ plasma levels progressively increased from
CN < MCI < AD [98]

↑ plasma [86,88,97]

Decadienoylcarnitine (C10:2) ↑ plasma [90,100]
↑ serum [82]

↓ baseline plasma levels in MCI/AD
converters than CN [91] ↑ plasma [88]

Dodecanoylcarnitine (C12) ↑ plasma [101]
↑ serum [82]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84] ↑ plasma [86,97]

Myristoylcarnitine (C14:0) ↑ plasma [81,90,102]
↑ serum [82]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84] ↑ plasma [86,97]
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Table 1. Cont.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

Tetradecenoyl- carnitine (C14:1) ↑ plasma [81,101,103,104]
↑ serum [82]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84] ↑ plasma [86]

Tetradecadienoyl-carnitine (C14:2) ↑ plasma [81,90]
↑ serum [82]

↑ baseline serum levels in CN and MCI
associated with reduced AD risk and slower
decline in GC and SM [94]

Tetradecadien-carnitine (C14:2) ↓ serum levels associated with worse
cognition and lower MMSE scores in AD [85]

Palmitoylcarnitine (C16:0) ↑ plasma [81,102]
↑ serum [82]

↑ serum levels in AD, but no change in MCI
and CN [104] ↑ plasma [86,88,89]

Hexadecenoyl-Hydroxy-carnitine
(C16:1-OH)

↓ plasma levels progressively decreased from
CN > Converterpre > MCI/AD [92]

Hexadecenoyl-carnitine (C16:1) ↑ plasma [81,90,102]
↑ serum [82]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84] ↑ plasma [86,88]

↑ serum [93]

Hexadecadienoyl-carnitine (C16:2) ↑ plasma [90] ↑ baseline plasma levels in MCI/AD
converters than CN [91] ↑ plasma [88]

Octadecanoyl-carnitine (C18:0) ↑ plasma [81,102]
↑ serum [82,105]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84]
↑ serum levels in MCI and then decreased
slightly in AD (CN < AD < MCI) [104]

↑ plasma [86]

Octadecenoyl-carnitine (C18:1) ↑ plasma [81,90]
↑ serum [82,99]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84]
↑ serum levels in MCI and then decreased in
AD (CN < AD < MCI) [104]

↑ plasma [86,89]

Octadecadienyl-carnitine (C18:2) ↑ plasma [81]

↓ serum levels progressively decreased from
CN > SMC > MCI > AD [84]
↑ serum levels in MCI and then decreased in
AD (CN < AD < MCI) [104]

↑ plasma [86]

Ketone
bodies Beta-hydroxy butyrate ↑ plasma [106]

↓ levels in AD plasma [103]
↑ plasma levels in MCI improvements in
cognitive function and positively correlated
with plasma ketone levels [107]

↑ plasma [86,97]
↑ serum [93]

Saturated
Fatty acids Capric acid (C10:0)

↑ CSF levels increased from CN to MCI and
then slightly decreased in AD (CN < AD <
MCI) [108]

↑ plasma [86,88,97]
↑ serum [109]

Undecylic acid (C11:0) ↑ CSF levels progressively increased from CN
< MCI < AD[108]

Myristic acid (C14:0)

↑ serum levels in MCI > CN [110]
↑ erythrocyte levels in SMC [111]
↑ CSF levels progressively increased from CN
< MCI < AD [108]

↑ plasma [86,88,97]
↑ serum [109]

Pentadecylic acid (C15:0)
↑ CSF levels increased from CN to MCI and
then slightly decreased in AD (CN < AD <
MCI) [108]

Palmitic acid (C16:0)

↑ levels associated with increased risk of
cognitive decline [112]
↑ serum levels in MCI > CN [110]
↓ plasma levels progressively decreased from
CN > MCI > AD [113]
↑ CSF levels progressively increased from CN
< MCI < AD [108]
↓ plasma levels progressively decreased from
CN < MCI < AD [98]

↑ plasma [86,88,97]

Margaric acid (C17:0)
↑ CSF levels increased from CN to MCI and
then slightly decreased in AD (CN < AD <
MCI) [108]

↑ plasma [86,88,97]

Stearic acid (C18:0) ↑ plasma [106]
plasma [114]

↓ plasma levels decreased from CN > MCI,
then increased slightly in AD (CN > AD >
MCI) [113]
↑ levels associated with greater risk of
cognitive decline [115]
↑ CSF levels decreased from CN to MCI and
then increased in AD
(MCI < CN < AD) [108]

↑ plasma [86,97]

Behenic acid (C22:0) ↓ serum levels in MCI > CN [110] ↑ plasma [86,97]
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Table 1. Cont.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

MUFA Pentadecenoic acid (C15:1) ↑ CSF levels progressively increased from CN
< MCI < AD [108]

Palmitoleic acid (C16:1)

↑ serum levels in MCI > CN [110]
↑ CSF levels increased from CN to MCI and
then slightly decreased in AD (CN < AD <
MCI) [108]

↑ plasma [86,88,97]
↑ serum [109]

Heptadecenoic acid (C17:1) ↑ plasma[95] ↑ plasma [86,88,97]

Oleic acid (C18:1) ↑ plasma [106]

↓ plasma levels progressively decreased from
CN > MCI > AD [113]
↑ CSF levels increased from CN to MCI and
then declined below CN levels in AD (AD <
CN < MCI) [108]
↓ plasma levels progressively decreased from
CN < MCI < AD [98]

↑ plasma [86,89,97]
↑ serum [109]

Nonadecenoic acid (C19:1) ↑ CSF levels progressively increased from CN
< MCI < AD [108]

↑ plasma [86,88,97]

Nervonic acid (C24:1) ↓ serum levels in MCI > CN [110] ↑ plasma [86,88,97]

PUFA Linoleic acid (C18:2) ↑ plasma [106]
↓ erythrocyte [111]

↓ plasma levels progressively decreased from
CN > MCI > AD [113]
↑ plasma levels in MCI > CN [116]
↑ CSF levels increased from CN to MCI and
then slightly decreased in AD (CN < AD <
MCI) [108]

↑ plasma [86,89,97]
↑ serum [93]

Linolenic acid (C18:3)
↑ CSF levels increased from CN to MCI and
then slightly decreased in AD (CN < AD <
MCI) [108]

↑ plasma [86,89,97]

Eicosadienoic acid (C20:2n-6) ↓ plasma [95]

↑ erythrocyte levels associated with lower
MMSE and executive function scores [117]
↑ CSF levels progressively increased from CN
< MCI < AD [108]
↓ plasma levels decreased from CN < MCI
then increased slightly in AD (CN > AD >
MCI) [98]

↑ plasma [86,89,97]

Eicosatrienoic acid (C20:3)

↑ CSF levels increased from CN to MCI and
then slightly decreased in AD (CN < AD <
MCI) [108]
↓ plasma levels decreased from CN < MCI
then increased slightly in AD (CN > AD >
MCI) [98]

↑ serum [86,89,97]

Arachidonic acid
[AA,(C20:4n-6)] ↑ plasma [106]

↑ levels associated with increased risk of
cognitive decline [112]
↑ erythrocyte levels predicted cognitive
impairment [117]
↑ CSF levels decreased from CN > MCI, then
increased in AD
(MCI < CN < AD) [108]

↑ plasma[86]

Eicosapentanoic acid
[EPA, (C20:5n-3)]

↓ plasma [118]
↑ plasma [95]
↑ CSF [119]

↓ levels associated with increased risk of
cognitive decline [112]
↑ CSF levels increased from CN < MCI then
declined below CN levels in AD (AD < CN <
MCI) [108]
↑ serum levels positively associated with
cognition [120]
↓ plasma levels progressively decreased from
CN < MCI < AD [98]

↑ plasma [86]
↑ serum [93]

Docosapentaenoic acid
[DPA, (C22:5n-3)] ↑ CSF [119]

↑ CSF levels progressively increased from CN
< MCI < AD [108]
↓ plasma levels decreased from CN < MCI
then increased slightly in AD (CN > AD >
MCI) [98]

↑ plasma [86,88,97]
↑ serum [93]
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Table 1. Cont.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

Docosahexaenoic acid
[DHA, (C22:6n-3)]

↑ CSF [119]
↓ brain [121]
↓ erythrocyte [111]

↓ levels associated with increased risk of
cognitive decline [112]
↓ plasma levels decreased from CN > MCI
then returned to normal levels in AD (CN =
AD > MCI)[113]
↓ serum levels in MCI > CN [110]
↓ serum levels in MCI > CN [122]
↓ baseline levels in AD were associated with a
higher risk of cognitive decline [123]
↑ blood levels associated with lower risk of
AD and dementia [124]
↓ levels associated with declines in memory
and executive function [125]
↑ CSF levels progressively increased from CN
< MCI < AD [108]
↓ plasma levels progressively decreased from
CN < MCI < AD [98]

↑ plasma [86,88]
↑ serum [93]

↑, increased levels; ↓, decreased levels; AD, Alzheimer’s disease; CN, cognitively normal; Converterpre, baseline
samples from individuals who phenoconverted from CN to MCI or AD; CSF, cerebrospinal fluid; MCI, mild cognitive
impairment; MMSE, Mini-Mental State Examination; MUFA, mono-unsaturated fatty acid; PUFA, poly-unsaturated
fatty acid; SMC, subjective memory complaint; >, greater than; <, less than; =, no difference.

Fatty Acids in Ageing

Several SFAs, MUFAs and PUFAs have been shown to increase in plasma with age [95,106,114].
In a study of the adult human plasma metabolome, Lawton et al. [106] identified four fatty
acids that were elevated in older adults, including stearic acid, oleic acid, linoleic acid
and arachidonic acid. Stearic acid was also associated with ageing in plasma in a recent
study by Xie et al. [114]. Other studies show that ageing had varied effects on plasma fatty
acids, as described by Menni et al. [95], who reported increased levels of heptadecenoic
acid and EPA with age, but a decrease in eicosadienoic acid. In contrast, Jové et al. [118]
observed age related reductions in plasma levels of EPA. Changes to PUFA levels in CSF
have also been described. In a study of 114 healthy Japanese participants, Saito et al. [119]
identified ten lipids that were positively associated with age, eight of which contained
either eicosatrienoic acid, EPA or DHA. On the other hand, PUFAs such as DHA and
AA have been shown to progressively decline with age in the orbitofrontal cortex region
of the brain [121]. The authors suggested that this decline in PUFAs may contribute to
the atrophy observed in the grey matter volume that occurs with increasing age. This
is due to the key roles that PUFAs have in stimulating neuronal activity, synaptogenesis
and neurogenesis, whilst also protecting against neuroinflammation and apoptosis [126].
Additionally, Carver et al. [127] showed that AA and DHA also decrease with age in
the cerebral cortex and erythrocytes, whilst linoleic acid increases. They also reported
a significant association between brain and erythrocyte levels, particularly for palmitic
acid, suggesting that some erythrocyte fatty acid levels may be useful in predicting fatty
acid levels within the brain. Further evidence of this is reported by Goozee et al. [111],
who reported a decrease in DHA levels in erythrocytes, which coincides with the reduced
levels observed in the brain [121,127]. It is clear that ageing has varied effects on fatty
acids in the central nervous system (CNS) and the periphery, which may be an indication
of disturbed fatty acid transport through the blood–brain barrier (BBB). Disturbances to
fatty acid, particularly PUFA, availability to neurons are detrimental, as they can cause
mitochondrial dysfunction, oxidative damage and changes to membrane fluidity [128].

Fatty Acids and Cognition

Perturbed fatty acid metabolism has also been implicated in cognitive dysfunction.
In animal studies, there is extensive evidence that DHA depletion in the brain can lead to
learning and memory problems [129–131] and that a deficiency in dietary omega-3 PUFAs
impairs cognitive performance by negatively impacting dopamine metabolism [132]. Cog-
nitive decline has also been linked to decreased levels of PUFAs in humans. For example,
Tan et al. [133] analysed erythrocyte levels of EPA and DHA in 1575 cognitively normal
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older adults. They reported that low DHA concentrations were associated with poorer
performance in abstract thinking, visual memory and executive function. Furthermore,
participants in the lowest quartile of DHA concentrations had a lower total brain volume
and showed more white matter hyperintensities (indicator of small-vessel vascular dis-
ease [134]). Similarly, Bigornia et al. [117] reported that increased erythrocyte eicosadienoic
acid levels were associated with lower Mini-Mental State Examination (MMSE) and exec-
utive function scores, whilst elevated baseline erythrocyte AA levels were predictive of
cognitive impairment at a two year follow up. Cross sectional analysis of a longitudinal
cohort of 2251 older adults by Beydoun et al. [112] found that the risk of global cognitive
decline was increased with elevated plasma levels of palmitic acid and AA, and reduced
levels of linoleic acid, EPA and DHA. Reduced DHA has also been associated with declines
in memory and executive function in cognitively normal older adults, and more rapid
cognitive decline in individuals with AD [123]. In apparent contradiction to studies that
report a positive association, Palacios et al. [120] found that elevated EPA levels in plasma
were associated with worse cognitive function. Discrepancies in results may be due to
differences in PUFA quantification, particularly regarding the lipid fractions that were
measured. This was demonstrated by Kou et al. [135], who showed that while there were
no reductions in total brain DHA levels, a significant decrease in DHA was observed when
only looking at the plasmalogen fractions.

Fatty Acids and Exercise

There is a large body of evidence that demonstrates that exercise increases circulating
levels of fatty acids. This is due to exercise-induced increases in lipolytic activity and
the subsequent release of stored fatty acids, such as DHA and EPA, from triacylglycerols
in adipose tissue. These free fatty acids, also referred to as non-esterified fatty acids
(NEFA), are crucial energy sources for working muscles; however, when they are utilized is
dependent on exercise intensity. Plasma NEFAs are typically elevated during moderate
intensity exercise (>50% VO2max) [136,137], and progressively increase with the duration
of exercise. This was demonstrated in a study by Watt et al. [138], who reported elevated
plasma NEFAs after 90 min of cycling at 57% VO2max compared with levels at rest, which
continued to increase progressively until cessation (240 min). As exercise intensity increases
(>70–80% VO2max), NEFA mobilisation begins to decline as muscle glycogen takes over as
the main fuel source utilized by active muscles [139].

Whilst exercised-induced elevations in circulating NEFAs and their role in energy
metabolism for working muscles has been well studied, the mechanism by which these
NEFAs benefit the brain are still not well understood. One possible mechanism may
be via brain-derived neurotrophic factor, or BDNF, a neurotrophin that is released with
exercise. BDNF has shown to have a major role in supporting neuronal plasticity, par-
ticularly in the memory centres of the brain such as the hippocampus [140]. It is widely
reported that exercise increases BDNF in plasma and in the central nervous system. In
2011, Erickson et al. [141] demonstrated that serum levels of BDNF were increased with
exercise, and this was associated with an increase in hippocampal volume and improve-
ments in memory. Interestingly, DHA—which can be increased through fat oxidation of
DHA-carrying triacylglycerols—has also been demonstrated to promote the release of
BDNF [142]. Whilst a relationship is evident with BDNF, there is some disagreement in the
literature about the mechanisms by which exercise and DHA influence cognition. Some
studies, such as that of Chytrova et al. [143], suggest that DHA is the underlying factor that
enables neuronal growth, elevated synaptic plasticity and improved cognitive function,
and that exercise purely enhances this mechanism. On the other hand, studies such as
that of Wu et al. [142] claim that the opposite is true and, in fact, exercise is the driving
force behind improvements in cognition and synaptic plasticity, and that the presence of
DHA enhances this effect. Although evidence suggests that there is a synergistic action be-
tween exercise and PUFAs on cognitive function, further research is required to understand
these mechanisms.
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4.1.2. Acylcarnitines

Acylcarnitines are criticial for the transport of fatty acids to mitochondrial cells for
beta oxidation [144]. Once fatty acids are synthesised, they are often combined with
glycerol and are stored as triacylglycerols as energy reserves. When the breakdown of these
triacylglycerols (i.e., lipolysis) occurs, the unbound or “free fatty acids” are released into
the blood stream. They are then carried by plasma albumin, as they are insoluble on their
own, and are transported to the mitochondria [145]. Whilst short- and medium-chain fatty
acids can easily diffuse through the inner mitochondrial membrane, long-chain fatty acids
rely on carnitine for transportation. Carnitines also have a key role in transporting toxic
compounds out of the mitochondria and preventing the accumulation of fatty acids, both
of which can be deleterious to the health of the cell if left unchecked [146].

Acylcarnitines in Ageing

Changes to circulating acylcarnitine levels in older adults have been well described
in the literature, as highlighted in Table 1. Most acylcarnitines have been associated with
an increase in concentration with ageing, particularly long-chain and very-long-chain
acylcarnitines. This may be an indication of impaired mitochondrial function, as elevated
levels of acylcarnitines occur as a result of reduced fatty acid oxidation in the mitochondria.
Furthermore, a recent study reported that plasma acylcarnitine levels were correlated
with plasma neurofilament light chain protein (NFL) protein, a marker of neurodegenera-
tion [100]. Increases in acylcarnitines have also been implicated in age-related diseases [90]
and increases in proinflammatory signalling [147]. Of the 24 acylcarnitines summarised in
Table 1, only two were reduced in association with aging. The two acylcarnitines that were
reduced—pimelylcarnitine and nonanoylcarnitine—are both acylcarnitines that carry odd-
chain fatty acids (OCFA). OCFAs are primarily found in dietary sources such as milk [148];
hence, this reduction in OCFA carrying acylcarnitines may reflect a decrease in the amount
of diary consumed or a reduced capacity for absorption of dairy products, rather than
being due to advancing age.

Acylcarnitines and Cognition

Whilst high concentrations of acylcarnitines in plasma can be indicative of mitochon-
drial dysfunction, diminished acylcarnitine levels can also be deleterious, as they reflect
impaired transport of fatty acids to the mitochondria and subsequent reduced energy
metabolism [149]. This is what has been observed in several studies investigating circulat-
ing acylcarnitine concentrations in individuals with varying levels of cognitive impairment.
Cristofano et al. [84] measured serum levels of 34 acylcarnitines in individuals with normal
cognition, subjective memory complaint (SMC), mild cognitive impairment and AD. The
authors reported a progressive decrease in several acylcarnitines, including acetylcarni-
tine, malonyl-, 3-hydroxyisovaleryl-, C6:0-, C10:0-, C12:0-, C12:1-, C14:0-, C14:1-, C16:1-,
C18:0-, C18:1- and C18:2-L-carnitine, which decreased in order of increasing cognitive
impairment (CN > SMC > MCI > AD). This suggests that acylcarnitines are gradually
diminished from cognitively normal to cognitive impairment, and that metabolism of
these acylcarnitine species is closely connected to cognitive health. Reduced levels of
several acylcarnitines have also been associated with worse cognition and lower MMSE
scores in AD [85]. Furthermore, higher baseline levels of malonyl-, hexenoyl-, pimelyl-,
and tetradecenoyl-carnitine are associated with reduced AD risk and slower decline in
global cognition, executive function, episodic memory and semantic memory in cognitively
healthy individuals and those with MCI [94]. A recent study by Nho et al. [150] reported
that elevated levels of propionylcarnitine were associated with higher memory scores and
reduced amyloid accumulation in MCI and AD.

Acylcarnitines and Exercise

Coinciding with the literature on the effects of exercise on fatty acids, studies unanimously
show that exercise acutely increases circulating levels of acylcarnitines [86–89,93,97,109]. As
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previously mentioned, exercise stimulates lipolysis to release fatty acids which act as an
energy source for working muscles [151]. As carnitine is required to transport long chain
fatty acids (LCFAs) across the inner mitochondrial membrane for beta oxidation, an increase
in acylcarnitines is also observed [146]. This in turn increases the capacity for energy
metabolism and clearance of toxic waste products, which is vital for organs such as the
brain. With exercise, the acute increase in acylcarnitines may help to counteract the negative
effects of perturbed acylcarnitine metabolism that is observed with ageing and cognitive
decline. As diminished concentrations are observed with cognitive decline, there may be
the potential for exercise-induced increases in acylcarnitines to mitigate and replenish these
levels to alleviate, prevent or delay further age-related cognitive decline.

4.1.3. Ketone Bodies

In addition to changes in the lipidome with age, it is also worth considering the role
of ketone bodies, as they are lipid-derived molecules. Ketone bodies are the end products
of fatty acid metabolism, and are the main alternative fuel source for the brain [152]. They
are produced when there is an increased energy demand, low glucose availability and
elevated fatty acids, such as when fasting or exercising [153]. As the brain has a huge
energy demand, requiring about 20% of the total energy expenditure of the body, a constant
source of energy is essential for normal brain function [154]. This is especially important
in age-related neurological conditions in which normal brain glucose metabolism may be
impaired, which is a common feature in several age-associated neurodegenerative diseases
including AD, Parkinson’s disease, Huntington’s disease (HD) and amyotrophic lateral
sclerosis (ALS) [155]. In these diseases, glucose hypometabolism is often correlated with
disease severity; therefore, supporting the brain’s energy requirements through alternative
fuel sources such as ketone bodies may slow the progression of disease [156].

Ketone Bodies in Ageing

One of the most abundant ketone bodies is beta-hydroxybutyrate, or β-HB. There
is growing evidence that increased β-HB has “anti-ageing” properties because, apart
from its role in brain energy metabolism, β-HB is also involved in several cell signalling
functions [157]. This was demonstrated in a study by Lawton et al. [106] that showed
that β-HB was elevated in a cohort of “healthy agers”. Whilst there are many studies that
investigate the effects of β-HB supplementation, fasting or ketogenic diets on ketone levels
in older adults, there is a gap in the literature characterising the changes that occur with
advancing age; hence, future research is needed in this area.

Ketone Bodies and Cognition

Whilst there is no published evidence that we are aware of regarding the association
between ketone bodies with cognitive performance in healthy participants, they have been
associated with cognition in cases of neurodegenerative disease. Circulating β-HB has
been shown to be decreased in AD patients [103], leading to suggestions that increasing
β-HB may alleviate symptoms of cognitive decline. This was demonstrated in a study
by Fortier et al. [107], who showed that elevated levels in plasma ketone bodies were
positively associated with improvements in cognitive function in individuals with MCI.
Dietary ketones have long been used to elevate ketone levels, and recent work has revealed
that AD patients on a ketogenic diet showed non-significant improvements in cognition
and significant improvement in quality of life and daily function, two important factors for
those living with dementia [158].

Ketone Bodies and Exercise

As ketones are produced in situations of increased energy demand, circulating levels
are significantly elevated with exercise acylcarnitines [86,93,97]. As previously mentioned,
BDNF is increased with exercise, inducing a beneficial response in cognition due to en-
hanced synaptic plasticity. Sleiman et al. [159] demonstrated that this is achieved through
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the release of β-HB during exercise. The authors showed that exercise induced increases
in β-HB, which stimulated the activity of promotors of the BDNF gene, upregulating
gene expression and BDNF production. Studies that explore the relationship between
exercise-induced β-HB and cognitive function are limited, and further research is required
to determine if exercise can induce the anti-ageing effects of β-HB and improve age-related
cognitive outcomes.

4.2. Glycerolipids

Glycerolipids are comprised of fatty acids that are attached to a glycerol backbone via
ester linkages [160]. They can have up to three fatty acids, and are termed monoacylglycerol
(MAG), diacylglycerol (DAG) and triacylglycerol (TAG), respectively. Glycerolipids are crucial
energy reservoirs; if there is excess glucose in the body, it will be converted to TAG for
storage [161]. High blood TAG levels are an indicator of elevated blood glucose levels,
a hallmark of metabolic disturbances and insulin resistance [162]. Glycerolipids are also
important signalling molecules in the CNS [163]. One of the most well studied MAGs,
2-arachidonoylglycerol (2-AG), is an endocannabinoid neuromodulator that has a crucial role
in appetite control, immune system regulation and pain [164]. DAG is also very important,
as it is an activator of protein kinase C (PKC), an enzyme that is essential for modulation
of membrane excitability and the release of neurotransmitters via the phosphorylation of
tau protein [165]. Disturbances to normal tau phosphorylation have been associated with
neurodegenerative diseases such as Alzheimer’s disease [166]. TAG also has a crucial role in
brain signalling as it can cross the BBB and interfere with leptin receptors in the hypothalamus,
the hormone that regulates hunger, and insulin, which controls blood sugar levels [167].
This can be detrimental, as dysregulated leptin and insulin metabolism can increase hunger
and fat storage, thus leading to metabolic diseases such as obesity, type-II diabetes and
cardiovascular disease, each of which are risk factors for age-related neurodegenerative
diseases [167]. Changes in glycerolipids with ageing, cognitive decline and exercise are well
characterised in the literature and summarised below in Table 2.

Table 2. Changes in glycerolipids with ageing, cognitive decline and exercise in humans.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

MAG 2AG ↑ plasma [168]

DAG DAG 16:0/18:1 ↓ plasma [86,169]

DAG 16:0/18:2 ↓ plasma [86,169]

DAG 16:1/18:2 ↓ plasma [86,169]

DAG 18:1/18:1 ↓ plasma [86,169]

DAG 18:1/18:2 ↓ plasma [86,169]

TAG TAG 48:1 ↑ serum [170]

TAG 50:0 ↑ serum [170]

TAG 52:1 ↑ serum [170]

TAG 56:7 ↓ plasma [100]
↑ CSF [119]

↓ plasma levels progressively
decreased from CN > MCI > AD [98]

TAG 56:8 ↓ plasma [101]
↑ CSF [119]

↓ plasma levels progressively
decreased from CN > MCI > AD [98]

↑, increased levels; ↓, decreased levels; AD, Alzheimer’s disease; CN, cognitively normal; CSF, cerebrospinal fluid;
MCI, mild cognitive impairment; >, greater than; <, less than; MAG, monoacylglycerol; TAG, triacylglycerol;
2AG, 2-archidonoylglycerol.

4.2.1. Glycerolipids in Ageing

Advancing age has been shown to impact glycerolipid metabolism, leading to in-
creased risk of metabolic disease [170]. Fanelli et al. [168] reported an increase in 2-AG
in obese pre-menopausal and lean post-menopausal women, suggesting that in women,
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ageing is associated with a disturbance in 2-AG metabolism that is comparable to the
metabolic dysfunctions observed in obesity. In animal studies, a significant reduction in
DAG and TAG was observed in the amygdala of aged mice, the brain region responsible for
emotional memory and motivation [171]. Similarly, several DAG species have been shown
to be reduced in plasma [100,118,172], serum [173] and CSF [174] in humans. In contrast,
TAG concentrations are typically elevated with ageing [173], which may be due to slower
clearance rates of TAG. A recent study found that serum levels of three TAG species, TAG
48:1, TAG 50:0 and TAG 52:1, were significantly higher in older adults than in their younger
counterparts [170]. This supports the argument that ageing may be associated with an
increased risk of metabolic disease, as studies have reported that serum levels of TAGs
containing LCFAs are linked to an increased risk of cardiovascular disease [175]. Elevated
TAG levels have also been linked to constant, low-level inflammation that occurs with age-
ing without any presence of infection [176]. As inflammation is associated with perturbed
adipose tissue function, there is a crucial link between altered glycerolipid metabolism and
ageing. In CSF, changes in TAGs with ageing have been varied, with some reporting an
increase in concentrations [119,173,174], while others report a decrease [100,101].

4.2.2. Glycerolipids and Cognition

The relationship between cognition and glycerolipids has been extensively studied,
but with conflicting findings. Olazaran et al. [98] demonstrated that plasma TAG levels
progressively decreased from participants with normal cognition to MCI to AD, suggesting
that lower levels of TAGs were associated with increasing severity of cognitive impair-
ment, whereas others report no association between cognition and TAG levels. This was
demonstrated in a study by Huang et al. [177], who investigated the relationship between
cognitive impairment and triacylglycerol levels in the serum of Chinese nonagenarians
(90+ years old) and centenarians (100+ years old). The authors reported no significant dif-
ferences between serum TAG levels in participants with cognitive impairment compared to
cognitively normal controls. In contrast, most studies in the literature have suggested that
glycerolipid concentrations have an inverse relationship with cognition, as high TAG levels
have been associated with poor recall and verbal knowledge in humans and lower memory
and learning scores in mice [167]. In fact, two glycerolipid species (triacylglycerol 50:1
and diacylglycerol 18:1_18:1) showed such a strong correlation with the extent of brain
atrophy that when combined with MMSE (mini mental state examination) results, they
increased the reliability of MCI diagnosis. Whilst many studies show that high plasma
TAG is negatively associated with cognition, Yin et al. [178] paradoxically reported the
opposite. In their cross-sectional study of 836 individuals aged 80 and above, high plasma
triacylglycerol levels were associated with higher MMSE scores (better cognition). Hence,
the authors suggested that high plasma TAG may have a role in preserving cognitive
function in adults over the age of 80. Whilst there are conflicting findings in the associations
between glycerolipids and cognitive impairment, the evidence suggests that perturbed
glycerolipid metabolism in involved in age-related cognitive decline in some capacity.

4.2.3. Glycerolipids and Exercise

Although no specific glycerolipid species showed changes in all three topics of interest
(ageing, cognitive decline and exercise), there was a clear pattern in the effects of exercise
on other glycerolipids. Karl et al. [86] observed the effects of exercise in military personnel
and reported a decrease in 12 diacylglycerol species, five of which were also reduced
with exercise in a recent study by Contrepois et al. [169]. These included DAG 16:0/18:1,
16:0/18:2, 16:1/18:2, 18:1/18:1 and 18:1/18:2. Studies have also shown that exercise influ-
ences plasma TAG levels; however, this change appears to be specific to the duration and
extent of exercise and can be varied amongst different individuals. Mougios et al. [179]
demonstrated that plasma triacylglycerols decreased in a group of 19 males playing two
30 min games of handball with a 10 min rest interval between games. While most players
showed a decrease in the first game, followed by an even greater decrease in the second,
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five players showed an increase in the second half. The authors suggested that while
exercise increases lipolysis of triacylglycerols to free fatty acids for energy metabolism,
the liver may counteract this by releasing more triacylglycerols, explaining the increase
observed in some players.

4.3. Glycerophospholipids

As key components of the lipid bilayer in cell membranes, glycerophospholipids are
one of the most abundantly occurring lipid classes in the brain [180]. Also referred to as
phospholipids, glycerophospholipids are similar to glycerolipids in that they contain up
to two fatty acids attached to a glycerol backbone, but differ by the addition of a polar
head group [181]. These polar groups are what define each subclass of phospholipids,
and can be a choline, serine, inositol or ethanolamine, forming phosphatidylcholine (PC),
phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE),
respectively [182].

Phosphatidylcholine is the most abundant phospholipid found in the plasma mem-
brane, and is also used in the brain to produce acetylcholine, one of the body’s key neuro-
transmitters [183]. In the peripheral nervous system, acetylcholine is the primary neuro-
transmitter that regulates activation of skeletal muscles and autonomic bodily functions,
such as digestion [184]. In the CNS, acetylcholine functions as both a neurotransmitter
and a neuromodulator in cholinergic areas involved in attention, memory, motivation
and arousal [185]. Cholinergic dysfunction can have serious consequences to brain health
and has been associated with cognitive decline that occurs with Alzheimer’s disease [186].
Whilst treatment options are limited, some of the available pharmaceutical therapeutics
for AD target this deficiency and increase levels of acetylcholine to alleviate some of the
cognitive symptoms that occur [187].

Phosphatidylserine (PS) is mainly found on the inner plasma membrane and is highly
enriched in myelin [188]. Accounting for 40% of all PUFAs in the brain [189], DHA is mostly
stored as PS; hence, it is thought that PS in cell membranes acts as a reservoir for DHA [190].
PE is also found on the inner plasma membrane and predominantly carries arachidonic
acid [191]. Phospholipids that contain acyl chains with multiple unsaturated bonds, such as
arachidonic acid, are more “fluidic” than those that contain saturated fatty acyl chains [192].
As such, increases in PEs can increase the fluidity of a cell membrane, which in turn
has been shown to regulate various cellular processes and signalling pathways, both
physiologically and pathologically [193]. PI also characteristically contain arachidonic acid,
as well as stearic acid [194]. Making up only 10% of the total phospholipids, PIs are the least
abundant. However, they and their metabolites have crucial roles in regulating membrane
signalling and transport, lipid homeostasis and membrane biogenesis [195]. Changes in
phospholipids with ageing, cognitive decline and exercise are well characterised in the
literature and summarised below in Table 3.

Table 3. Changes in phospholipids with ageing, cognitive decline and exercise in humans.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

PC Glycero-phosphocholine ↓ serum [173]
↑ plasma [106]

↓ serum levels associated with worse
cognition and lower MMSE scores in
AD [85]

LysoPC LPC a C18:2 ↓ serum [196] ↓ plasma levels progressively decreased
from CN > Converterpre > MCI/AD [92]

LPC 20:5 ↓ serum levels progressively declined in
CN > MCI > AD [104]

LPC 22:6 ↓ serum levels progressively declined in
CN > MCI > AD [104]
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Table 3. Cont.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

PC PC 16:0/16:0 ↑ CSF [174] ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

PPC 16:0/18:2 ↓ serum levels progressively declined in
CN > MCI > AD [104]

PC 16:0/18:2 ↑ serum [173] ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

PC 16:1/22:6 ↓ serum levels in MCI and then increased
in AD (CN > AD > MCI) [104]

PC 18:1/20:4 ↑ CSF [174] ↓ serum (AD) [197] ↑ plasma [169]

PC ae C26:1 ↑ baseline serum levels in CN and MCI
associated with faster decline in SM [94]

PC aa 30:0 ↑ serum [82] ↑ baseline serum levels in CN and MCI
associated with faster decline in GC [94]

PC ae 30:0 ↑ serum [82]
↑ baseline serum levels in CN and MCI
associated with faster decline in GC and
SM [94]

PC ae C34:0 ↑ serum [82]
↑ baseline serum levels in CN and MCI
associated with faster decline in GC, EM,
PS and SM [94]

PC ae C34:1 ↑ serum [82] ↑ baseline serum levels in CN and MCI
associated with faster decline in GC [94]

PC ae C36:2 ↑ serum [82]
↑ baseline serum levels in CN and MCI
associated with faster decline in GC and
SM [94]

PC O-36:4
↓ plasma levels decreased from CN >
MCI then stayed the same for AD (CN >
MCI = AD) [98]

PC 36:5 ↑ CSF [174]
↓ plasma [100,198]

↓ plasma levels progressively decreased
from CN < MCI < AD [98]

PC aa C36:5 ↑ serum [82] ↑ baseline serum levels in CN and MCI
associated with slower decline in PS [94]

PC aa 36:6 ↑ serum [82] ↓ plasma levels progressively decreased
from CN > Converterpre > MCI/AD [92]

PC 37:6
↓ plasma levels decreased from CN <
MCI then slightly increased in AD (CN >
AD > MCI) [98]

PC aa 38:0 ↑ serum [82] ↓ plasma levels progressively decreased
from CN > Converterpre > MCI/AD [92]

PC aa C38:3 ↑ serum [82] ↑ baseline serum levels in CN and MCI
associated with faster decline in SM [94]

PC aa 38:5
↓ plasma levels decreased from CN <
MCI then slightly increased in AD (CN >
AD > MCI) [98]

PC aa C38:5
↑ CSF [174]
↓ plasma [100]
↓ CSF [108]

↑ baseline serum levels in CN and MCI
associated with slower decline in PS [94]

PC 38:6 ↓ plasma [100]
↓ CSF [108]

↓ plasma levels decreased from CN <
MCI, then slightly increased in AD (CN >
AD > MCI) [98]

PC aa C40:1 ↑ serum [82] ↓ plasma levels progressively decreased
from CN > Converterpre > MCI/AD [92]

PC aa C40:2 ↑ serum [82] ↓ plasma levels progressively decreased
from CN > Converterpre > MCI/AD [92]

PC aa 40:5 ↑ serum [82]
↓ serum [105]

↓ plasma levels decreased from CN <
MCI, then slightly increased in AD (CN >
AD > MCI) [98]

PC aa 40:6 ↓ plasma [100] ↓ plasma levels progressively decreased
from CN < MCI < AD [98]
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Table 3. Cont.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

PC aa C40:6 ↑ serum [82] ↓ plasma levels progressively decreased
from CN > Converterpre > MCI/AD [92]

PC ae C40:6 ↓ plasma [95] ↓ plasma levels progressively decreased
from CN > Converterpre > MCI/AD [92]

PC ae C44:4
↑ baseline serum levels in CN and MCI
associated with faster decline in GC and
EM [94]

PE PE 16:0/18:0 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

PE 36:4
↑ plasma levels increased from CN <
MCI, then stayed the same in AD (CN <
MCI = AD) [98]

PE 38:5
↑ plasma levels increased from CN <
MCI, then decreased slightly in AD (CN
< AD < MCI) [98]

PE 38:7 ↓ plasma levels progressively decreased
from CN > MCI > AD [98]

PE 40:6 ↓ CSF[119]
↓ plasma levels decreased from CN >
MCI, then the stayed same in AD (CN >
MCI = AD) [98]

LysoPE LPE 18:0/0:0 ↑ plasma levels progressively increased
from CN < MCI < AD [98]

LPE 18:1/0:0
↑ plasma levels increased from CN <
MCI, then decreased slightly in AD (CN
< AD < MCI) [98]

PI PI 40:6

↑ plasma levels decreased from CN >
MCI, then increased slightly in AD (CN >
AD > MCI) [98]

LysoPI LPI 18:0/0:0 ↑ plasma levels positively associated
with cognition [120]

↑, increased levels; ↓, decreased levels; AD, Alzheimer’s disease; CN, cognitively normal; Converterpred, baseline
samples from individuals who phenoconverted from CN to MCI or AD; CSF, cerebrospinal fluid; EF; executive
function; EM, episodic memory; GC, global cognition; MCI, mild cognitive impairment; MMSE, Mini-Mental State
Examination; PC; phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, perceptual
speed; SM, semantic memory; SMC, subjective memory complaint; >, greater than; <, less than; =, no change.

4.3.1. Glycerophospholipids in Ageing

Glycerophospholipids are one of the most well studied lipid classes in ageing. Recently,
Verri Hernandes et al. [82] investigated the serum metabolome of 6872 participants to
identify age associated metabolites. They reported 73 phospholipids that were related
to age, with only PC ae 44:5 declining with advancing age. This was also described by
Rist et al. [199]; however, it was only significant in women. Reduced levels of several other
PC, PE and LysoPC species have also been reported in plasma [100,118,172] and serum [196].
A recent lipidomics study of “successful agers” by Montoliu et al. [173] compared the lipid
profiles of centenarians with elderly participants that were below the age of 100 (average
age 70.4 ± 6) and revealed that 23 phospholipid species (3 PIs, 5 PEs, 15 PCs) differed
between the two groups. All but two of these lipids were found in higher concentrations in
centenarians, which, interestingly, were both PCs that contained saturated fatty acyl chains.
Due to their presence in the profiles of centenarians, the authors suggested that these lipids
were modulators of healthy ageing and are associated with longevity. On the other hand,
age-associated changes to phospholipids in CSF have been varied, with some reporting an
increase [119,174] and others a decline [200].
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4.3.2. Glycerophospholipids and Cognition

Studies investigating phospholipid metabolism in cognitively normal older adults are
limited. However, altered phospholipid metabolism has repeatedly been associated with
neurodegenerative disease. Whiley et al. [201] identified three PC species (PC 16:0/20:5,
16:0/22:6 and 18:0/22:6) that showed a reducing trend from cognitively normal controls to
MCI and AD. Interestingly, these PCs all either carried an EPA or a DHA fatty acyl chain,
two of the most important PUFAs for healthy brain function. In fact, similar downward
trends in levels of PCs with increasing degrees of cognitive impairment were also reported
in several other studies [92,98,104]. This downward trend suggests that reductions in these
PC species are positively associated with the severity of cognitive impairment and that
they may be involved in the mechanisms that underpin this decline in cognitive function.

4.3.3. Glycerophospholipids and Exercise

As increased levels of PUFA-carrying PCs are associated with healthy ageing, and
reduced concentrations are observed in age-related cognitive decline, strategies to increase
PUFA-carrying PCs may have a protective effect on the ageing brain. Exercise may be one
such strategy, as there is evidence that exercise impacts phospholipid metabolism. Whilst
many phospholipid species have been implicated with ageing, cognitive decline and exercise
independently, only one was consistently changed across all three. PC 18:1/20:4, containing
an AA acyl chain, was elevated with ageing in CSF [174], reduced in AD serum [197] and
increased with exercise [169]. Exercise-induced elevations in PC 18:1/20:4 could poten-
tially have a positive effect on cognition, as they may counteract the effects of cognitive
impairment that occur with the diminished levels of PC 18:1/20:4 in AD. The effects of
exercise-induced elevations in PUFA-containing PCs on cognitive function are not well
understood, and further research is needed in this area.

4.4. Sphingolipids

Unlike all other lipid classes, sphingolipids have a sphingosine backbone rather than
glycerol [202]. They are critical for brain development, as they are important for efficient
signal transduction, membrane structure and cell recognition [42]. As neurons are polarised
cells, they rely on the selective transportation of molecules through the cellular membrane
to ensure efficient synaptic transmission and neuronal connectivity [203]. This regulation of
neural homeostasis is achieved via sphingolipids, and as a result, they are highly enriched
in the cellular membranes of neurons [204]. Key sphingolipids include ceramides and
sphingomyelins. Ceramides are the precursor compounds for the synthesis of more complex
sphingolipids and have an important signalling role in cell proliferation, differentiation
and apoptosis [205]. Sphingomyelins are a major component of myelin, the insulating
material that surrounds axons that allow efficient transmission of electrical impulses, and
oligodendrocytes, which are the glial cells that produce myelin and provide metabolic
nourishment to axons [206]. Changes in sphingolipids with ageing, cognitive decline and
exercise are well characterised in the literature and summarised below in Table 4.
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Table 4. Changes in sphingolipids with ageing, cognitive decline and exercise in humans.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

Ceramides Hex-CER 18:1/16:0 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

Hex-CER 18:1/18:0 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

Hex-CER 18:1/24:1(2OH) ↑ plasma levels negatively associated
with cognition [120]

Lac-CER 18:1/14:0 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

Lac-CER 18:1/16:1 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

Lac-CER 18:1/16:0 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

CER 18:1/16:0 ↑ serum levels progressively increased
from CN < MCI < AD [104]

CER 39:1
↑ plasma levels decreased from CN >

MCI, then increased slightly in AD (CN >
AD > MCI) [98]

CER 40:1
↑ plasma levels decreased from CN >

MCI, then increased slightly in AD (CN >
AD > MCI) [98]

CER 41:1 ↓ plasma levels progressively decreased
from CN > MCI > AD [98]

CER 42:1
↑ plasma levels decreased from CN >

MCI, then increased slightly in AD (CN >
AD > MCI) [98]

CER 43:1 ↓ plasma levels progressively decreased
from CN > MCI > AD [98]

Sphingo-myelins SM 18:1/14:0 ↑ plasma [95] ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104] ↓ plasma [86]

SM 18:1/16:0 ↑ plasma [95]
↑ serum levels in MCI and then

decreased in AD (CN < AD < MCI) [104]
↓ CSF (MCI) [207]

↑ plasma [86]
↓ plasma [86]

SM 18:1/18:1 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104] ↑ plasma [86]

SM 18:1/18:0 ↑ serum levels in MCI and then
decreased in AD (CN < AD < MCI) [104]

↑ plasma [86]
↓ plasma [86]

SM 18:1/22:0 ↓ plasma [101] ↓ CSF (MCI) [207] ↑ plasma [86]

SM 39:1 ↓ plasma [100]
↓ CSF [119]

↓ plasma levels progressively decreased
from CN > MCI > AD [98]

SM 41:1 ↓ plasma [100] ↓ plasma levels progressively decreased
from CN > MCI > AD [98] ↑ serum [208]

SM 42:1 ↓ plasma [100] ↓ plasma levels progressively decreased
from CN > MCI > AD [98]

↑, increased levels; ↓, decreased levels; AD, Alzheimer’s disease; CER; ceramide, Hex-CER, hexosyl ceramide;
lac-CER, lactosyl ceramide; CN, cognitively normal; CSF, cerebrospinal fluid; MCI, mild cognitive impairment;
SM, sphingomyelin >, greater than; <, less than; =, no change.

4.4.1. Sphingolipids in Ageing

Age-related changes to sphingolipid metabolism can have a strong impact on brain
function; however, these changes are varied and are species specific. In a study of 6055 twins,
Menni et al. [95] reported an increase in SM 18:1/14:0 and SM 18:1/16:0 in the plasma of
older adults in comparison to their younger counterparts. Increases in palmitic acid (C16:0)
have been linked to immune dysregulation, as it has been shown to trigger the secretion of
tumour necrosis factor-a (TNF-a) and interleukin-6, two pro-inflammatory cytokines, and
the activation of caspase-3 (apoptosis) [209]. Elevated sphingolipids, particularly ceramides,
in muscle tissue have also been linked to insulin resistance, which may contribute to age-
associated declines in insulin sensitivity. In contrast, Chatterjee et al. [100] also reported
reductions in several SM species, including SM 39:1, SM 41:1 and SM 42:1, in the plasma
of cognitively normal older adults. For another SM species, Lim et al. [101] showed that
SM 18:1/22:0 was reduced in adults over the age of 60. Using data from the Framingham
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Offspring Cohort, McBurney et al. [210] found that older adults with higher concentrations
of behenic acid (C22:0) lived longer than those with lower levels.

4.4.2. Sphingolipids and Cognition

Studies investigating sphingolipid metabolism in cognitively normal older adults are
limited. However, altered sphingolipid metabolism has repeatedly been associated with
neurodegenerative disease. Olazaran et al. [98] reported a progressive decrease in plasma
levels of SM 39:1, SM 41:1 and SM 42:1 from cognitively normal older adults to individuals
with MCI and AD. This suggests that diminished levels of these SM species are associated
with the degree of cognitive decline observed in these age-related conditions. Fote et al.
also observed a decline in SM 18:1/22:0 and SM 18:1/16:0 in the CSF of patients with
MCI [207]. Interestingly, other research groups have observed an increase in several SM
species in MCI serum, which then declined in AD. In fact, this same trend has also been
reported in several ceramide species, suggesting that there may be a link between increased
levels of certain sphingomyelins and ceramides and subsequent cognitive decline.

4.4.3. Sphingolipids and Exercise

The effects of exercise on sphingolipids are varied and specific to the exercise type and
lipid subclass. Chronic endurance exercise training has been demonstrated to decrease con-
centrations of ceramides in muscle tissue [211], whereas after a single bout of exercise, an
increase in muscle ceramides was observed. Increased ceramides have also been reported
in serum, as described by Bergman et al. [212], who found elevated levels after a single
bout of exercise (90 min at 50% VO2max), which then returned to baseline levels during
recovery. Interestingly, serum sphingosine 1-phosphate and sphingomyelins showed no
change during exercise, but showed diminished levels following cessation, suggesting
that they may have a role in recovery [212]. Another study by Saleem et al. [213] investi-
gated the association between cardiopulmonary fitness and sphingolipids in older adults
with coronary artery disease, or CAD. Individuals with CAD are at risk of developing
cognitive impairment due to impaired cerebral blood flow perfusion and disruptions to
the blood–brain barrier [214]. The authors found that elevated baseline levels of SM 18:1,
CER 16:0, CER 18:0, CER 20:0 and CER 24:1 were associated with poorer VO2peak, and
that improvements in cardiopulmonary fitness were associated with reductions in SM 18:1,
CER 16:0, CER 18:0 and C24:1. Studies have also shown positive effects of exercise on age-
and cognition-associated lipids, as demonstrated by Varga et al. [208], who reported an
increase in serum levels of SM 41:1, a sphingolipid that was reported to decrease with
age and cognitive decline. Similarly, Karl et al. [86] also demonstrated elevated levels of
several sphingomyelin species following exercise, many of which are impaired with ageing
and cognitive decline. This provides evidence that exercise can modulate detrimental
sphingolipid profiles, highlighting the importance of beneficial lifestyle factors in older
adults to mitigate age-related changes to sphingolipid metabolism to support healthy brain
ageing and better cognitive function.

4.5. Sterols
4.5.1. Cholesterol

Sterols are a class of lipids that contain a steroid group [215]. The most abundant sterol
lipid in animals is cholesterol, which is a precursor for several hormones and fat-soluble
vitamins and is also as a key component of cell membranes [216]. Whilst only accounting
for 2% of the weight of the human body, the brain contains a quarter of the total choles-
terol, with most of it residing in myelin [217]. Cholesterol homeostasis in the CNS is vastly
different compared to other body systems. Outside of the CNS, cellular requirements for
cholesterol are provided through the diet or via de novo synthesis in the liver. This choles-
terol is then bound to apolipoproteins to form lipoproteins, and are carried through the
blood for uptake at the cell surface [217]. Some examples include low-density lipoproteins
(LDL), which carry cholesterol to tissues, and high-density lipoproteins (HDL), which carry
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cholesterol away from tissues for breakdown at the liver [218]. These two classes of lipopro-
teins are colloquially referred to as “bad” and “good” cholesterol, respectively, although
the reality is almost certainly more complex. Uptake at the cell surface is not feasible for the
brain, as lipoproteins cannot cross the blood–brain barrier; hence, most of the cholesterol in
the brain is synthesised de novo within the CNS [219]. Once synthesised, the cholesterol is
then transported around the CNS to neurons via apolipoprotein-E (APOE), the brain’s main
cholesterol carrier [219]. As previously mentioned, carriers of the APOE ε4 allele are at an
increased risk of developing AD [220]. This is due to the detrimental effects of impaired
APOE metabolism on brain health, including aggregation of the neurotoxic amyloid-beta
peptides, disruption to BBB function and increased inflammation [221]. Changes in sterols
with ageing, cognitive decline and exercise are well characterised in the literature and
summarised below in Table 5.

Table 5. Changes in sterols with ageing, cognitive decline and exercise.

Subclass Species Change with Ageing Change with Cognitive Decline Change with Exercise

Sterols Cholesterol ↑ plasma [106,200]
↑ plasma (F) [199] ↓ brain (AD) [222] ↓ plasma [86]

Cholesteryl esters CE 20:3 ↑ levels associated with increased
risk of global cognitive decline [112]

CE 18:2 ↓ plasma [100] ↓ levels associated with increased
risk of global cognitive decline [112]

Steroids Dehydro-epiandrosterone-
sulfate (DHEA-S) ↓ plasma [106]

Positive correlation between
DHEA-S and global cognition in M
and F. Positive correlations between
DHEA-S on working memory,
attention and verbal fluency in F
only [223]

↑, increased levels; ↓, decreased levels; AD, Alzheimer’s disease; CE; cholesteryl ester; DHEA-S, dehydroepiandros-
terone sulfate; F, female; M, male.

Cholesterol in Ageing

Changes to cholesterol metabolism are a prominent feature of ageing and are sex de-
pendent. In men, concentrations of cholesterol in plasma increase gradually with age until
about 50 years of age, whereupon they start to decrease. In women however, Rist et al. [199]
showed that cholesterol was elevated in older, post-menopausal women when compared
to their younger counterparts. This is due to the drop in oestrogen levels that occur dur-
ing menopause, as oestrogen helps to regulate lipid metabolism in the liver, leading to
an increase in LDL levels. Cholesterol metabolism in the brain has also been shown to
decline with age, with decreases in cholesterol synthesis being reported in the hippocam-
pus [224]. Whilst some suggest that reduced cholesterol turnover is protective as it helps to
keep cholesterol levels stable during ageing [225], others say that this may contribute to
cognitive decline, as impaired cholesterol synthesis has been linked to reduced synaptic
plasticity [226]. Furthermore, the integrity of the BBB has shown to decline with age, which
may impair its ability to keep peripheral cholesterol separate from the CNS [227]. In mice,
Saeed et al. [228] showed that BBB breakdown resulted in the entry of cholesterol from
the blood into the brain. Additionally, age-associated declines in microglial function in
processing excess cholesterol leads to an accumulation of cholesterol in microglia [229].
This, in turn, induces inflammatory responses and prevents remyelination of myelin sheets
encompassing neurons.

Cholesterol and Cognition

Due to the cholesterol-rich nature of the brain, any changes to cholesterol metabolism
can lead to impairments in brain structure and function. Whilst brain cholesterol is separate
from circulating cholesterol, there still appears to be a link between circulating levels of
cholesterol and cognitive function. Yu et al. [99] demonstrated that higher serum cholesterol
levels in midlife were positively associated with a more rapid decline in global cognitive
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function in later life. In contrast, another study showed that higher levels of serum choles-
terol in women in mid- and late-life were predictive of slower processing speed and reduced
episodic memory [230].

Cholesterol and Exercise

The benefits of exercise in the context of cholesterol metabolism have been widely
studied. A meta-analysis of 51 studies that included 12 or more weeks of aerobic exercise
was conducted by Leon and Sanchez [231]. The authors found that, on average, prolonged
aerobic exercise had no effect on total cholesterol, but considerable improvements to the
HDL:LDL cholesterol ratio were observed due to a 4.6% increase in HDL and 5% reduction
in LDL cholesterol. An increase in HDL cholesterol levels was also observed in patients
with AD following a 16-week moderate-to-high intensity exercise intervention, compared
to non-exercise AD controls. This suggests that exercise may be beneficial to regulating
cholesterol homeostasis in AD patients, and future research is required to see whether this
improvement in cholesterol profiles has an effect to cognitive function.

4.5.2. Steroid Hormones
Steroid Hormones and Ageing

Hormone changes are also a major element of ageing, particularly involving sex
hormones. Age-related declines in plasma testosterone are well recognised, particularly
after the age of 40 [232]. Several longitudinal studies have demonstrated a gradual de-
crease in plasma testosterone with advancing age in healthy men [233,234]. In women,
changes in sex hormones are more pronounced, as characterised by the dramatic decline in
oestrogen and progesterone levels during menopause [235]. Both testosterone and oestro-
gen are produced from dehydroepiandrosterone (DHEA) and its sulphated counterpart
(DHEA-S) [223]. There is also evidence that DHEA and DHEA-S are involved in the modu-
lation of various processes in the brain and have neuroprotective capabilities due to their
roles as antioxidants. Steady declines in the levels of DHEA-S were shown to be associated
with increasing age in several studies in both men and women; however, the total levels of
DHEA-S in men were significantly higher than in women [236]. In fact, when comparing
DHEA plasma levels of 50–60-year-old adults to 20–30-year-olds, Labrie et al. [237] found a
74% and 70% decrease in DHEA levels in serum of men and women, respectively.

Steroid Hormones and Cognition

As with levels of circulating steroid hormones, the pattern of their release may also
be significantly altered with ageing. Perturbations to steroid hormones under circadian
regulations such as the sleep wake cycle can result in poor neurocognitive health [238].
Diminished sleep quality in older adults have been linked to declines in executive function
and attention [239]. Testosterone has also shown to decline with age in men and has been
linked to cognitive health [240]. Older men with higher levels of testosterone have been
reported to have better cognitive function than those with lower levels [241]. Men with
diminished levels of testosterone showed improvements to cognition following supple-
mentation of testosterone. While there is evidence that testosterone is linked to cognition in
older men, the exact mechanism by which this occurs is unclear.

In women, oestrogen decline has been linked to cognitive impairments. Oestrogen
has several roles in supporting neurocognitive health [242]. In the hippocampus and pre-
frontal cortex, two crucial regions involved in cognitive processes, oestrogen has a role in
regulating synapse formation and turnover [243]. Oestrogen also promotes the synthesis of
neurotrophins [244], modulates dopaminergic, serotonergic and cholinergic neurotransmit-
ter pathways [245], and protects the brain against inflammation and stress [246]. Studies
have suggested that rapid declines in oestrogen that are observed in menopausal women
may render the brain vulnerable to neurodegeneration [247]. This may have a role in the
increased risk of women developing cognitive decline in later life, as women with dementia
outnumber men twofold [248].
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Steroid Hormones and Exercise

The effects of exercise on steroid hormones are specific to the type of exercise and
the fitness of the individual. A study by Sato et al. [249] compared male elite athletes with
untrained age matched controls who underwent two exercise sessions consisting of 15 min
at 40% VO2peak, 70% VO2peak and then 90% VO2peak until exhaustion, with 10 min of rest
between each interval. Exercise at all intensities induced elevated serum free testosterone
and DHEA in the non-trained group, whereas these were only elevated at 90% VO2peak
in the elite athlete group. This suggests that serum sex hormone changes in response to
exercise are influenced by exercise intensity in individuals with varying levels of physical
fitness. As cardiorespiratory fitness declines with age, this is promising, as there is evidence
that older adults may still benefit from the effects of exercise on steroid hormone regulation.

5. Conclusions

Increased propensity for healthy ageing will contribute to enhanced socioeconomic
and personal outcomes, yet there is currently a lack of consistent evidence for promotion of
brain health in older adults. Whilst exercise has been shown to be effective in regulating
healthy lipid profiles, there are numerous gaps in the knowledge of how these benefits
translate to the ageing brain and whether they may produce a quantifiable improvement in
cognitive health. Intrinsic factors (such as genetics) and extrinsic influences (such as diet)
likely contribute to brain ageing outcomes; hence, lipidomics has emerged as a promising
tool to explore these relationships. Although lipidomics has provided valuable insights on
the effects of age and exercise on the lipidome, research on age-associated lipid responses
to exercise is lacking. This is due to most of the exercise lipidomics papers being focused on
human performance; as such, they frequently involve the study of elite athletes. Whilst this
research is very important, these findings may not be transferable to the average older adult,
as they may elicit a vastly different lipidomic response to exercise. Further research is also
required to determine the lipidomic characteristics that distinguish between individuals
who respond well to exercise and show significant neurocognitive benefits and those who
do not.
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